본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%9D%B4%EC%A7%84%EC%9A%B0
최신순
조회순
고성능 비 백금계 연료전지 촉매 개발
연료전지는 부산물로 물 만을 배출하는 친환경적인 에너지 변환 장치로, 다양한 연료전지 중 양성자 교환막 연료전지(PEMFC)는 수송용 및 발전용 연료전지로 현재 상용화가 진행 중이다. 다만 연료전지의 촉매로 사용되는 백금 촉매는 자원의 희소성으로 인한 높은 가격 때문에 대량 생산 및 전 세계적인 보급에 문제점을 갖고 있었다. 우리 대학 생명화학공학과 이진우 교수 연구팀이 국민대학교 장세근 교수 연구팀, 서강대학교 백서인 교수 연구팀과 공동연구를 통해 비백금계 촉매 기반 고 전력밀도의 양성자 교환막 연료전지를 개발했다고 7일 밝혔다. 상대적으로 다른 비 백금계 촉매들에 비해 좋은 성능을 가진다고 알려져 백금을 대체하고 기존 연료전지 비용을 줄이기 위한 가장 유력한 후보 물질로 주목받아 온 M-N-C계 촉매는 PEMFC 연료전지에서 높은 전력밀도를 구현하는 데는 많은 한계가 있었다. 이진우 연구팀은 기존 백금 촉매를 대체할 수 있는 비 백금계 Fe-N-C 촉매의 높은 성능을 구현해 매우 뛰어난 가격 경쟁력과 높은 전력밀도의 연료전지 성능을 달성했다. 연구팀은 M-N-C 촉매 중 하나인 Fe-N-C 촉매 나노입자의 활성점 주변의 결함 정도를 조절하여 높은 성능의 Fe-N-C 촉매를 합성했다. 탄소 기반의 물질을 특정 양의 이산화탄소(CO2)를 흘려주면서 열처리를 진행하는 이산화탄소 활성화 방법을 통해 탄소 기반 촉매 내부의 결함 정도를 미세 조정했고 그에 따른 최적화된 촉매가 활성화되는 것을 확인했다. 연구팀은 결과적으로 적절한 결함을 가질 때 철 단일원자 활성점의 전자구조가 최적화되면서 결함을 만들지 않은 기존 Fe-N-C 촉매에 비해 매우 우수한 전기화학적 성능을 제공하는 것을 확인해 결함과 활성점의 성능 상관관계에 대하여 규명했다. 연구팀이 개발을 한 최적화된 Fe-N-C촉매는 PEMFC 연료전지에서 기존에 개발이 된 Fe-N-C촉매보다 44% 향상된 높은 전력 밀도를 보였으며 현재 사용이 되고 있는 백금 촉매를 대체를 할 수 있음을 PEMFC단전지에서 보여주었다. 연구팀이 개발한 비 백금계 Fe-N-C촉매는 높은 전기화학적 특성으로 기존의 백금 촉매 대체를 통해 연료전지의 스택 가격 감소와 그에 따른 상용화에 이바지할 수 있을 것으로 기대된다. KAIST 생명화학공학과 이승엽 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼스 (Advanced materials)' 10월 13일 온라인으로 게재됐다. (논문명: Insight into Defect Engineering of Atomically Dispersed Iron Electrocatalysts for High-Performance Proton Exchange Membrane Fuel Cell) 이진우 교수는 "비 백금계 Fe-N-C 촉매의 결함과 성능의 관계를 밝히고 결함 조절을 통해서 백금을 전혀 사용하지 않고 높은 전력밀도의 양성자 교환막 연료전지를 개발한 것은 큰 의미가 있으며 개발된 촉매 및 합성 방법은 향후 다양한 종류의 연료전지에서 귀금속인 백금을 대체하여 적용할 수 있을 것으로 기대된다ˮ 라고 말했다. 한편 이번 연구는 한국연구재단 중견연구자지원사업과 한국전력 사외공모 기초연구지원사업의 지원을 받아 수행됐다.
