본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%9D%B4%EC%9A%A9%ED%9D%AC
최신순
조회순
2017 KAIST 리서치 데이, 23일 개최
‘2017 KAIST 리서치 데이(Research Day)’ 행사가 23일 오전 10시 30분부터 KI빌딩 1층 퓨전홀에서 열린다. 이 행사는 우리대학이 최근의 주요 연구 성과를 소개하는 한편 제4차 산업혁명 관련 R&D 분야에 대한 정보와 지식, 노하우 등을 공유함으로써 융합연구를 활성화한다는 취지로 2016년 5월 처음 마련했다. 작년에 이어 올해 두 번째를 맞는 이날 행사는 △연구부문 우수교원 및 우수 연구 성과 포상 △수상자 강연 △첸 쉐이(CHEN Shiyi) 중국 남방과학기술대(SUSTech, Southern University of Science and Technology) 총장 특별강연 등의 순으로 진행된다. 우선 2017년 연구대상은 건설및환경공학과 손훈 교수가, 연구상 수상자로는 기계공학과 오준호 삼성 지정석좌교수와 생명화학공학과 이상엽 특훈교수가 각각 선정됐다. 이노베이션상은 물리학과 박용근 교수, 융합연구상은 물리학과 이용희 교수와 신소재공학과 신종화 교수가 각각 수상한다. 대표 연구 성과로는 △3차원 홀로그래픽 현미경(박용근 교수·물리학과) △맞춤형 단백질 변형기술(박희성·화학과) △찔러도 피가 나지 않는 무출혈 주사바늘(이해신·화학과) △이동식 펄스에코 레이저 초음파 전파영상화 시스템(이정률·항공우주공학과) △복굴절을 이용한 3차원 깊이 측정기술(김민혁·전산학부) 등 자연과학분야 4건, 생명과학분야 1건, 공학분야 5건 등 모두 10건이 선정됐다. 우리대학은 이날 행사에서 이들 10선에 뽑힌 연구 성과물에 대해 시상하는 한편 동영상을 통해 참석자들에게 소개하는 시연회도 갖는다. 이와 함께 오후 2시부터는 첸 쉐이(CHEN Shiyi) 중국 남방과학기술대(SUSTech, Southern University of Science and Technology) 총장이 ‘4차 산업혁명과 사회적 가치창출을 위한 기업가 정신’이란 주제로 특별 강연회를 가질 예정이다. 교수와 학생 등 우리대학 구성원은 물론 일반시민들까지 누구든 사전신청 없이 이 행사에 참여할 수 있다.
2017.05.18
조회수 18078
조용훈 교수, 종이 위에서 빛나는 초소형 반도체 레이저 개발
우리 대학 물리학과 조용훈 교수 연구팀이 종이 위에서 작동하는 초소형 반도체 레이저를 개발했다. 나노 크기의 광결정 소자를 흡수성이 높은 종이와 결합함으로써 최첨단 반도체 센서를 저렴한 가격으로 다양한 질병 진단에 활용할 수 있을 것으로 기대된다. 이 연구 결과는 소재 분야 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 11월 17일자에 게재됐다. 빛을 매개체로 사용하는 광소자는 높은 대역폭을 갖고 있어 대용량으로 정보 전송이 가능하고 낮은 전력으로도 구동할 수 있다. 일반적으로 반도체 광소자는 직접적으로 특정 기능을 수행하는 부분 외에 이들을 단순히 지탱하기 위한 반도체 기판이 필요하다. 반도체 기판의 부피는 전체 소자 부피의 대부분을 차지하고 자연적으로 부패하지 않는 물질이기 때문에 소자를 폐기할 때 환경 문제를 일으킨다. 연구팀은 문제 해결을 위해 두꺼운 반도체 기판을 제거했고 일상생활에서 쉽게 구할 수 있는 종이를 광소자의 기판으로 사용했다. 