Selection of the 'Proud Alumni Award' Recipients
<(From left) Donggeun Yoo, CAIO of Lunit / Eun-kang Song, CEO of Capstone Partners / Sang Ouk Kim, Professor of Materials Science and Engineering at KAIST/ Sung-soo Kim, Special Professor at Yonsei University/ Byung Jin Cho, Professor of Electrical Engineering at KAIST/ Joongi Kim, CTO of Lablup>
KAIST announced on January 16th that the Alumni Association has selected the recipients of the 'KAIST Proud Alumni Award.'
Starting this year, the 'KAIST Proud Alumni Award' has been expanded and reorganized into six categories—Innovative Entrepreneurship, Industrial Contribution, Academic Research, Public Innovation, Social Service, and Young Alumni—to broadly highlight the achievements of alumni active in various fields. The award ceremony will be held at the '2026 KAIST New Year's Gala' at 5 p.m. on the 16th at the EL Tower in Seoul.
Donggeun Yoo, Chief Artificial Intelligence Officer (CAIO) of Lunit Inc. (B.S. 2011, M.S. 2013, Ph.D. 2019, School of Electrical Engineering), was selected as the recipient of the Innovative Entrepreneurship category. CAIO Yoo co-founded Lunit, a first-generation deep learning AI startup in Korea, in 2013, leading AI technology in the field of cancer diagnosis and treatment. Recently, he contributed to strengthening national competitiveness in the medical AI industry by leading the 'AI-specialized Foundation Model Project.'
In the Industrial Contribution category, Eun-kang Song, CEO of Capstone Partners (M.S. 1988, School of Computing), was named. CEO Song is the person who established the early-stage investment-centered strategy in the domestic venture capital industry. Over the past 28 years, he has led the development of the venture ecosystem by growing companies into unicorns through more than 200 investments.
The recipient of the Academic Research category, Sang Ouk Kim, Professor of Materials Science and Engineering at KAIST (B.S. 1994, M.S. 1996, Ph.D. 2000, Dept. of Chemical and Biomolecular Engineering), opened a new horizon in new material research by identifying the liquid crystallinity of graphene oxide for the first time in the world. This research is evaluated as a core original technology that enabled the mass production of high-purity graphene, serving as an example of the industrial expansion of basic research.
The Public Innovation category was awarded to Sung-soo Kim, Special Professor at the College of Engineering, Yonsei University (former Chairman of the Science and Technology Professionals Community) (Ph.D. 1988, Dept. of Chemistry). During his tenure as the Vice Minister of Science, Technology, and Innovation, Professor Kim established a pan-governmental technology self-reliance system for materials, parts, and equipment in response to Japanese export restrictions and led the innovation of national R&D governance.
Byung Jin Cho, Professor of the School of Electrical Engineering at KAIST (M.S. 1987, Ph.D. 1991, School of Electrical Engineering), was selected for the Social Service category. Since founding a campus club in 2010, Professor Cho has practiced continuous mentoring and sharing for 15 years, supporting the academic studies and settlement of international students.
Joongi Kim, Chief Technology Officer (CTO) and co-founder of Lablup Inc. (B.S. 2010, M.S. 2012, Ph.D. 2016, School of Computing), who received the Young Alumni award given to talents aged 40 or younger, developed an open-source-based AI infrastructure management platform and proved technological competitiveness in the global market by registering core GPU fractional virtualization technology as patents in Korea, the U.S., and Japan.
Kwang Hyung Lee, President of KAIST, said, "This year's awardees are role models for KAISTians who have contributed to the development of society and the nation with outstanding achievements. These challenges and achievements of our seniors will inspire juniors and contribute to spreading the innovative values of KAIST."
Yun-tae Lee, the 27th President of the KAIST Alumni Association, stated, "The six awardees are the protagonists who have practiced the values of KAISTians across academia, industry, public, and society. The Alumni Association will continue to serve as a link for the achievements of alumni to spread into society."
Meanwhile, the newly elected 28th President of the Alumni Association, Hoo-sik Kim, is scheduled to begin his term in February 2026.
Playground for Future Quantum Technology: KAIST-MIT Quantum Information Winter School Successfully Concluded
< Group photo of the KAIST-MIT Quantum Information Winter School >
“Through the KAIST-MIT Quantum Information Winter School, I was able to view research from a broader perspective. The experience of collaborating with students from various universities and majors to complete a project was very refreshing,” said Jun-hyeong Cho, a student at the KAIST School of Electrical Engineering.
KAIST announced on the 16th that the Graduate School of Quantum Science and Technology successfully concluded the ‘KAIST-MIT Quantum Information Winter School,’ held jointly with the Massachusetts Institute of Technology (MIT) from January 5th to 16th at the KAIST main campus in Daejeon.
For this year’s Winter School, 50 junior and senior undergraduate students from Korea and abroad were selected to receive intensive training to grow into next-generation quantum talent. Eight world-renowned scholars from KAIST and MIT participated in the program, providing a multi-dimensional curriculum that spanned theory and practice—ranging from theoretical lectures and introductions to cutting-edge quantum experiments to visits to government-funded research institutes and student poster presentations.