2023.11.07
조회수 3364
기존보다 30% 향상된 고성능 리튬-황 전지 개발
우리 대학 생명화학공학과 이진우 교수 연구팀이 POSTECH 한정우 교수 연구팀, LG에너지솔루션 차세대전지연구센터(센터장 손권남 박사)와 공동연구를 통해 기존 대비 에너지 밀도와 수명 안정성을 대폭 늘린 리튬-황 전지를 개발하는 데 성공했다고 19일 밝혔다. 리튬-황 전지는 상용 리튬 이온 전지에 비해 2~3배 정도 높은 에너지 밀도를 구현할 수 있을 것으로 기대되고 있어, 차세대 이차전지 후보군 중 많은 관심을 받고 있다. 특히, 전기자동차 및 전자기기와 같이 한 번에 얼마나 많은 양의 에너지를 저장할 수 있는지가 중요한 응용 분야의 경우, 리튬-황 전지 기술개발의 중요성이 더욱 대두되고 있다. 높은 수준의 에너지 밀도를 지닌 리튬-황 전지를 구현하기 위해서는 전지 내부에 들어가는 무거운 전해액의 사용량을 줄이면서도 높은 용량과 구동 전압을 확보하는 것이 필수적이다. 하지만, 전지 내부의 전해액 양이 줄어들면, 양극에서 발생하는 리튬 폴리 설파이드 용해 현상에 의한 전해액 오염정도가 극심해져 리튬 이온 전도도가 낮아지고 전기화학 전환 반응 활성이 떨어져 높은 용량과 구동 전압을 구현하는 것이 제한된다. 전 세계적으로 많은 연구진이 리튬 폴리 설파이드의 지속적인 용해 현상 및 전환 반응 활성을 개선하기 위해서 다양한 기능성 소재들을 개발해왔으나, 현재까지는 리튬-황 파우치셀 수준에서의 높은 에너지 밀도와 수명 안정성을 확보하는 데 어려움을 겪고 있다. 파우치셀이란 양극, 음극, 분리막과 같은 소재를 쌓은 후, 필름으로 포장된 형태의 배터리이다. 파우치셀은 가장 진보된 형태의 베터리 중 하나로 간주되며, 응용분야에 따라 다양한 모양으로 제작할 수 있다는 장점이 있다. 이진우 교수 연구팀은 이번 연구를 통해 리튬 폴리 설파이드의 용해 현상과 전기화학 전환 반응성을 대폭 향상할 수 있는 철(Fe) 원자 기반의 기능성 양극 소재를 개발하는 데 성공했다. 연구팀은 최적화된 전자구조를 지닌 철 원자 기반 기능성 소재를 양극에 도입함으로써, 리튬 폴리 설파이드의 용해 현상을 효율적으로 억제할 수 있는 효과뿐만 아니라 리튬 폴리 설파이드가 불용성의 리튬 설파이드로 전환될 수 있는 반응성 또한 개선할 수 있었고, 전지 내부에 소량의 전해액 양을 사용하더라도 높은 가역 용량, 구동 전압, 그리고 수명 안정성을 구현할 수 있었다. 특히, 이번 연구에서 개발된 양극 기능성 소재를 활용함으로써, 기존의 상용화된 리튬이온 배터리 대비 약 30% 정도 향상된 에너지 밀도인 A h 수준의 리튬-황 파우치셀에서 320W h kg-1 이상의 에너지 밀도 (베터리의 단위 무게 당 저장할 수 있는 총 에너지의 양)를 확보하는 성과를 거뒀다. 더욱이, 철(Fe)은 가격이 매우 저렴한 소재이기 때문에 이번 연구에서 개발된 양극 기능성 소재가 향후 리튬-황 전지 산업 분야에서 활용될 가능성도 열려있다. 생명화학공학과 이진우 교수는 "우수한 리튬-황 전지 양극 기능성 소재를 개발함에 있어, 전자 교환 현상 유도를 통한 전자구조 제어 기술이 전도유망할 수 있음을 보여줬다ˮ고 설명하면서, "앞으로도 기능성 소재의 전자구조를 제어할 수 있는 다양한 기술개발을 통해, 리튬-황 파우치셀 수준에서의 높은 에너지 밀도와 수명 안정성을 확보하려는 노력이 지속돼야 한다ˮ고 설명했다. 한편 이번 연구 결과는 이진우 교수 연구실의 임원광 박사(現 퍼시픽 노스웨스트 내셔널 레보터리 박사후 연구원), 박철영 박사과정, 그리고 POSTECH 한정우 교수 연구실의 정현정 박사과정이 공동 제1 저자로 참여하였으며, 국제 학술지 `어드밴스드 머티리얼즈 (Advanced Materials)'에 2022년 12월 17일 字 온라인판에 게재됐다. 이번 연구는 한국연구재단이 추진하는 중견연구와 LG에너지솔루션의 지원을 받아 수행됐다. 이진우 교수 연구팀은 다년간 LG에너지솔루션과 공동연구를 수행해오면서 LG에너지솔루션의 연구팀과 산학 협업을 통해 리튬 폴리 설파이드의 용해 현상 억제 및 전기화학 전환 반응성 개선 등을 위한 핵심 아이디어를 도출해오고 있으며, 앞으로도 리튬-황 전지 상업화에 기여하기 위해 LG에너지솔루션과 리튬-황 전지 내 반응 현상에 대한 설명과 소재 개발에 대해서 지속적인 협업을 진행할 계획이다.