종이의 주원료는 나무이기 때문에 자연적으로 썩어 없어진다. 또한 일상생활에서 쉽게 찾아볼 수 있고 가격이 저렴하기 때문에 종이를 이용한 소자는 단가를 획기적으로 낮출 수 있다. 종이는 기계적으로도 우수한 특성들을 지닌다. 자유자재로 구부릴 수 있고 접었다 피는 것을 반복해도 끊어지지 않는다. 이러한 특성은 기존 플렉서블 기판들이 구현하고자 하는 우수한 특성이다. 연구팀은 반도체 광소자를 종이 위에 옮기기 위해 나노 광소자를 마이크로 스탬프로 떼어 내는 기술을 이용했다. 이를 통해 반도체 기판에 높은 집적도로 패터닝(특정 부분을 깎아내는 식각 과정을 통해 회로를 새겨 넣는 과정)한 나노 광소자를 새로운 종이 기판에 원하는 간격으로 재배열 할 수 있었다. 이번에 종이 위에 결합된 광소자는 폭 0.5 마이크로미터. 길이 6 마이크로미터, 높이 0.3 마이크로미터 크기로 머리카락(약 0.1 mm) 두께의 100분의 1 수준이다. 연구팀은 개발한 광소자를 유체 채널(Fluid channel)이 형성된 종이 위에 결합해 굴절률 센서로도 활용 가능함을 증명했다. 이미 상용화된 임신진단키트 등에서도 볼 수 있듯이 종이는 좋은 흡수성을 가지고 있고 광결정 소자는 높은 민감도를 가지고 있어 센서 응용에 매우 적합하다. 조 교수는 “이 기술은 종이를 광소자의 기판으로 사용함으로써 최근 화두인 친환경 광소자 플랫폼을 만드는데 크게 기여할 수 있다”며 “저렴한 종이와 고성능 광결정 센서를 결합해 전체 소자의 단가는 낮추면서 성능은 뛰어난 적정기술로 활용할 수 있다”고 말했다. 물리학과 김세정 박사가 1저자로 참여한 이번 연구는 서강대학교 신관우 교수, 우리 대학 이용희 교수가 참여했고, 한국연구재단 중견연구자지원사업과 KAIST 기후변화연구허브사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 종이 기판 위 광결정 레이저 모식도 그림2. 종이 기판위에서 동작하는 광결정 공진기 레이저 및 굴절률 센서
2016.11.25
조회수 17536
김세정 박사, 2015 세계 빛의 해 기념 빛 이미지전 대상 수상
김 세 정 박사 우리 대학 자연과학대 김세정 박사(지도교수 조용훈)가 한국광학회에서 주최한 ‘2015년 세계 빛의 해 기념 빛 사진전 및 빛 이미지전’ 공모에서 빛 이미지전 부문 대상을 수상했다. 2015년은 UN에서 선포한 세계 빛의 해 (International Year of Light and Light-based Technologies)로 2015 세계 빛의 해 한국 주관기관인 한국광학회에서 다양한 빛의 해 행사 중 하나인 빛 사진전 및 빛 이미지전을 공모했다. 김세정 박사의 수상 작품은 ‘마이크로 바람개비’로 편광현미경으로 액정을 촬영한 사진에 색감을 추가했다. 이 액정은 자가 조립으로 동그란 도메인 구조를 스스로 형성하고, 각각의 도메인은 광보텍스를 형성할 수 있다(Optics Express 게재, 이용희 교수, 정희태 교수 공동연구). 이번 작품은 한국광학회 하계 학술발표회와 함께 진행된 2015 세계 빛의 해 기념 빛 사진전 및 빛 이미지전에 전시됐다. 수상작은 국립과천과학관 및 김대중 컨벤션 센터 등에도 전시될 예정이다. □ 그림 설명 그림1. 김세정 박사의 수상작 '마이크로 바람개비'
2015.07.23
조회수 12008
수 나노미터급으로 빛 모으는 3차원 광 장치 개발