Celebrating its third anniversary since its inception in 2024, the Winter School is now evaluated as a premier quantum information education program in Korea. Alongside KAIST faculty, world-class scholars from MIT participated directly in lectures and field training, operating an intensive curriculum that covered the entirety of quantum information science.
The lecturing faculty included world authorities in quantum computing, quantum devices, quantum machine learning, and quantum simulation, such as MIT professors Pablo Jarillo-Herrero, Seth Lloyd, Kevin P. O’Brien, and William D. Oliver, as well as KAIST scholars Jaewook Ahn, Joonwoo Bae, Gil-Young Cho, and Jae-yoon Choi.
Going beyond theoretical lectures, participants gained a broad understanding of research trends, technical limitations, and future development directions of state-of-the-art quantum technology through experimental training in core areas such as quantum computing, communication, sensing, and simulation.
< Scene from a Winter School lecture >
Furthermore, students visited the Korea Research Institute of Standards and Science (KRISS) and the Electronics and Telecommunications Research Institute (ETRI) to experience actual research sites, engaging in field-oriented education that bridges quantum theory and practice. The poster presentation session, where students shared their own research ideas, received enthusiastic responses as a forum for deep academic exchange, allowing students to receive direct feedback from MIT faculty.
Tae-hee Kim, a student from Pusan National University, remarked, “I was greatly inspired by the passion of the MIT faculty and the high level of questions from the students. It served as a motivation for me to pursue deeper studies independently.” Byung-jin Hwang, a student from Yonsei University, added, “I expected lectures from world-class scholars to be difficult, but I was impressed by the explanations tailored to the undergraduate level. The poster presentation session was particularly memorable.”
Eun-seong Kim, Dean of the KAIST Graduate School of Quantum Science and Technology, stated, “The KAIST-MIT Quantum Information Winter School is a special educational program where students can learn directly from world-renowned quantum researchers and experience cutting-edge research. We look forward to the active participation of future talents who will lead the quantum industry.”
Participants for this Winter School were selected through a document review process, and the program was operated entirely free of charge. KAIST covered all educational expenses and provided dormitory accommodations and lunch. Detailed information about the event can be found on the KAIST Graduate School of Quantum Science and Technology website (https://quantumschool.kaist.ac.kr/).
< Poster for the KAIST-MIT Quantum Information Winter School >
Chairman Jae-Chul Kim of Dongwon Group Donates a Total of 60.3 Billion Won to KAIST
<Jae-Chul Kim, Honorary Chairman of Dongwon Group>
"In the era of AI, a new future lies within the sea of data. I ask that KAIST leaps forward to become the world's No. 1 AI research group." — Jae-Chul Kim, Honorary Chairman of Dongwon Group
KAIST announced on January 16th that Honorary Chairman Jae-Chul Kim of Dongwon Group has pledged an additional 5.9 billion KRW in development funds to foster Artificial Intelligence (AI) talent and strengthen research infrastructure, bringing his total contribution to 60.3 billion KRW. This marks his second additional donation since 2020, continuing his steadfast support for strengthening South Korea's national competitiveness in the field of AI.
Through his initial donation in 2020, Chairman Kim established the 'Kim Jaechul Graduate School of AI' at KAIST, urging the university to secure world-class capabilities. Upon hearing that KAIST’s AI research level ranked 5th among global universities over the past five years (2020–2024), Chairman Kim requested that the university strive to reach the No. 1 spot in the world.
In response, President Kwang Hyung Lee explained, "To surpass Carnegie Mellon University (CMU), which is currently evaluated as the world’s best with an AI faculty of about 45, the KAIST Graduate School of AI needs to expand its faculty to over 50 and construct a dedicated research building." Chairman Kim responded by saying, "I will build the building," and this latest donation is a fulfillment of that promise.
This third pledge of 5.9 billion KRW was decided to cover the projected budget shortfall as the design of the AI Education and Research Building enters full-scale development.
The AI Education and Research Building will be a facility with 8 floors above ground and 1 basement level, covering a total floor area of 18,182 m² (approx. 5,500 pyeong). It is scheduled for completion in February 2028. Once finished, it will serve as a global AI research hub housing 50 faculty members and 1,000 students.
Since the 2021 academic year, KAIST has been selecting 60 Master’s and 10 Doctoral students annually as 'Dongwon Scholars' outside of the regular quota for a period of 10 years. While the tuition and research incentives for the first three years were supported by the donation, KAIST has been utilizing its own budget since the 2024 academic year to ensure students can focus entirely on their research.
Moving forward, the Kim Jaechul Graduate School of AI plans to build a world-class faculty and operate systematic Master's and Doctoral programs to cultivate global AI leaders. In addition to technical expertise, the school will offer educational programs focused on character and holistic development, leading the charge in strengthening Korea's AI competitiveness.
Honorary Chairman Jae-Chul Kim stated, "I hope this donation serves as a small 'priming water' for South Korea to leap forward as an AI powerhouse. I look forward to seeing global core talents grow here and contribute to our national strength."
President Kwang Hyung Lee expressed his gratitude, saying, "Chairman Kim’s unwavering support is the greatest driving force for KAIST to secure global AI sovereignty. We will ensure the Kim Jaechul Graduate School of AI becomes a mecca where the world's best AI minds gather to innovate, honoring the Chairman’s vision."