2023.01.19
조회수 6220
기존 불소계 전해질 대체할 고성능 비불소계 전해질 개발
우리 대학 생명화학공학과 이진우 교수 연구팀이 포항공과대학교 조창신 교수 연구팀과 공동연구를 통해 장수명 소듐(나트륨) 금속 음극 및 고출력 해수 전지를 위한 비불소계 전해질을 개발했다고 28일 밝혔다. 불소(F)는 전지의 전기화학적 성능을 향상시키는데 크게 기여하여 현재 상용화된 리튬-이온 전지 외에도 다양한 차세대 전지 전해질의 필수 요소로 자리매김하고 있다. 다만, 비싼 가격, 인체 및 환경에 유해하며 강한 독성이라는 문제점을 가져 이를 대체할 비불소계 전해질 (F-free electrolyte) 개발이 필수적이다. 이 교수 연구팀은 기존 불소계 전해질을 대체할 수 있는 비불소계 전해질을 설계해 매우 뛰어난 가격 경쟁력과 불소계 전해질의 전기화학적 성능을 상회하는 전기화학적 성능을 달성했다. 생명화학공학과 김진욱 박사과정, 김지오 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `에너지 인바이론멘탈 사이언스(Energy & Environmental Science)' 10월 10권 15호에 출판됐으며, 후면 표지논문(outside back cover)로 선정됐다. (논문명 : Designing Fluorine-Free Electrolytes for Stable Sodium Metal Anodes and High-Power Seawater Batteries via SEI reconstruction) 소듐 금속 음극은 기존 리튬 이온 전지의 흑연 음극을 대체할 수 있는 높은 이론적 용량과(흑연: 372 mAh g-1, 소듐 금속: 1,166 mAh g-1) 리튬에 비해 매우 높은 지각 내 존재비로 인해(리튬: 0.002%, 소듐: 2%) 각광받고 있는 차세대 음극 소재 중 하나다. 하지만 소듐 금속 음극은 매우 강한 화학적, 전기화학적 반응성 때문에 지속적으로 유기 전해액과 반응해 소듐 표면에 불균일하고 두꺼운 고체-전해질 계면을 형성하고, 이는 충전 과정에 소듐 금속의 수지상 성장(나뭇가지 모양 성장)을 일으킨다. 소듐 금속의 수지상 성장은 고체-전해질 계면을 파괴해 새로운 소듐 금속을 유기 전해액에 노출시키고 추가적인 전해질 분해를 일으키며, 낮은 쿨롱 효율, 전지 단락 등을 발생시켜 전지 구동에 치명적이다. 기존 불소계 전해질은 소듐 금속 표면에 불화 소듐을(NaF) 형성해 앞서 언급한 소듐 금속의 수지상 성장을 억제한다. 불화 소듐은 강한 기계적 성질로 인해 소듐 금속의 수지상 성장을 물리적으로 억제할 수 있음이 널리 알려져 있으나 불소계 전해질의 높은 가격, 불산(HF) 부산물 형성 등의 치명적인 문제점이 수반된다. 연구팀은 수소화 소듐(NaH)이 불화 소듐을 대체할 수 있다는 최근 연구 보고에 착안해 수소화붕소 소듐(NaBH4) 염을 이써 (ether, C-O-C 결합을 포함) 계열 유기용매에 녹인 전해질을 설계했다. 수소화붕소 소듐은 환원제의 일종으로 유, 무기 합성이 필요한 산업계에서 널리 사용되는 물질이다. 따라서, 같은 부피의 불소계 전해질을 제작하는 것에 비해 5~10% 정도의 비용만이 소요돼 큰 가격 경쟁력을 가진다. 연구팀은 비행시간형 이차이온 질량 분석을 통해(Time of Flight Secondary Ion Mass Spectrometry, TOF-SIMS) 수소화붕소 소듐 기반의 전해질이 수소화 소듐이 우세한 고체-전해질 계면을 형성함을 밝혔다. 또한, 산화된 소듐 금속을 수소화붕소 소듐에 장시간 담가뒀을 때, 산화막이 점차 수소화 소듐으로 전환되는 것을 비행시간형 이차이온 질량 분석을 통해 확인했으며, 온라인 전기화학 질량 분석(Online Electrochemical Mass Spectrometry)을 통해, 수소화붕소 소듐 전해질을 이용해 전지 제작 후 8시간 정도의 휴지기에 수소 기체가 형성되는 것을 확인했다. 결론적으로, 소듐 금속은 산화하려는 성질이 강해 표면에 불가피하게 산화막을 형성하는데, 수소화붕소 소듐은 환원성이 강해 표면 산화막을 환원시킬 수 있다. 소듐의 표면 산화막이 환원되면서 수소 기체가 발생함과 동시에 다시 소듐 금속과 반응해 수소화 소듐이 생성되며 연구팀은 이를 `고체-전해질 계면 재건 현상'이라고 명명했다. 이를 통해, 수소화붕소 소듐 기반의 전해질은 소듐-소듐 대칭전지에서 600 사이클, 소듐-알루미늄 반쪽 전지에서 99.67%의 쿨롱 효율을 보여 불소계 전해질에 비해 매우 우수한 전기화학적 성능을 제공했다. 더 나아가, 연구팀은 수소화붕소 소듐 기반 전해질을 해수 전지에 적용했다. 높은 전류밀도인 1 mA cm-2에서 기존 불소계 전해질은 35회 정도의 수명 특성을 보인 반면, 수소화붕소 소듐 기반 전해질은 150회 이상의 장수명 특성을 달성했다. 마찬가지로, 기존 불소계 전해질의 출력밀도는 2.27 mW cm-2 에 그친 반면, 수소화붕소 소듐 기반 전해질의 출력밀도는 2.82 mW cm-2로 큰 차이를 보였다. 연구팀이 개발한 수소화붕소 소듐 기반의 전해질은 비용 절감, 수명 특성 향상을 통해 해수전지의 상용화에 이바지할 수 있을 것으로 기대된다. 제1 저자인 김진욱 박사과정은 "기존 소듐 전해질의 필수 원소였던 불소 없이도 불소계 전해질의 성능을 상회하는 전해질을 개발한 것은 큰 의미가 있다ˮ 라며 "앞으로 비불소계 소듐 전해질과 그에 따른 고체-전해질 계면에 관한 연구가 활발해질 것으로 판단된다ˮ 라고 말했다. 한편 이번 연구는 한국연구재단 중견연구자지원사업과 한국전력 사외공모 기초연구지원사업의 지원을 받아 수행됐다.