우리 대학 물리학과 김명기, 이용희 교수 연구팀이 빛을 수 나노미터급 영역안으로 집속시킬 수 있는 초 고광밀도 삼차원 갭-플라즈몬 안테나(3D gap-plasmon antenna)를 개발했다. 이번 연구는 미국화학회의 나노분야 저널인 ‘나노 레터스(Nano Letters)’ 6월 10일자에 게재됐다. 빛을 한 점으로 집속시키는 연구는 최근까지도 활발하게 이뤄지고 있다. 빛을 고밀도로 집속시킬수록 다양한 분야에서 활용 가능하기 때문이다. 하지만 빛의 파장보다 작은 크기에서 발생하는 회절(回折, diffraction) 현상은 집속을 방해한다. 이를 극복하기 위해 학자들은 금속에서는 회절한계를 뛰어넘어 빛이 가둬지는 플라즈모닉 현상을 이용해 연구를 진행 중이다. 학자들은 2차원 형태의 플라즈모닉 안테나 개발에 집중했고 연구를 통해 5나노미터 이하로 빛을 집속하기도 했다. 하지만 2차원 안테나로는 아무리 작게 모아도 나머지 한 쪽 방향으로 빛이 퍼지는 한계가 있다. 즉, 빛을 3차원 방향으로 집속시킬 수 있어야 빛의 밀도를 최대로 끌어올릴 수 있는 것이다. 연구팀은 집속 이온빔 근접 식각 (Proximal Focused-Ion-Beam Milling) 기술을 도입해 3차원 구조의 4나노미터급 갭-플라즈몬 안테나를 제작했다. 이를 통해 삼차원 나노 공간(~4 x 10 x 10 nm3)안으로 빛을 집속시켜 입사파와 비교해 40만 배 이상의 빛의 세기를 만들었다. 또한 제작된 안테나 내 높은 광밀도를 이용해 금속에서 발생하는 이차조화파 세기의 극대화에 성공했고, 음극선 발광 측정(Cathodoluminescence)장치를 이용해 빛이 나노 갭 안으로 강하게 집속됨을 확인했다. 연구팀은 이 기술이 데이터 통신과 정보 처리 속도를 테라헤르츠(THz, 1초당 1조번) 수준으로 높이고, 하드디스크 면적당 용량을 현재의 100배로 늘릴 수 있을 것이라고 밝혔다. 더불어 전자 현미경 대신 직접 빛을 이용해 분자 이하 크기의 고해상도 이미지를 추출하거나 반도체 공정을 수 나노미터 수준으로 발전시키는 기술이 가능할 것이라고 말했다. 김명기 교수는 “간단하고 새로운 아이디어가 기존 2차원 플라즈모닉 안테나 중심 연구를 3차원 공간으로 확대시켰다”며 “정보통신, 데이터 저장, 영상의학, 반도체 공정 등 다양한 분야에 응용될 수 있을 것이다"고 말했다. 이번 연구는 한국연구재단의 일반연구자지원사업과 중견연구자지원사업, 첨단융합기술개발사업 프로그램 지원을 받아 수행됐다. □ 그림 설명 그림 1. 제작된 3차원 갭-플라즈몬 안테나 그림 2. 3차원 갭-플라즈몬 안테나 구조 및 시뮬레이션 결과 그림 3. 증폭된 이차조화파 발생과 나노갭 안으로 빛이 집속된 모습
2015.06.15
조회수 12704
고효율의 단일광자원 소자 핵심기술 개발
조 용 훈 교수 우리 대학 물리학과 조용훈 교수 연구팀이 양자정보기술에 기여할 수 있는 고효율의 단일광자원(양자광원) 의 방출 효율과 공정 수율을 높일 수 있는 기술을 개발했다. 이번 연구 결과는 자연과학분야 학술지인 미국국립과학원회보(PNAS: Proceedings of the National Academy of Sciences) 4월 13일자 온라인 판에 게재됐다. 빛은 보통 파동의 성질을 갖는 동시에 입자의 성질도 가지고 있는데, 이 입자를 광자라고 한다. 단일광자원 혹은 양자광원은 광자가 뭉쳐서 나오는 고전적인 광원과는 달리 한 번에 한 개의 광자만 방출하는 소자이다. 