본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.24
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
EEWS
by recently order
by view order
Principle behind increasing the catalytic property of nanocatalysts proven
The technology that allows full control of the catalytic property of nanocatalysts using oxide formation on nanocatalysts has been developed by KAIST researchers. The breakthrough opens up the possibility of the development of a new kind of catalysts that maximizes catalytic property and minimizes waste. *nanocatalyst is a material that catalyzes gas reactions on its surface. It is composed of a high surface area oxide scaffold with nano-sized metal particles dispersed. The team was led by Professor Park Jeong Young of the KAIST EEWS Graduate School and consists of Kamran Qadir Ph.D. candidate (1st Author), Professor Joo Sang Hoon of UNIST, Professor Moon Bong Jin of Hanyang University, and Professor Gabor Somorajai of UC Berkeley. Support for the research was provided from Ministry of Education Science and Technology, National Research Foundation, and Ministry of Knowledge Economy. The results were published as the online edition of Nano Letters: “Intrinsic Relation between Catalytic Activity of CO Oxidation on Ru Nanoparticles and Ru Oxides Uncovered with Ambient Pressure XPS”. Catalysts are included in above 80% of all the products used in everyday life and are therefore included in most aspects of our lives. The focus on nanocatalysts is based on finding solutions to increasing the efficiency for application to energy production and for solving environmental issues. Most nanocatalysts are composed of nanoparticles and oxides where the nanoparticles increase the surface area of the catalyst to increase its activity. The efficiency of a nanocatalyst is affected by the surface oxide of the nanoparticles. However the proving of this assumption remained difficult to do as it required in-situ measurement of the oxide state of the nanoparticles in the specific environment. Thus far, the experiments were conducted in a vacuum and therefore did not reflect the actual behavior in real life. The recently developed X-ray Photoelectron Spectroscopy allows for measurement of the oxidization state at standard atmospheric pressure. Professor Park’s research team successfully measured the oxidization state of the nanoparticle using the atmospheric pressure X-ray Photoelectron Spectroscopy in the specified environment. They confirmed the effect the oxidization state on the catalytic effect of the nanoparticles and additionally found that a thin layer of oxide can increase the catalytic effect and the effectiveness of the nanoparticle can controlled by the oxidation state.
2012.11.29
View 8000
3rd EEWS CEO Forum Held
KAIST EEWS (Energy Environment Water and Sustainability) held the 3rd EEWS CEO Forum at KAIST Seoul Campus. EEWS is a research/education project initiated by KAIST to solve the global issues that the world faces including issues such as: energy depletion, global warming, water shortage, and sustainable development. The 3rd EEWS CEO Forum is dedicated to providing the opportunity to share the vision and experience on technology and policy for green growth. The forum was founded in 2011 with active participation from Woo Ki Jeong (Director of Statistics), Choi Kwang Sik (Korea City Airport, Logistics and Travel, CEO), Kang Young Joong (Daekyo Group, CEO), Yoo Kyung Sun (Eugene Group, CEO), all experts in the field of green growth. The forum consisted of presentations and debate on topics such as: international outlook on green growth, development projects based on new renewable energy, battery of electric vehicles, and development of solar cells. Kim Sang Hyup member of the Presidential Committee on Green Growth started off the series of lectures with the topic of ‘International Outlook on Green Growth’. Kim Joong Gyum CEO of KEPCO followed up with ‘the Future of Electricity Generation Industry and Renewable Energy’, Kim Soo Ryung Director of LG Chemicals gave a talk on ‘Electric Vehicles and the Future of the Battery Industry’, and finally Choi Gi Hyuk CEO of SDN Ltd. gave the final lecture on ‘the Inflection Point of Solar Cell Industry’.