2022.10.31
조회수 5655
6개의 표적 물질을 동시에 검출할 수 있는 질병물질 검출 종이센서 개발
우리 대학 생명화학공학과 이진우 교수 연구팀이 가천대학교 바이오나노학과 김문일 교수팀, POSTECH 화학공학과의 한정우 교수팀과 함께 새로운 무기 소재(*나노자임, Nanozyme)를 합성하는 데 성공하였고, 이를 이용해 종이 기반 질병 물질 검출 센서에 도입, 6개의 표적 물질을 동시에 그리고 민감하게 검출 가능한 종이 센서를 개발했다고 7일 밝혔다. ☞나노자임(Nanozyme): 단백질로 이루어진 효소와 달리 무기물질로 합성된 효소 모방 물질을 말한다. 기존 효소의 단점으로 꼽히는 안정성, 생산성 그리고 가격적 측면에서 매우 뛰어나며, 기존의 효소가 사용되던 질병 진단 시스템에 그대로 활용될 수 있다. 공동연구팀은 기존의 과산화효소 모방 나노자임들과 달리 중성에서 활성을 지니며 큰 기공(구멍)을 가져 산화효소를 적재할 수 있는 코발트가 도핑된 메조 다공성 구조의 산화 세륨을 개발했고, 이를 이용해 질병 진단물질인 글루코오스, 아세틸콜린, 콜레스테롤을 비롯한 6개의 물질을 동시에 검출 가능한 종이 센서를 개발했다. 생명화학공학과 이준상 박사과정생이 가천대학교 바이오나노학과 푸엉 타이 응우옌(Phuong Thy Nguyen) 박사과정생, 포항공과대학교 화학공학과 조아라 박사과정생과 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials)' 2월 19권 2호에 출판됐다. (논문명 : Rational Development of Co-Doped Mesoporous Ceria with High Peroxidase-Mimicking Activity at Neutral pH for Paper-Based Colorimetric Detection of Multiple Biomarkers). 나노자임은 기존의 효소가 사용되던 다양한 질병의 검출에 사용될 수 있을 뿐만 아니라 효소가 사용되기 어려웠던 극한 환경 혹은 다양한 미세환경이 존재하는 체내에서도 그 역할을 수행할 수 있어 목적에 맞는 활성을 지니는 나노자임의 필요성이 더욱 강조되고 있다. 효소는 우리의 몸속의 다양한 화학 반응에 촉매로서 작용을 하고 있었지만, 최근에는 이러한 효소들을 정제해서 다양한 물질들을 검출 및 치료 등 다방면에서의 활용이 가능하다는 것이 보고돼왔다. 특히 과산화효소의 경우 과산화수소의 존재 하에서 투명한 발색 기질을 산화시켜 푸른색을 띠기 때문에 과산화수소를 시각적으로 검출할 수 있으며, 이를 이용해 산화 과정에서 과산화수소를 배출하는 아세틸콜린, 글루코오스를 포함한 다양한 물질들의 산화효소와 함께 사용되면 표적 물질을 시각적으로 검출할 수 있다. 하지만 아세틸콜린, 글루코오스 등을 산화시키는 대부분의 산화 효소는 중성에서 최적 활성을 가지는 것과 달리, 과산화효소 모방 나노자임은 산성에서만 활성을 지니기 때문에 중간에 수소 이온 농도 지수(pH)를 조절하는 버퍼 용액을 변경해야 하거나, 최적 활성이 아닌 지점에서 반응이 일어나 표적 물질의 미세한 검출을 하기 어렵고, 바이오 센서로서의 적용도 어렵다. 이 때문에 중성 상태에서도 과산화효소 활성을 모방하면서 표적 물질의 산화효소를 담을 수 있는 나노자임의 개발이 필수적이다. 공동연구팀은 문제 해결을 위해 밀도범함수이론(Density Functional Theory, DFT)을 도입해 기존에 과산화효소 활성이 있던 산화 세륨 위에 어떠한 원소를 도핑할 경우 중성에도 과산화효소 활성이 유지될지 스크리닝을 진행했고, 코발트 원소가 최적 물질임을 계산을 통해 예측했다. 연구팀은 중성에서의 활성을 유도할 코발트 원소를 도핑하면서 산화효소를 적재할 수 있게 17 나노미터(nm)의 큰 기공을 지니는 메조 다공성 구조의 산화세륨 합성에 성공했다. 메조 다공성 나노물질들이 2~3 나노미터(nm) 기공을 지니는 것과 달리, 연구팀은 열처리 과정에서의 변화를 통해 큰 기공을 지니도록 합성할 수 있었고, 이 기공에 산화효소들을 적재할 수 있다는 것을 확인했다. 또한, 합성된 나노자임은 중성(pH 6)에서 최적 활성을 지녀 pH의 변경 없이 산화효소와 연쇄 반응을 일으킬 수 있었다. 연구팀은 개발한 나노자임에 중요한 질병 진단물질인 글루코오스, 아세틸콜린, 콜린, 갈락토오스, 콜레스테롤의 산화효소를 담아, 과산화수소를 포함한 6개 물질을 동시에 검출이 가능한 종이 센서를 개발했다. 이 종이 센서는 20분 만에 6개 물질을 빠르게 검출할 수 있으며, 기존 하나씩만을 검출할 수 있는 센서들의 검출한계보다 더 좋은 성능을 보였다. 또한 연구팀은 산화효소를 메조 다공성 산화세륨에 적재해 60℃의 고온에서도 안정적이고, 60일이 넘는 시간 동안 안정적으로 작동함을 확인했다. 이 교수는 "나노자임은 분야 자체가 시작된 지 오래되지 않았지만, 기존 효소를 대체해 쓰일 수 있다는 잠재성 때문에 폭발적으로 관심이 증가하고 있다ˮ라며 "앞으로 종이 센서 뿐만 아니라 각종 진단 및 암 치료에 나노자임을 도입해 진단 및 치료 분야에 큰 도약을 이뤄낼 가능성이 있다ˮ 라고 말했다. 한편 이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