반도체 양자점을 이용한 단일광자 방출 소자는 안정성 및 전기구동 가능성이 높아 상용화에 적합한 소자로 각광받고 있다. 하지만 빛의 파장은 양자점보다 수십~수백 배 정도 크기 때문에 상호 작용하기 어려워서 단일광자의 방출 효율이 매우 작다는 한계점이 있다. 따라서 고효율 단일광자원를 만들기 위해서는 양자점과 빛을 집속시키는 구조(광공진기)를 공간적으로 정확히 결합시키는 것이 필수적이다. 하지만 양자점은 불규칙하게 분포되어 있고 위치를 정확히 확인할 수 없어 우연성에 의존한 결합을 기대할 수밖에 없었다. 따라서 긴 공정시간에도 불구하고 소수의 단일광자소자를 제작하는 수준에 머물러 있었다. 연구팀은 문제 해결을 위해 피라미드 모양의 나노 구조체를 활용했다. 반도체 나노피라미드 구조에서는 양자점이 피라미드의 꼭지점에 자발적으로 형성된다. 그리고 그 위에 금속 필름을 얇게 증착하면 빛 역시 뾰족한 금속 끝에 모이는 성질 때문에 양자점과 동일한 위치에 집속되는 것이다. 특히 금속에서는 빛이 본래 가진 파장보다 작게 뭉칠 수 있다. 즉, 빛이 가진 파장보다 더 소형화를 시킬 수 있기 때문에 양자점과의 크기 차이로 인한 문제를 극복할 수 있게 되는데, 이 방법으로 단일광자 방출 효율이 기존의 방식보다 20배 정도 증가되었다. 단일광자 방출소자는 양자광컴퓨터 및 양자암호기술 구현의 가장 기본적인 구성 요소이다. 이번 연구를 통해 기존의 까다로운 과정들 없이 단순한 방식으로 효율과 수율을 모두 높일 수 있으므로, 단일광자방출원 혹은 양자광원 관련 기술의 상용화 가능성이 높아질 것으로 기대된다. 조 교수는 “이 기술은 높은 공정 수율을 갖고 있기 때문에 상용 양자광원 소자 제작 한계를 해결하고, 양자정보통신 분야 구현에 중요 기술이 될 것”이라고 말했다. 조용훈 교수의 지도를 받아 공수현(1저자)·김제형(2저자) 박사가 수행한 이번 연구는 우리 대학 신종화·이용희 교수, 프랑스 CNRS의 레시당 박사, 미국 UC 버클리의 샹장 교수가 참여했으며, 한국연구재단의 중견연구자 지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다. 그림 1. 단일 광자가 높은 효율로 방출되는 모습의 개념도
2015.04.23
조회수 12835
이용희 교수, 훔볼트 연구상 수상
우리 학교 물리학과 이용희 교수가 지난달 세계적 권위의 독일 훔볼트 재단이 수여하는 훔볼트 연구상(Humbolt Research Award)을 수상했다. 이 교수는 수직공진표면광 레이저(Vertical Cavity Surface Emitting Laser), 광결정 레이저(Photonic Crystal Laser) 등 극미세 레이저 분야의 개척자적인 연구 업적을 인정받았다. 훔볼트 연구상은 독일의 대표적인 연구재단인 훔볼트 재단이 매년 인문•자연과학•공학 분야에서 국제적으로 뛰어난 연구업적을 남긴 학자에게 주는 상이다. 이 상은 독일 학자에 의해 추천을 받은 뒤 독일 교수 2명과 외국인 학자 3명 이상의 추천서를 받아야 하는 등 까다롭고 엄격한 심사과정으로 유명하다. 수상자는 6만 유로(약 8600만원)의 상금과 함께 독일에 초청돼 6~12 개월간 관심분야의 연구를 수행할 수 있게 된다. 이용희 교수는 향후 베를린 대학(Technical University of Berlin)의 빔버그 교수, 뷔르츠버그 대학의 포첼 교수 그룹과 공동연구를 진행할 계획이다.