Seeing Black Holes More Clearly with Laser Light
<(From Left) Researcher Junyong Choi, Researcher Woosong Jeong, Professor Jungwon Kim, Researcher Jihoon Baek >
Radio telescopes are instruments that capture faint radio signals from space and convert them into images of celestial bodies. To observe distant black holes clearly, multiple radio telescopes must capture cosmic signals at exactly the same time, acting as a single unit. Research teams at KAIST have developedr a new reference signal technology that uses laser light to precisely synchronize the observation timing and phase of these telescopes.
KAIST announced on January 15th that a research team led by Professor Jungwon Kim from the Department of Mechanical Engineering—in collaboration with the Korea Astronomy and Space Science Institute, the Korea Research Institute of Standards and Science, and the Max Planck Institute for Radio Astronomy (MPIfR) in Germany—has implemented a technology that directly applies optical frequency comb lasers to radio telescope receivers.
While a typical laser emits only one color (frequency), an optical frequency comb laser emits tens of thousands of extremely accurate colors arranged at regular intervals. This appearance resembles the teeth of a comb, hence the name "frequency comb." Since the frequency of each individual "tooth" is known exactly and the intervals can be precision-tuned to the level of an atomic clock, scientists refer to it as an "ultra-precision ruler made of light."
The core of Very Long Baseline Interferometry (VLBI), a technique where multiple radio telescopes observe simultaneously, is aligning the phases of the radio signals received by each telescope as if aligning them to a single precise ruler. However, existing electronic reference signal methods faced limitations; as observation frequencies increased, precise phase calibration is becoming more difficult.
In response, the KAIST research team developed a method to deliver the optical frequency comb laser directly into the radio telescope, based on the idea of "improving the fundamental precision of phase alignment by utilizing light (lasers) from the signal generation stage." Through this, they successfully solved the problems of reference signal generation and phase calibration simultaneously within a single optical system.
If the conventional method was like using a "ruler that makes phase alignment difficult" at higher frequencies, this new technology can be compared to setting a standard with an "ultra-precision ruler that fixes the phase with extremely stable light." As a result, they have laid the foundation for distant radio telescopes to interoperate as elaborately as one giant telescope.
This technology was verified through test observations at the Korea VLBI Network (KVN) Yonsei Radio Telescope. The research team succeeded in detecting stable interference patterns (fringes) between radio telescopes and proved through actual observation that precise phase calibration is possible. Recently, this system was also installed at the KVN SNU Pyeongchang Radio Telescope, leading to expanded experiments using multiple observation sites simultaneously.
The team expects that this will not only allow for clearer imaging of black holes but also drastically reduce phase delay errors between instruments—a long-standing issue in VLBI observations.
The applications of this technology are not limited to astronomical observations. The team anticipates that it can be expanded to various advanced fields requiring precise space-time measurements, such as▲ Intercontinental ultra-precision clock comparison ▲Space geodesy ▲Deep-space probe tracking
< Illustration of the system principle (Image generated by AI) >
Professor Jungwon Kim of KAIST stated, "This research is a case where the limits of existing electronic signal generation technology were overcome by directly applying optical frequency comb lasers to radio telescopes. It will significantly contribute to improving the precision of next-generation black hole observations and advancing the fields of frequency metrology and time standards."
Dr. Minji Hyun (currently at KRISS) and Dr. Changmin Ahn from KAIST participated as co-first authors. The research findings were published on January 4th in the international academic journal Light: Science & Applications.
Paper Title: Optical frequency comb integration in radio telescopes: advancing signal generation and phase calibration
DOI: 10.1038/s41377-025-02056-w
Lead Authors: Dr. Minji Hyun (KAIST, currently KRISS), Dr. Changmin Ahn (KAIST), Jungwon Kim (KAIST)
This research was conducted with support from the National Research Council of Science & Technology (NST) Creative Alliance Project(CAP), the National Research Foundation of Korea (NRF), and the Institute of Information & Communications Technology Planning & Evaluation (IITP).
Breaking the 1% Barrier, KAIST Boosts Brightness of Eco-Friendly Ultra-Small Semiconductors by 18-Fold
<(Front rwo, from left) KAIST co-first author Changhyun Joo, co-first author Seongbeom Yeon, (Back row, from left) Jaeyoung Ha, Professor Himchan Cho, Jaedong Jang>
Light-emitting semiconductors are used throughout everyday life in TVs, smartphones, and lighting. However, many technical barriers remain in developing environmentally friendly semiconductor materials. In particular, nanoscale semiconductors that are tens of thousands of times smaller than the width of a human hair (about 100,000 nanometers) are theoretically capable of emitting bright light, yet in practice have suffered from extremely weak emission. KAIST researchers have now developed a new surface-control technology that overcomes this limitation.
KAIST (President Kwang Hyung Lee) announced on the 14th of January that a research team led by Professor Himchan Cho of the Department of Materials Science and Engineering has developed a fundamental technology to control, at the atomic level, the surface of indium phosphide (InP)* magic-sized clusters (MSCs)—nanoscale semiconductor particles regarded as next-generation eco-friendly semiconductor materials.* Indium phosphide (InP): a compound semiconductor made of indium (In) and phosphorus (P), considered an environmentally friendly alternative that does not use hazardous elements such as cadmium
The material studied by the team is known as a magic-sized cluster, an ultrasmall semiconductor particle composed of only several tens of atoms. Because all particles have identical size and structure, these materials are theoretically capable of emitting extremely sharp and pure light. However, due to their extremely small size of just 1–2 nanometers, even minute surface defects cause most of the emitted light to be lost. As a result, luminescence efficiency has remained below 1% to date.