2022.03.07
조회수 8444
리튬-황 전지 성능 높일 다공성 2차원 무기질 나노소재 개발
우리 대학 생명화학공학과 이진우 교수팀이 서로 다른 크기의 기공을 동시에 가지고 있는 다공성 2차원 무기질 *나노코인을 합성하는 새로운 기술을 개발했다. ☞ 나노코인: 동전과 같이 둥근 모양이면서 두께가 약 3나노미터인 2차원 나노 소재 연구팀의 합성기술은 다공성 무기질 소재를 동전처럼 둥글고 납작한 형상으로 제어할 수 있고, 크기 및 두께 등의 물성을 정밀하게 제어할 수 있는 새로운 원천 기술이다. 이는 리튬-황 이차전지의 분리막에 사용돼 리튬-황 전지의 성능 저하 원인으로 꼽히는 리튬폴리설파이드의 용출을 효과적으로 억제해 성능을 높이는 데 성공했다. 이진우 교수 연구실의 김성섭 박사(現 전북대학교 교수)가 주도하고 임원광 박사가 참여한 이번 연구 결과는 화학 분야 국제 학술지 `미국화학회지(Journal of the American Chemical Society, JACS)' 2021년 9월 1일 字 온라인판에 게재됐다. (논문명: Polymer Interface-Dependent Morphological Transition toward Two-Dimensional Porous Inorganic Nanocoins as an Ultrathin Multifunctional Layer for Stable Lithium–Sulfur Batteries) 기존의 다공성 2차원 무기질 소재의 합성 방법은 기판을 이용하거나 별도의 주형을 사용하는 방식으로 소재의 형상 원판처럼 제어함과 동시에 두께를 조절하는 것에 한계가 있다. 또한, 다공성 구조를 형성하기 위해서는 추가적인 공정을 도입해야만 한다. 이를 해결하기 위해서 용액에서 양친성 분자를 이용한 구조를 도입하려 시도했지만, 무기질 전구체의 반응을 제어하기 쉽지 않다는 문제가 발생했다. 이 교수 연구팀은 블록공중합체와 단일중합체의 고분자 블렌드의 상거동을 이용해 기존의 문제를 해결하는 새로운 합성 방식을 제시했다. 이를 통해서 연구팀은 다공성 2차원 무기질 나노코인을 3나노미터(㎚) 두께로 합성하는 데 성공했다. 서로 섞이지 않는 단일중합체와 블록공중합체의 계면에너지가 달라짐에 따라서 나노구조의 배향과 입자의 모양이 달라지는 원리를 이용했다. 또한, 나노구조의 형성을 위해서 무기질 소재 내부에 함께 자기조립 된 블록공중합체가 제거되면서 마이크로 기공이 형성됐다. 이 합성 방법은 별도의 주형이 필요하지 않은 간단한 원팟(one-pot) 방법으로 기존의 복잡한 과정을 혁신적으로 줄여 생산력을 증대시켰다. 이를 이용해 연구팀은 다공성 2차원 알루미노실리케이트 나노코인을 차세대 전지인 리튬-황 이차전지의 분리막에 코팅해 리튬-황 전지의 성능을 높이는 데 성공했다. 기존의 리튬 이온 이차전지보다 약 2~3배 높은 에너지 밀도를 발현할 수 있을 것이라 기대되고 있는 리튬-황 이차전지의 큰 문제점은 황이 충·방전 과정에서 새어나가는 현상이다. 다공성 2차원 알루미노실리케이트 나노코인은 분리막에 약 2 마이크로미터(㎛)로 얇게 코팅돼 용출되는 리튬폴리설파이드를 물리적, 화학적으로 억제했다. 나노코인의 다공성 구조는 전해질과 리튬이온은 통과시키는 반면, 리튬폴리설파이드는 필터처럼 걸러 물리적으로 막아준다. 또한 알루미노실리케이트는 고체산으로 염기성질을 가진 리튬폴리설파이드를 흡착하여 용출을 억제한다. 이를 통해서 분리막의 두께 대비 용량 향상시켜 세계 최고 수준의 결과를 얻었다. 연구팀의 합성기술은 블록공중합체의 분자량 및 고분자 대비 질량을 조절해 손쉽게 나노구조(넓이 및 두께)를 조절할 수 있고 다른 소재로의 확장도 가능하여 맞춤형 나노소재로도 활용할 수 있을 것으로 보인다. 우리 대학 생명화학공학과 이진우 교수는 "고분자에서 일어나는 현상을 이용한 새로운 다공성 2차원 무기 소재를 합성기술이 기존 기술의 문제점을 해결할 수 있음을 보여줬다ˮ고 설명하면서 "고분자 분야와 무기 소재 합성을 잇는 연구가 실용적인 에너지 장치 성능 향상에 큰 기여를 할 수 있을 것이다ˮ고 설명했다. 한편 이번 연구는 한국연구재단이 추진하는 중견연구의 지원을 통해 수행됐다.