2013.12.09
조회수 11635
모교를 빛낸 ‘올해의 동문상’ 선정
- 백만기 김&장 고문, 이용희 KAIST 자연과학대학장, 양세인 OCI 부사장 - 김대훈 LG CNS 대표이사, 나성균 네오위즈 대표이사 선정 - 시상식은 14일 오후 6시 서울 메리어트호텔 신년교례회서 개최 우리 학교 총동문회(회장 임형규)는 국가와 사회의 발전에 공헌하고 모교의 명예를 높인 ‘2011 올해의 동문상’ 수상자를 선정했다. 이번에 선정된 ‘올해의 동문상’ 수상자는 백만기 김&장 고문, 이용희 KAIST 자연과학대학장, 양세인 OCI 부사장, 김대훈 LG CNS 대표이사, 나성균 네오위즈 대표이사 등 5명이다. 백만기(전기및전자공학과, 석사 4회) 김&장 고문은 지식경제부 사무관, 특허청 심사관, 김&장 변리사 등을 거치며 선구자적으로 공학과 행정의 융합을 시도하며 이공계 전문 인력 진로 확대에 공헌했다. 이용희(물리학과, 석사 5회) KAIST 물리학과 교수는 광결정 물리광학 분야의 세계적인 학자로 한국과학상을 수상하는 등 탁월한 연구 성과를 이룩하고 현재 자연과학대학장으로 재직하며 모교 발전에 기여했다. 양세인(생명화학공학과, 석사 6회) OCI 부사장은 신재생 에너지 산업의 핵심 소재인 폴리실리콘 최초 국산화 기술 개발을 선도하여 ㈜OCI가 세계적 경쟁력을 확보하는데 결정적인 기여를 했다. 김대훈(산업및시스템공학과, 석사 7회) LG CNS 대표이사는 스마트 기술을 다양한 산업에 적용하여 LG CNS가 경쟁력을 확보하는데 선도적 역할을 하며 우리나라 IT산업을 세계 최고 수준으로 발전시키는데 크게 기여했다. 나성균(경영과학과, 석사 22회) 네오위즈 대표이사는 한국 IT벤처산업을 이끄는 젊은 리더로, IT 산업 기술 발전에 크게 기여하는 성과를 나타내 올해의 동문으로 선정됐다. 한편 ‘올해의 동문상’은 지난 1992년부터 제정돼 국가와 사회발전에 공헌하고 모교의 명예를 높인 동문에게 주어진다. 시상은 14일 오후 6시부터 서울 메리어트호텔에서 열린 KAIST 총동문회 신년교례회 행사장에서 진행됐다.
2012.01.16
조회수 14326
민범기 교수, 높은 굴절률의 메타물질 구현
- 세계 최고 권위 『네이처』지 발표, “전자기파나 광파의 경로를 마음대로 제어하는 초소형 광학소자 개발 가능”- 국내 연구진이 자연계에 존재하지 않는 높은 굴절률*을 갖는 메타물질을 이론적으로 검증하고 이를 실험적으로 구현하는데 성공하였다. * 굴절률(index of refraction) : 서로 다른 매질의 경계면을 통과하는 파동이 굴절되는 정도 또는 투명한 매질로 빛이 진행할 때, 빛의 속도(광속) 이 줄어드는 비율 우리학교 민범기 교수(교신저자, 37세), 최무한 박사(제1저자, 39세) 및 이승훈 박사과정생(제1저자, 29세)의 주도 하에, 한국전자통신연구원(ETRI) 강광용 박사팀, KAIST 이용희 교수팀, 서울대 박남규 교수팀이 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 일반연구자지원사업(신진연구)의 지원을 받아 수행되었다. 이번 연구결과는 세계 최고 권위의 과학 전문지인 ‘네이처(Nature)’지 2월 17일자에 게재되었는데, 특히 순수 국내연구진만으로 구성된 연구팀이 단독으로 발표한 이례적인 값진 연구성과로서 그 의미가 매우 크다. 