Previously, this issue was addressed by etching the surface with strong chemicals such as hydrofluoric acid (HF). However, the overly aggressive reactions often damaged the semiconductor itself.
Professor Cho’s team adopted a different approach. Instead of removing the surface all at once, they devised a precision etching strategy that allows chemical reactions to proceed in a highly controlled, incremental manner. This enabled selective removal of only the defect sites that hindered light emission, while preserving the overall structure of the semiconductor. During this defect-removal process, fluorine generated by the reaction combined with zinc species in the solution to form zinc chloride, which in turn stabilized and passivated the exposed nanocrystal surface.
< Schematic illustration of overcoming emission efficiency limits via atomic-scale precision control >
As a result, the research team increased the luminescence efficiency of the semiconductor from below 1% to 18.1%. This represents the highest reported performance to date among indium phosphide–based ultrasmall nanosemiconductors, corresponding to an 18-fold increase in brightness.
This study is particularly significant in that it demonstrates, for the first time, that the surfaces of ultrasmall semiconductors—previously considered nearly impossible to control—can be precisely engineered at the atomic level. The technology is expected to find applications not only in next-generation displays, but also in advanced fields such as quantum communication and infrared sensing.
< Eco-friendly Ultra-compact Semiconductor Chemical Reaction (AI-generated image) >
Professor Himchan Cho explained, “This work is not simply about making brighter semiconductors, but about demonstrating how critical atomic-level surface control is for achieving desired performance.”
This research was carried out with Changhyun Joo, a doctoral student, and Seongbeom Yeon, a combined master’s-doctoral student in the Department of Materials Science and Engineering at KAIST, serving as co–first authors. Professor Himchan Cho and Professor Ivan Infante of the Basque Center for Materials, Applications, and Nanostructures (BCMaterials, Spain) participated as co-corresponding authors. The study was published online on December 16 in the Journal of the American Chemical Society (JACS), one of the most prestigious journals in chemistry.
※ Paper title: “Overcoming the Luminescence Efficiency Limitations of InP Magic-Sized Clusters,” DOI: 10.1021/jacs.5c13963
This research was supported by the National Research Foundation of Korea through the Nano Materials Technology Development Program, the Next-Generation Intelligent Semiconductor Technology Development Program, the Quantum Information Science Human Infrastructure Program, and by the Korea Basic Science Institute through its Infrastructure Support Program for Early-Career Researchers.
KAIST Proposes AI-Driven Strategy to Solve Long-Standing Mystery of Gene Function
<(From Left) Distinguisehd Professor Sang Yup Lee, Dr. Gi Bae Kim, Professor Bernhard O. Palsson>
“We know the genes, but not their functions.” To resolve this long-standing bottleneck in microbial research, a joint research team has proposed a cutting-edge research strategy that leverages Artificial Intelligence (AI) to drastically accelerate the discovery of microbial gene functions.
KAIST announced on January 12th that a research team led by Distinguished Professor Sang Yup Lee from the Department of Chemical and Biomolecular Engineering, in collaboration with Professor Bernhard Palsson from the Department of Bioengineering at UCSD, has published a comprehensive review paper. The study systematically analyzes and organizes the latest AI-based research approaches aimed at revolutionizing the speed of gene function discovery.
Since the early 2000s, when whole-genome sequencing became a reality, there were high expectations that the genetic blueprint of life would be fully decoded. However, even twenty years later, the roles of a significant portion of genes within microbial genomes remain unknown.
While various experimental methods—such as gene deletion, analysis of gene expression profiles, and in vitro activity assays—have been employed, discovering gene functions remains a time-consuming and costly endeavor. This is primarily due to the limitations of large-scale experimentation, complex biological interactions, and the discrepancy between laboratory results and actual in vivo responses.
To overcome these hurdles, the research team emphasized that an AI-driven approach combining computational biology with experimental biology is essential.
In this paper, the team provides a comprehensive overview of computational biology approaches that have facilitated gene function discovery, ranging from traditional sequence similarity analysis to the latest deep-learning-based AI models.
Notably, 3D protein structure prediction technologies such as AlphaFold (developed by Google DeepMind) and RoseTTAFold (developed by the University of Washington) have opened new doors. These tools go beyond simple functional estimation, offering the potential to understand the underlying mechanisms of how gene functions operate. Furthermore, generative AI is now extending research boundaries toward designing proteins with specifically desired functions.
Focusing on transcription factors (proteins that act as genetic switches) and enzymes (proteins that catalyze chemical reactions), the team presented various application cases and future research directions that integrate gene sequence analysis, protein structure prediction, and diverse metagenomic analyses.