2012.10.16
View 8566
Successful development and analysis of mesoporous quasicrystal structures
Professor Osamu Terasaki’s research team from the EEWS Graduate School at KAIST successfully synthesized mesoporous quasicrystalline silica and developed a new method of analyzing its growth. The theory proposed by the team laid the foundation for the scientific examination of quasicrystal phenomena during the formation of micelles particles, a type of soft matter. The paper was published in the July edition of Nature magazine. Scientists have faced difficulty in systematically explaining the mesoporous quasicrystal structures that are found in solidified versions of soft matter systems. However, the theoretical foundation from this research is expected to help promote the research and development of new nano-structured materials. Mesoporous quaicrystals are soft matters that have high symmetry and a larger characteristic length scale than the nanoscale, thereby making it possible to develop materials that have controllable optical properties. This technology can be applied to the sustainable storage, use, and reproduction of energy. Professor Terasaki’s team succeeded in synthesizing mesoporous quasicrystalline silica and proved the formation of dodecagonal column-shaped crystals as well as dodecagonal, rotationally symmetric electron diffraction patterns near the crystals using Transmission Electron Microscopy. Quasicrystals are an abbreviation of ‘quasiperiodic crystals’ and have what is called the ‘third solid’ property; they have a structural arrangement that is between arranged crystal structures, such as metals, and non-crystalline structures, such as glass. This crystalline structure was only recently found, and the 2011 Nobel Chemistry Award was given to research in this field. When porous materials are synthesized into quasicrystals, the crystalline structures of the pores can be designed and controlled in any way, making it possible to create new materials for a wide range of fields. Professor Terasaki said that ‘The discovery of highly symmetric quasicrystals can lead to the alteration of a material’s optical properties, allowing the development of photonic crystals in the visible spectra.’ He also explained that this control of a material’s optical energy absorption could be the core technology behind energy harvesting. This research was jointly conducted by Professor Terasaki from the EEWS Graduate School at KAIST and Stockholm University in Sweden.
2012.08.01
View 8020
KAIST researchers verify and control the mechanical properties of graphene
KAIST researchers have successfully verified and controlled the mechanical properties of graphene, a next-generation material. Professor Park Jung Yong from the EEWS Graduate School and Professor Kim Yong Hyun from the Graduate School of Nanoscience and Technology have succeeded in fluorinating a single atomic-layered graphene sample and controlling its frictional and adhesive properties. This is the first time the frictional properties of graphene have been examined at the atomic level, and the technology is expected to be applied to nano-sized robots and microscopic joints. Graphene is often dubbed “the dream material” because of its ability to conduct high amounts of electricity even when bent, making it the next-generation substitute for silicon semiconductors, paving the way for flexible display and wearable computer technologies. Graphene also has high potential applications in mechanical engineering because of its great material strength, but its mechanical properties remained elusive until now. Professor Park’s research team successfully produced individual graphene samples with fluorine-deficiency at the atomic level by placing the samples in Fluoro-xenon (XeF2) gas and applying heat. The surface of the graphene was scanned using a micro probe and a high vacuum atomic microscope to measure its dynamic properties. The research team found that the fluorinated graphene sample had 6 times more friction and 0.7 times more adhesiveness than the original graphene. Electrical measurements confirmed the fluorination process, and the analysis of the findings helped setup the theory of frictional changes in graphene. Professor Park stated that “graphene can be used for the lubrication of joints in nano-sized devices” and that this research has numerous applications such as the coating of graphene-based microdynamic devices. This research was published in the online June edition of Nano Letters and was supported by the Ministry of Science, Technology, and Education and the National Research Foundation as part of the World Class University (WCU) program.
2012.07.24
View 13164
High Capacity Molecular Storage Technology Developed by KAIST Professor Omar M. Yaghi
KAIST research team has succeeded in developing the technology that allows high capacity protein storage. Professor Omar M. Yaghi (Graduate School of EEWS) and his research team succeeded in developing the core technology that enables the storage of various types of proteins by developing a metal organic structure. The result of their research was published in the May edition of Science magazine. The newly developed technology can store various types and sizes of proteins. This property is expected to pave way to: 1) development of high capacity, high integration drugs 2) development of virus separation compounds 3) selective removal of protein causing negative reactions in the body 4) permanent preservation of rare polymeric proteins, among other expectations. In addition it becomes possible to selectively remove and preserve all the body’s cells including stem cells which will aid the development of cures for incurable diseases and increase life expectancy and medical technology in general. Conventional metal-organic structure used 7 Angstrom large small single molecules and therefore could not be used in the storage of large molecules or proteins. Its usability was proven only as potential high capacity gas storage structure. In addition the internal structure of the metal organic structure is cross linked which made it even more difficult to store large proteins within the structure. Professor Yaghi’s team used molecular structure over 5nm in length in the development of the metal-organic structure to solve the problem associated with size of structure. The ordered structure of the structure’s pore was observed for the first time using Transmission Electron Microscope. The new structure enables the ordered storage of large proteins and was able to store vitamin and proteins like myoglobin at high capacity for the first time in the world.