2021.09.24
조회수 9977
계층형 다공성 2차원 탄소 나노시트 합성
생명화학공학과 이진우 교수팀이 서로 다른 크기의 기공을 동시에 갖는 계층형 다공성 2차원 탄소 나노시트를 합성하는 기술을 개발했다.연구팀의 합성기술은 다공성 2차원 탄소 소재의 기공 크기와 구조 및 두께 등의 물성을 정밀하게 제어할 수 있는 새로운 원천 기술로 2차전지, 촉매 분야에서 고용량 전극 소재로 활용될 것으로 기대된다. 김성섭 박사, 주미은 석사가 공동 1 저자로 참여한 이번 연구 결과는 화학 분야 국제 학술지 ‘미국화학회지(Journal of the American Chemical Society, JACS)’ 2월 13일 자 온라인판에 게재됐다. (논문명: Polymer Interfacial Self-Assembly Guided Two-Dimensional Engineering of Hierarchically Porous Carbon Nanosheets) 기존의 다공성 2차원 탄소 소재의 합성은 대부분 그래핀 소재에 기공을 형성하는 방식에 의존하지만, 이는 기공의 크기와 구조를 효율적으로 제어할 수 없다는 한계가 있다. 이를 해결하기 위해서 2차원 나노시트를 주형으로 이용해 블록공중합체의 자기조립 방식을 시도했으나 추가적인 주형의 합성이 필수적이기 때문에 합성 과정이 복잡하고 두께의 조절이 쉽지 않다는 문제가 발생한다.따라서 기공의 크기 등 나노 구조의 제어가 가능하면서도 손쉬운 합성을 할 수 있는 다공성 2차원 탄소 나노시트 합성법 개발의 필요성이 커지고 있다. 이 교수 연구팀은 블록공중합체, 단일중합체 고분자 혼합물의 상 거동을 이용해 마이크로 기공과 메조 기공, 그리고 8.5nm의 두께를 갖는 계층형 다공성 2차원 탄소 나노시트를 합성하는 데 성공했다. 서로 섞이지 않는 두 종류의 단일중합체의 계면 사이에서 블록공중합체와 무기 전구체가 자기조립을 통해서 다공성 구조를 형성하는 원리이다.이 합성 방법은 별도의 주형이 필요하지 않은 간단한 방법으로 기존의 복잡한 과정을 혁신적으로 줄여 생산력을 증대했다. 이를 이용해 연구팀은 계층형 다공성 탄소 나노시트를 차세대 전지인 칼륨이온전지(potassium-ion batteries)의 음극에 적용해 용량을 기존 흑연 소재의 8배 이상 높이는 결과를 얻었다. 연구팀의 합성기술은 블록공중합체의 분자량 및 고분자대비 질량을 조절해 손쉽게 나노구조(기공 크기, 구조, 두께)를 조절할 수 있어 맞춤형 나노소재로 활용할 수 있을 것으로 기대된다. 이진우 교수는 “기존 다공성 2차원 무기 소재 합성기술의 문제점을 고분자 블렌드 성질을 이용해 해결할 수 있음을 보여줬다”라며 “이는 고분자 물리학과 무기 소재 합성을 이어주는 중요한 연구가 되며 다양한 에너지 장치에 적용될 수 있을 것이다”라고 설명했다. 이번 연구는 과학기술정통부와 한국연구재단이 추진하는 C1가스리파이너리 사업, 수소에너지혁신기술개발사업, 기후변화대응기술개발사업 및 미래소재디스커버리사업의 지원을 통해 수행됐다.