<Schematic illustration of computational biology methods for enzyme function prediction>
KAIST Develops OLED Technology with Double the Screen Brightness
<(From Left) Ph.D candidate Minjae Kim, Professor Seunghyup Yoo, Dr. Junho Kim>
Organic light-emitting diodes (OLEDs) are widely used in smartphones and TVs thanks to their excellent color reproduction and thin, flexible planar structure. However, internal light loss has limited further improvements in brightness. KAIST researchers have now developed a technology that more than doubles OLED light-emission efficiency while maintaining the flat structure that is a key advantage of OLED displays.
KAIST (President Kwang Hyung Lee) announced on the 11th of January that a research team led by Professor Seunghyup Yoo of the School of Electrical Engineering has developed a new near-planar light outcoupling structure* and an OLED design method that can significantly reduce light loss inside OLED devices.* Near-planar light outcoupling structure: a thin structure that keeps the OLED surface almost flat while extracting more of the light generated inside to the outside
OLEDs are composed of multiple layers of ultrathin organic films stacked on top of one another. As light passes through these layers, it is repeatedly reflected or absorbed, often causing more than 80% of the light generated inside the OLED to be lost as heat before it can escape.
To address this issue, light outcoupling structures such as hemispherical lenses or microlens arrays (MLAs) have been used to extract light from OLEDs. However, hemispherical lenses protrude significantly, making it difficult to maintain a flat form factor, while MLAs must cover much larger area than individual pixel sizes to achieve sufficient light extraction. This creates limitations in achieving high efficiency without interference between neighboring pixels.
To increase OLED brightness while preserving a planar structure, the research team proposed a new OLED design strategy that maximizes light extraction within the size of each individual pixel.
Unlike conventional designs that assume OLEDs extend infinitely, this approach takes into account the finite pixel sizes actually used in real displays. As a result, more light can be emitted externally even from pixels of the same size.
In addition, the team developed a new near-planar light outcoupling structure that helps light emerge efficiently in the forward direction without being spread too widely. This structure is very thin—comparable in thickness to existing microlens arrays—yet achieves light extraction efficiency close to that of hemispherical lenses of the same lateral dimension. As a result, it hardly undermines the flat form factors of OLEDs and can be readily applied to flexible OLED displays.
By combining the new OLED design with the near-planar light outcoupling structure, the researchers successfully achieved more than a twofold improvement in light-emission efficiency even in small pixels.
< Quasi-Planar Light Extraction OLED Technology >
This technology enables brighter displays using the same power while maintaining OLED’s flat structure, and is expected to extend battery life and reduce heat generation in mobile devices such as smartphones and tablets. Improvements in display lifespan are also anticipated.
MinJae Kim, the first author of the study, noted, “A small idea that came up during class was developed into real research results through the KAIST Undergraduate Research Program (URP).”
Professor Seunghyup Yoo stated, “Although many light outcoupling structures have been proposed, most were designed for large-area lighting applications, and many were difficult to apply effectively to displays composed of numerous small pixels,” adding, “The near-planar light outcoupling structure proposed in this work was designed with constraints on the size of the light source within each pixel, reducing optical interference between adjacent pixels while maximizing efficiency.” He further emphasized that the approach can be applied not only to OLEDs but also to next-generation display technologies based on materials such as perovskites and quantum dots.
< Schematic Overview and Application Examples of the Proposed Light Extraction Structure >
This research, with MinJae Kim (Department of Materials Science and Engineering, KAIST; currently a Ph.D. student in Materials Science and Engineering at Stanford University) and Junho Kim (School of Electrical Engineering, KAIST; currently a postdoctoral researcher at the University of Cologne, Germany) as co–first authors, was published online on December 29, 2025, in Nature Communications.
※ Paper title: “Near-planar light outcoupling structures with finite lateral dimensions for ultra-efficient and optical crosstalk-free OLED displays” DOI: 10.1038/s41467-025-66538-6
This research was supported by the KAIST Undergraduate Research Program (URP), the Mid-Career Researcher Program and the Future Display Strategic Research Lab Program of the National Research Foundation (NRF) of Korea, the Human Resource Development Program of the Korea Institute for Advancement of Technology (KIAT), and the Korea Planning & Evaluation Institute of Industrial Technology (KEIT).
KAIST–Daekyo, Opening of the Cognitive Enhancement Research Center Lounge
< Group photo of officials at the opening ceremony of the KAIST–Daekyo Cognitive Enhancement Research Center Lounge >
KAIST held the opening ceremony for the ‘KAIST–Daekyo Cognitive Enhancement Research Center Lounge,’ jointly established with Daekyo, at the Meta-Convergence Hall on the Daejeon main campus last Saturday, the 10th.
This lounge was established through an in-kind donation by Daekyo for space creation as part of research cooperation. It was designed as a base space to more systematically operate brain development and cognitive function enhancement research that KAIST and Daekyo have been jointly promoting, and to share research results with society. Through this event, KAIST introduced the achievements of its research cooperation to date and provided a forum to explore the future directions of education and brain science.
Key KAIST officials, including Kyun Min Lee, Vice President for Provost and Academic Affairs, and Dae-Soo Kim, Dean of the College of Life Science and Bioengineering, as well as officials from both organizations, including Ho-joon Kang, CEO of Daekyo, attended the event to celebrate the opening of the lounge.