2012.05.30
View 7918
Exhibition of Investment Demonstration on EEWS Research Held
- Five winners of business-planning project exhibition hold exhibition towards thirteen Angel Investors. Venture capital firm and industry investors are investing for themselves on the Green Growth Project of KAIST, which strives for solutions of global issues, such as; energy depletion, environment pollution and sustainable development. KAIST awarded the winner of "EEWS business-planning exhibition competition" and held investment demonstration exhibition. The exhibition is opened by the winners of the competition and held towards the firms and inventors encouraging capital on green business project and green technologies. The venture capital firms that participated in this exhibition were; Coolidge Corner Investment, Dae-Duk Investment Corp, KPM, Locus Capital Partners and Bo-Gwang Investment. The industry investors that participated were: Samsung C&T Corp, Cheil Industry, Dasan Networks, Hanhwa L&C, thirteen companies in total. The goal of EEWS Exhibition is to encourage the commercialization of research and development. It was co-hosted by DFJ Athena LLC and Ilshin ventures. The competition was divided into business planning section and business technology section. Grand prize on green growth went to Professor Joong-Myeon Bae who suggested "Eco-friendly hydrogen fuel cells", runner-up prize went to "Real-time measuring of NOx on Eco-friendly diesels" by Jin-Su Park, the technology director of CIOS. Grand prize of green technology went to "Highly-refractive, heat resisting hybrimer LED sack’ by Byung-Su Bae, professor of new material engineering, participation award went to ‘ITO-Free touch screen for smart phone’ by Min-yang Yang, professor of the department of Mechanical Engineering. A representative of KAIST said those of the firms and investors who have gone through commercialization showed interest on the creativity and the high level of the product. Jae-Kyu Lee, the head of EEWS who supervised the whole exhibition mentioned that, "EEWS Planning Group is consistently going to come up with innovative results” and that “Angel Investors showed enthusiasm. The representatives of Venture capital firm even considered participating as the jury of the competition in the future.” [Definition] EEWS stands for Energy depletion, Environment pollution, Water shortages and Sustainability, a project for the solution of such global issues promoted by KAIST.
2012.03.06
View 8756
Quantum Mechanical Calculation Theory Developed
An Electron Density Functional Calculation Theory, based on the widely used quantum mechanical principles and yet accurate and with shortened calculation period, was developed by Korean research team. *Electron Density Functional Calculation Theory: Theory that proves that it is possible to calculate energy and properties with only simple wave equations and electron densities. The research was conducted by Professor Jeong Yoo Sung (Graduate School of EEWS) and Professor William Goddard with support from WCU Foster Project initiated by Ministry of Education, Science and Technology and Korea Research Foundation. The result was published in the Proceedings of the National Academy of Sciences Journal. The research team corrected the error when performing quantum calculations that arises from the length of calculation time and incorrect assumptions and developed a theory and algorithm that is more accurate and faster. The use of wave equations in quantum mechanical calculations results in high accuracy but there is a rapid increase in calculation time and is therefore difficult to implement in large molecules with hundreds, or thousands of atoms. By implementing a low electron density variable with relatively less calculation work, the size of calculable molecule increases but the accuracy decreases. The team focused on the interaction between electrons with different spins to improve upon the speed of calculation in the conventional accurate calculation. The team used the fact that the interaction between electrons with different spins increases as it comes closer together in accordance with the Pauli’s Exclusion Principle. In addition the interaction between electrons are local and therefore can ignore the interactions between far away electrons and still get the total energy value. The team also took advantage of this fact and developed the algorithm that decreased calculation time hundredth fold. Professor Jeong commented that, “So far most of the domestic achievements were made by focusing on integrative researches by calculation science and material design communities but these involved short time frames. In areas that required lengthy time frames like fundamentals and software development, there was no competitive advantage. However this research is significant in that a superior solution was developed domestically”.
2012.01.31
View 9542
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2