2020.03.20
조회수 15463
이진우 교수, 백금 활용도 16배 높인 단일 원자 촉매 개발
〈 박진규 박사과정, 이진우 교수 〉 우리 대학 생명화학공학과 이진우 교수 연구팀이 전기화학적 물 분해(이하 수전해) 방식을 통해, 수소를 생산하는 과정에서 쓰이는 백금의 사용을 최소화하면서 뛰어난 성능을 보여 활용도를 16배 높일 수 있는 백금 기반 촉매를 개발했다. 연구팀은 백금의 활용도를 높이기 위해 백금을 단일원자 형태로 텅스텐 산화물 표면에 고분산 시켜 백금이 받는 지지체 효과를 극대화했고, 수소 생산 수전해 촉매에서 높은 성능을 구현했다. 박진규 박사과정과 이성규 박사가 공동 1 저자로 참여한 이번 연구는 세계적 화학지인‘앙게반테 케미(Angewandte Chemie)’ 8월 22일 자에 게재됐다. (논문명 : Investigation of Support Effect in Atomically Dispersed Pt on WO3-x for High Utilization of Pt in Hydrogen Evolution Reaction, 수소 생산 반응에서 백금 활용도를 높이기 위해 백금 유사-단일 원자 촉매를 담지한 텅스텐 산화물 지지체 효과 조사) 백금 기반 촉매들은 성능과 안정성이 높아 다양한 전기화학 촉매 분야에서 활용됐지만, 가격이 높아 상용화에 어려움이 있었다. 단일 원자 촉매는 금속의 원자 하나가 지지체에 고분산된 형태의 촉매로, 모든 금속 단일 원자가 반응에 참여하기 때문에 백금의 사용량을 현저히 낮출 수 있다. 하지만 대부분의 연구가 탄소 기반 지지체에 담지된 단일 원자 촉매를 적용하고 있어 백금 활용성에 한계가 있다. 연구팀은 이번에 백금과 강한 시너지 효과를 낼 수 있는 메조 다공성 텅스텐 산화물을 단일 원자 촉매의 지지체로 사용했다. 이를 통해 백금 단일 원자를 텅스텐 산화물에 담지했을 때, 텅스텐 산화물에서 백금 단일 원자로 전하 이동이 일어나 백금의 전자구조가 변하는 것을 확인했다. 또한, 단일 원자 촉매가 갖는 ‘금속과 지지체간의 경계면 극대화’라는 독특한 특징을 활용해 백금 나노입자를 텅스텐 산화물에 담지한 촉매와 비교 실험을 진행했다. 연구팀은 실험을 통해 백금 표면에서 다른 지지체 표면으로 수소가 넘어가는 현상인 수소 스필오버 (Hydrogen spillover)가 크게 발현됨을 확인했다. 이를 통해 기존 상용 백금 촉매의 사용량을 16분의 1로 현저히 줄일 수 있었다. 해당 연구는 수전해 뿐만 아니라 연료전지 기술과 같은 다양한 전기화학 촉매 분야에 응용될 수 있을 것으로 기대된다고 연구팀은 밝혔다. 이 교수는 “이번에 개발한 촉매는 기존 단일 원자 촉매 연구와 다른 관점에서 접근한 연구로 학술적으로 이바지하는 바가 크다”라며 “이번 연구를 통해 단일 원자 촉매 개발의 독보적인 기술을 확보했다”라고 말했다. 이번 연구는 한국연구재단의 중견연구자지원사업, 수소에너지혁신기술개발사업, 기후변화대응기술개발사업, 미래소재디스커버리사업의 지원을 통해 수행됐다. □ 그림 설명 그림1. 유사 단일원자 촉매의 수소생산반응 모식도
2019.10.04
조회수 13145
이진우 교수, 그래핀 기반의 자연 효소 모방물질 개발
〈 이진우 교수 〉 우리 대학 생명화학공학과 이진우 교수 연구팀이 그래핀을 기반으로 해 과산화효소의 선택성과 활성을 모방한 나노단위 크기의 무기 소재(나노자임, Nanozyme)를 합성하는 데 성공했다. 연구팀은 이 무기 소재를 이용하면 알츠하이머병 조기 진단과 관련된 신경전달물질인 아세틸콜린을 자연 효소를 이용했을 때보다 더 민감하게 검출할 수 있음을 확인했다. 가천대학교 바이오나노학과 김문일 교수, UNIST 에너지화학공학부 곽상규 교수팀과 공동으로 연구하고 김민수 박사가 1 저자로 참여한 이번 연구는 재료 분야 국제 학술지 ‘에이씨에스 나노(ACS Nano)’ 3월 25일자에 게재됐다. (논문명 : N and B Codoped Graphene: A Strong Candidate To Replace Natural Peroxidase in Sensitive and Selective Bioassays , 질소와 붕소가 동시에 도핑된 그래핀: 민감하고 선택성이 있는 바이오에세이에 사용되는 자연의 과산화효소를 대체할 수 있는 강력한 후보) 효소는 우리의 몸 속 다양한 화학 반응에 촉매로 참여하고 있다. 각각의 효소는 구조가 매우 복잡해 체내에서 특정 온도와 환경에서 원하는 특정 반응에만 촉매 역할을 할 수 있다. 특히 과산화효소는 과산화수소와 반응하면 푸른 색을 띠기 때문에 과산화수소를 시각적으로 검출할 수 있다. 이를 이용해 산화 과정에서 아세틸콜린을 포함한 과산화수소를 배출하는 다양한 물질을 시각적으로 검출할 수 있다는 장점이 있다. 대신 효소는 안정성, 생산성이 낮고 가격이 비싸다는 단점이 있다. 단백질로 이뤄진 효소와 달리 무기물질로 합성된 효소 모방 물질은 기존 효소의 단점을 해소할 수 있어 효소의 역할인 질병의 검출 및 진단 시스템에 활용할 수 있다. 따라서 효소의 활성을 정확히 모방하는 나노물질의 필요성이 커지고 있다. 