Since signing a Memorandum of Understanding (MOU) for industry-academic research cooperation with Daekyo in 2023, our university has been jointly conducting research on cognitive function enhancement and mental health across the entire life cycle—from infants to adults and seniors—based on brain and cognitive science. The cooperation continues to expand these research results into educational content and solutions.
An official from Daekyo stated, "The Cognitive Enhancement Research Center Lounge is a symbolic space for the research cooperation accumulated by both organizations, and it is highly meaningful to be able to communicate directly with customers and share research results here. Moving forward, Daekyo will continue to expand its cooperation with KAIST to prove the value of scientific and systematic education."
Kyun Min Lee, Vice President for Provost and Academic Affairs, said, "The opening of this lounge is significant in that a space for industry-academic cooperation research was created through Daekyo’s donation. Based on this space, KAIST will strive to share the achievements of brain and cognitive science research with society and contribute to the field of education."
KAIST-Yonsei Team Identifies Origin Cells for Malignant Brain Tumor Common in Young Adults
<Dr. Jung Won Park, (Upper Right) Professor Jeong Ho Lee, Professor Seok-Gu Kang>
IDH-mutant glioma, caused by abnormalities in a specific gene (IDH), is the most common malignant brain tumor among young adults under the age of 50. It is a refractory brain cancer that is difficult to treat due to its high recurrence rate. Until now, treatment has focused primarily on removing the visible tumor mass. However, a Korean research team has discovered for the first time that normal brain cells acquire the initial IDH mutation and spread out through the cortex long before a visible tumor mass harboring additional cancer mutations forms, opening a new path for early diagnosis and treatment to suppress recurrence.
KAIST announced on January 9th that a joint research team led by Professor Jeong Ho Lee from the Graduate School of Medical Science and Engineering and Professor Seok-Gu Kang from the Department of Neurosurgery at Yonsei University Severance Hospital has identified that IDH-mutant gliomas originate from Glial Progenitor Cells (GPCs) present in normal brain tissue.
Glial Progenitor Cells (GPC): Cells that exist in the normal brain and can become the starting point for malignant brain tumors if genetic mutations occur.
Through precise analysis of tumor tissue obtained via extensive resection surgery and the surrounding normal cerebral cortex, the research team discovered that "cells of origin" harboring the IDH mutation already existed within brain tissue that appeared normal to the naked eye.
< Brain-Derived Refractory Brain Tumor Origin Cells (AI-Generated Image) >
This result proves for the first time that malignant brain tumors do not emerge suddenly at a specific point in time, but rather begin within a normal brain and progress slowly over a long period.
The research team then used "spatial transcriptomics"—a cutting-edge analysis technology that shows "which genes are operating where" simultaneously—to confirm that these origin cells with mutations were indeed Glial Progenitor Cells (GPCs) located in the cerebral cortex.
Furthermore, they successfully reproduced the process of brain tumor development in an animal model by introducing the same genetic "driver mutation" found in patients into the GPCs of mice.
This study is a significant expansion of previous research identifying the "origin" of IDH wildtype malignant brain tumors. In 2018, the joint research team led a paradigm shift in brain tumor research by revealing that IDH wildtype glioblastoma, a representative malignant brain tumor, originates not from the tumor body itself, but from neural stem cells in the subventricular zone—the source of new brain cells in the adult brain (Lee et al., Nature, 2018).
The current study clarifies that even though "IDH wildtype glioblastoma" and "IDH-mutant glioma" are both types of brain cancer, their starting cells and points of origin are entirely different, proving that different types of brain tumors have fundamentally different developmental processes.
< Mechanistic Elucidation of Malignant Brain Tumor Development Induced by IDH Mutations and Subsequent Genetic Alterations in Normal Cortical Glial Progenitor Cells >
Professor Seok-Gu Kang (Co-Corresponding Author) stated, "Brain tumors may not start exactly where the tumor mass is visible. A target approach focused on the origin cells and the site of origin according to the brain tumor subtype will serve as a crucial clue to changing the paradigm of early diagnosis and recurrence suppression treatment."
Based on these research results, Sovagen Co., Ltd, a faculty startup from KAIST, is developing an innovative RNA-based drug to suppress the evolution and recurrence of IDH-mutant malignant brain tumors. Additionally, Severance Hospital is pursuing the development of technologies to detect and control early mutant cells in refractory brain tumors through the Korea-US Innovative Result Creation R&D project.
Dr. Jung Won Park (Postdoctoral Researcher at KAIST Graduate School of Medical Science and Engineering), a neurosurgeon and the sole first author of the study, said, "This achievement was made possible by combining KAIST’s world-class basic science research capabilities with the clinical expertise of Yonsei Severance Hospital. The question I kept asking while treating patients—'Where does this tumor originate?'—was the starting point of this research."
The findings were published on January 8th in the world-renowned academic journal Science.
Paper Title: IDH-mutant gliomas arise from glial progenitor cells harboring the initial driver mutation
DOI: 10.1126/science.adt0559
Authors: Jung Won Park (KAIST, First Author), Seok-Gu Kang (Yonsei Severance Hospital, Corresponding Author), Jeong Ho Lee (KAIST, Sovagen, Corresponding Author)
This research was conducted with support from the Suh Kyung-bae Science Foundation, the National Research Foundation of Korea, the Ministry of Science and ICT, the Ministry of Health and Welfare, and the Korea Health Industry Development Institute (Physician-Scientist Training Program).
KAIST detects ‘hidden defects’ that degrade semiconductor performance with 1,000× higher sensitivity
<(From Left) Professor Byungha Shin, Ph.D candidate Chaeyoun Kim, Dr. Oki Gunawan>
Semiconductors are used in devices such as memory chips and solar cells, and within them may exist invisible defects that interfere with electrical flow. A joint research team has developed a new analysis method that can detect these “hidden defects” (electronic traps) with approximately 1,000 times higher sensitivity than existing techniques. The technology is expected to improve semiconductor performance and lifetime, while significantly reducing development time and costs by enabling precise identification of defect sources.
KAIST (President Kwang Hyung Lee) announced on January 8th that a joint research team led by Professor Byungha Shin of the Department of Materials Science and Engineering at KAIST and Dr. Oki Gunawan of the IBM T. J. Watson Research Center has developed a new measurement technique that can simultaneously analyze defects that hinder electrical transport (electronic traps) and charge carrier transport properties inside semiconductors.
Within semiconductors, electronic traps can exist that capture electrons and hinder their movement. When electrons are trapped, electrical current cannot flow smoothly, leading to leakage currents and degraded device performance. Therefore, accurately evaluating semiconductor performance requires determining how many electronic traps are present and how strongly they capture electrons.
The research team focused on Hall measurements, a technique that has long been used in semiconductor analysis. Hall measurements analyze electron motion using electric and magnetic fields. By adding controlled light illumination and temperature variation to this method, the team succeeded in extracting information that was difficult to obtain using conventional approaches.
Under weak illumination, newly generated electrons are first captured by electronic traps. As the light intensity is gradually increased, the traps become filled, and subsequently generated electrons begin to move freely. By analyzing this transition process, the researchers were able to precisely calculate the density and characteristics of electronic traps.
The greatest advantage of this method is that multiple types of information can be obtained simultaneously from a single measurement. It allows not only the evaluation of how fast electrons move, how long they survive, and how far they travel, but also the properties of traps that interfere with electron transport.
The team first validated the accuracy of the technique using silicon semiconductors and then applied it to perovskites, which are attracting attention as next-generation solar cell materials. As a result, they successfully detected extremely small quantities of electronic traps that were difficult to identify using existing methods—demonstrating a sensitivity approximately 1,000 times higher than that of conventional techniques.
< Conceptual Diagram of the Evolution of Hall Characterization (Analysis) Techniques >
Professor Byungha Shin stated, “This study presents a new method that enables simultaneous analysis of electrical transport and the factors that hinder it within semiconductors using a single measurement,” adding that “it will serve as an important tool for improving the performance and reliability of various semiconductor devices, including memory semiconductors and solar cells.”
The results of this research were published on January 1 in Science Advances, an international academic journal, with Chaeyoun Kim, a doctoral student in the Department of Materials Science and Engineering, as the first author.
※ Paper title: “Electronic trap detection with carrier-resolved photo-Hall effect,” DOI: https://doi.org/10.1126/sciadv.adz0460
This research was supported by the Ministry of Science and ICT and the National Research Foundation of Korea.
< Conceptual Diagram of Charge Transport and Trap Characterization Using Photo-Hall Measurements (AI-generated image) >
Breaking Performance Barriers of All Solid State Batteries
< (Bottom, from left) Professor Dong-Hwa Seo, Researcher Jae-Seung Kim, (Top, from left) Professor Kyung-Wan Nam, Professor Sung-Kyun Jung, Professor Youn-Seok Jung >
Batteries are an essential technology in modern society, powering smartphones and electric vehicles, yet they face limitations such as fire explosion risks and high costs. While all-solid-state batteries have garnered attention as a viable alternative, it has been difficult to simultaneously satisfy safety, performance, and cost. Recently, a Korean research team successfully improved the performance of all-solid-state batteries simply through structural design—without adding expensive metals.
KAIST announced on January 7th that a research team led by Professor Dong-Hwa Seo from the Department of Materials Science and Engineering, in collaboration with teams led by Professor Sung-Kyun Jung (Seoul National University), Professor Youn-Suk Jung (Yonsei University), and Professor Kyung-Wan Nam (Dongguk University), has developed a design method for core materials for all-solid-state batteries that uses low-cost raw materials while ensuring high performance and low risk of fire or explosion.
Conventional batteries rely on lithium ions moving through a liquid electrolyte. In contrast, all-solid-state batteries use a solid electrolyte. While this makes them safer, achieving rapid lithium-ion movement within a solid has typically required expensive metals or complex manufacturing processes.
To create efficient pathways for lithium-ion transport within the solid electrolyte, the research team focused on "divalent anions" such as oxygen and sulfur . Divalent anions play a crucial role in altering the crystal structure by integrating into the basic framework of the electrolyte.
The team developed a technology to precisely control the internal structure of low-cost zirconium (Zr)-based halide solid electrolytes by introducing these divalent anions. This design principle, termed the "Framework Regulation Mechanism," widens the pathways for lithium ions and lowers the energy barriers they encounter during transport. By adjusting the bonding environment and crystal structure around the lithium ions, the team enabled faster and easier movement.