그러나 효소를 모방하는 나노물질은 활성을 모방하는 것이 가능하지만 원하지 않은 다른 부가적인 반응을 일으킬 수 있다는 단점이 있어 효소를 대체하는 데 어려움이 있다. 특히 기존의 과산화효소 활성이 높은 물질은 과산화수소가 없는 상황에서도 색이 변하기 때문에 검출 물질이 없어도 발색이 되는 단점이 있다. 문제 해결을 위해 연구팀은 과산화효소 활성만을 선택적으로 모방하는 질소와 붕소가 동시에 도핑된 그래핀을 합성했다. 이 그래핀의 경우 과산화수소 활성은 폭발적으로 증가하지만 다른 효소 활성은 거의 증가하지 않아 과산화효소를 정확하게 모방할 수 있다. 연구팀은 실험적 내용을 계산화학을 통해 증명했으며 새롭게 개발한 물질을 이용해 중요 신경전달 물질인 아세틸콜린을 시각적으로 검출하는 데 성공했다. 아세틸콜린은 알츠하이머병의 조기 진단과 관련이 높아 연구팀의 효소모방 물질을 이용하면 향후 질병 진단 및 치료에 기여할 수 있을 것으로 예상된다. 이 교수는 “효소 모방 물질은 오래되지 않은 분야이지만 기존 효소를 대체할 수 있다는 잠재성 때문에 관심이 폭발적으로 커지고 있다”라며 “이번 연구를 통해 효소의 높은 활성 뿐 아니라 선택성까지 가질 수 있는 물질을 합성하고 알츠하이머의 진단 마커인 아세틸콜린을 효과적으로 시각적 검출할 수 있는 기술을 확보했다”라고 말했다. 이번 연구는 한국연구재단의 이공분야 기초연구사업 중견연구자지원사업을 통해 수행됐다. □ 그림 설명 그림1. 촉매의 과산화효소와 산화효소 활성을 시각적으로 확인할 수 있는 사진 그림2. 질소와 붕소가 동시에 도핑된 그래핀의 바이오 에세이 적용
2019.04.23
조회수 15123
이진우 교수, 다공성 구조의 기능성 황 담지체 개발
〈 이진우 교수, 임원광 연구원 〉 우리 대학 생명화학공학과 이진우 교수 연구팀이 서로 다른 크기의 기공을 갖는 구조의 무기소재 합성을 통한 황 담지체를 개발해 리튬-황 이차전지의 성능을 높이는 데 성공했다. 연구팀은 다차원 상분리 현상을 동시에 유도해 각기 다른 두 종류, 크기의 기공을 갖는 티타늄질화물을 합성했고 이를 황 담지체로 활용해 우수한 수명 안정성과 속도를 갖는 리튬-황 이차전지를 구현했다. 포스텍 화학공학과 한정우 교수와 공동으로 진행하고 임원광 석박사통합과정이 1저자로 참여한 이번 연구는 재료 분야 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 1월 15일자 표지논문에 게재됐다. (논문명 : Approaching Ultrastable High-Rate Li-S Batteries through Hierarchically Porous Titanium Nitride Synthesized by Multiscale Phase Separation, 다차원 상분리를 활용한 계층형 다공성 구조의 티타늄질화물 합성 및 이를 통한 우수한 안정성과 높은 속도 특성의 리튬-황 이차전지 개발) 전기 자동차, 스마트 그리드 등의 기술은 대용량 에너지를 제어해야 하는 시스템으로 이를 효율적으로 활용하기 위한 차세대 이차전지 개발의 필요성이 더욱 커지고 있다. 리튬-황 이차전지는 이론적으로 기존 리튬 이온 이차전지보다 약 7배 이상 높은 에너지 밀도 특성을 보인다. 또한 황의 저렴한 가격은 전지 생산 단가를 급격히 낮춰줄 수 있을 것으로 기대되고 있다. 그러나 리튬-황 이차전지 음극과 양극에서 많은 문제점이 남아있어 상용화에 한계가 있다. 특히 양극에서는 황의 낮은 전기 전도도와 황이 충·방전 과정에서 전극으로부터 새어나가는 현상이 문제점으로 남아있다. 이를 해결하기 위해 황을 안정적으로 담을 수 있는 그릇 역할의 소재, 즉 황 담지체에 대한 연구가 활발하게 이뤄지고 있다. 기존 극성 표면의 무기 소재들은 황과 강한 작용력을 갖지만 무기 소재의 구조적 특성 제어를 할 방법이 부족해 황 담지체로 개발하기에는 한계가 있었다. 이번 연구는 독창적인 합성법을 개발함으로써 이 한계점을 극복했다. 연구팀은 문제 해결을 위해 50나노미터 이상 크기의 매크로 기공과 50나노미터 이하의 메조 기공을 동시에 지닌 계층형 다공성 구조의 티타늄질화물 기반의 황 담지체를 개발했다. 티타늄질화물은 황과의 화학적 작용력이 매우 강하고 전기 전도도가 높아 충·방전 과정에서 황이 전극으로부터 빠져나가는 것을 막아주고 황의 전기화학적 산화, 환원 반응을 빠르게 해준다. 연구팀은 매크로 기공과 메조 기공의 구조적 시너지 효과로 인해 많은 양의 황을 안정적으로 담으면서도 높은 수명 안정성 및 속도 특성을 보임을 확인했다. 이 교수는 “리튬-황 이차전지는 여전히 해결해야 할 문제점이 많아 이를 해결하기 위한 연구는 지속적으로 이뤄져야 한다”라며 “이번 연구를 통해 안정적인 수명을 지닌 양극 소재 개발의 독보적인 기술을 확보했다”라고 말했다. 이번 연구는 LG화학과 한국연구재단의 이공분야 기초연구사업 중견연구자지원사업의 지원을 통해 수행됐다. □ 그림 설명 그림1. 계층형 다공성 티타늄질화물 합성전략 모식도 그림2. 합성된 계층형 다공성 티타늄질화물 전자현미경 사진 그림3. 저널 표지 원본
2019.01.28
조회수 9496
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1