To verify these structural changes, the researchers utilized various high-precision analysis techniques, including:
High-energy Synchrontron X-ray diffraction(Synchrotron XRD)
Pair Distribution Function (PDF) analysis
X-ray Absorption Spectroscopy (XAS)
Density Functional Theory (DFT) modeling for electronic structure and diffusion.
The results showed that electrolytes incorporating oxygen or sulfur improved lithium-ion mobility by 2 to 4 times compared to conventional zirconium-based electrolytes. This signifies that performance levels suitable for practical all-solid-state battery applications can be achieved using inexpensive materials.
Specifically, the ionic conductivity at room temperature was measured at approximately 1.78 mS/cm for the oxygen-doped electrolyte and 1.01 mS/cm for the sulfur-doped electrolyte. Ionic conductivity indicates how quickly and smoothly lithium ions move; a value above 1 mS/cm is generally considered sufficient for practical battery applications at room temperature.
< Structural Regulation Mechanism of Zr-based Halide Electrolytes via Divalent Anion Introduction >
< Atomic Rearrangement of Solid Electrolyte for All-Solid-State Batteries (AI-generated image) >
Professor Dong-Hwa Seo stated, "Through this research, we have presented a design principle that can simultaneously improve the cost and performance of all-solid-state batteries using cheap raw materials. Its potential for industrial application is very high." Lead author Jae-Seung Kim added that the study shifts the focus from "what materials to use" to "how to design them" in the development of battery materials.
This study, with Jae-Seung Kim (KAIST) and Da-Seul Han (Dongguk University) as co-first authors, was published in the international journal Nature Communications on November 27, 2025.
Paper Title: Divalent anion-driven framework regulation in Zr-based halide solid electrolytes for all-solid-state batteries
DOI: https://www.nature.com/articles/s41467-025-65702-2
This research was supported by the Samsung Electronics Future Technology Promotion Center, the National Research Foundation of Korea, and the National Supercomputing Center.
Direct Printing of Nanolasers, the Key to Optical Computing and Quantum Security
< (From left) Professor Ji Tae Kim (KAIST), Dr. Shiqi Hu (First Author, AI-based Intelligent Design-Manufacturing Integrated Research Group, KAIST-POSTECH), and Professor Junsuk Rho (POSTECH) >
In future high-tech industries, such as high-speed optical computing for massive AI, quantum cryptographic communication, and ultra-high-resolution augmented reality (AR) displays, nanolasers—which process information using light—are gaining significant attention as core components for next-generation semiconductors. A research team at our university has proposed a new manufacturing technology capable of high-density placement of nanolasers on semiconductor chips, which process information in spaces thinner than a human hair.
KAIST announced on January 6th that a joint research team, led by Professor Ji Tae Kim from the Department of Mechanical Engineering and Professor Junsuk Rho from POSTECH (President Seong-keun Kim), has developed an ultra-fine 3D printing technology capable of creating "vertical nanolasers," a key component for ultra-high-density optical integrated circuits.
Conventional semiconductor manufacturing methods, such as lithography, are effective for mass-producing identical structures but face limitations: the processes are complex and costly, making it difficult to freely change the shape or position of devices. Furthermore, most existing lasers are built as horizontal structures lying flat on a substrate, which consumes significant space and suffers from reduced efficiency due to light leakage into the substrate.
To solve these issues, the research team developed a new 3D printing method to vertically stack perovskite, a next-generation semiconductor material that generates light efficiently. This technology, known as "ultra-fine electrohydrodynamic 3D printing," uses electrical voltage to precisely control invisible ink droplets at the attoliter scale ($10^{-18}$ L).
Through this method, the team successfully printed pillar-shaped nanostructures—much thinner than a human hair—directly and vertically at desired locations without the need for complex subtractive processes (carving material away).
The core of this technology lies in significantly increasing laser efficiency by making the surface of the printed perovskite nanostructures extremely smooth. By combining the printing process with gas-phase crystallization control technology, the team achieved high-quality structures with nearly single-crystalline alignment. As a result, they were able to realize high-efficiency vertical nanolasers that operate stably with minimal light loss.
Additionally, the team demonstrated that the color of the emitted laser light could be precisely tuned by adjusting the height of the nanostructures. Utilizing this, they created laser security patterns invisible to the naked eye—identifiable only with specialized equipment—confirming the potential for commercialization in anti-counterfeiting technology.
< 3D Printing of Perovskite Nanolasers >
Professor Jitae Kim stated, "This technology allows for the direct, high-density implementation of optical computing semiconductors on a chip without complex processing. It will accelerate the commercialization of ultra-high-speed optical computing and next-generation security technologies."
The research results, with Dr. Shiqi Hu from the Department of Mechanical Engineering as the first author, were published online on December 6, 2025, in ACS Nano, an international prestigious journal in the field of nanoscience.
Paper Title: Nanoprinting with Crystal Engineering for Perovskite Lasers
DOI: https://doi.org/10.1021/acsnano.5c16906
This research was conducted with support from the Ministry of Science and ICT’s Excellent Young Researcher Program (RS-2025-00556379), the Mid-career Researcher Support Program (RS-2024-00356928), and the InnoCORE AI-based Intelligent Design-Manufacturing Integrated Research Group (N10250154).