또한 이 논문은 그 주에 발표된 논문 중에서 우수한 연구결과를 해당분야 전문가가 해설하는 ‘뉴스 앤드 뷰즈(News and Views)’에 선정되는 영예를 얻었다. 메타물질이란 기존에 물질의 정의를 완전히 뛰어넘는 혁신적인 개념으로서, 자연계에는 존재하지 않는 물성을 갖도록 고안된 물질의 통칭이다. 원자나 분자로 이루어진 자연계의 물질과는 달리, 메타물질의 단위 인공원자는 파장보다 훨씬 작은 인위적인 구조체로 이루어진다. 이러한 메타물질은 전자기파나 광파에 대한 물질의 물성을 인위적으로 마음대로 조절할 수 있다는 점에서 최근 전 세계 연구자들의 주목을 받고 있다. 일례로 광학투명망토 기술이나 음굴절률의 구현 등이 메타물질의 주된 연구 분야였으나, 이번 연구를 통하여 극한 고굴절률 메타물질이라는 새로운 영역을 개척하였다. 민범기 교수 연구팀은 분극율(分極率)이 매우 크면서도 반자성(反磁性)이 매우 약한 금속이면서 유전체(誘電體)인 메타물질을 독자적으로 설계․제작하여, 인위적인 값으로는 가장 높은 38.6에 달하는 굴절률을 세계 최초로 실증하였다. 이러한 연구결과는 음굴절률 메타물질의 영역을 넘어서 자연계에 존재하지 않는 매우 높은 굴절률(38.6)을 메타물질의 새로운 영역으로 포함시켰다는 점에서 의미가 크다. 민범기 교수는 “이번 연구는 향후 파장이하의 높은 해상도를 지닌 이미징 시스템이나, 전자기파 혹은 광파의 경로를 임의로 제어할 수 있는 전자기파나 광학소자 및 파장이하 규모의 초소형 광학소자를 개발하는데 크게 기여할 수 있을 것으로 기대한다”고 연구의의를 밝혔다.
2011.02.16
조회수 20011
한국과학상에 이용희교수, 젊은 과학자상에 조광현, 김상욱, 조계춘교수
한국의 과학기술을 이끄는 힘! KAIST! 우리학교 물리학과 이용희 교수가 "한국과학상"을 바이오및 뇌공학과 조광현, 신소재공학과 김상욱, 건설및환경공학과 조계춘교수가 "젊은 과학자상"을 수상했다. 물리학분야 한국과학상 수상자인 이용희 교수는 최근 각광 받고 있는 광결정 물리광학 분야의 세계적인 과학자 중 하나로, 물리적으로 가장 작은 공진기에 근접하는 레이저 모습을 순수 국내 기술과 연구력을 동원하여 세계 최초로 실험적으로 규명하였다는 점을 인정받아 수상의 영예를 안았다. 젊은 과학자상 수상자 4명중 3명이 KAIST 교수로 눈길을 모은다. 조광현 교수는 복잡한 생명시스템에 대한 전기전자공학적 모델링 및 컴퓨터 시뮬레이션 분석 핵심원천기술 개발 등을 통해 독창적인 시스템생물학 분야를 개척한 연구업적을 인정받아 선정되었다. 김상욱 교수는 연성소재의 자발적인 분자 조립현상을 이용한 대면적 나노패턴공정을 확립한 연구업적을 인정받아 선정되었다. 조계춘 교수는 터널 안정성 확보에 핵심적 역할을 수행하는 지지보강재 숏크리트의 상태평가기법 등 신공간 창출과 관련된 터널 및 지하공간 구축 기술을 개발한 연구업적을 인정받았다. 제12회 한국과학상 수상자에게는 대통령상과 상금 5천만원이 지급되며, 제13회 젊은과학자상 수상자에게는 대통령상과 연구장려금이 매년 2천4백만원씩 5년간 지원된다. 한편, ‘한국과학상’은 1987년부터 한국공학상과 함께 우수한 연구개발 성과로 우리나라 과학기술 발전에 크게 기여한 과학자를 적극 발굴․포상하여, 과학자의 사기진작과 뛰어난 성과를 창출할 수 있는 연구 환경을 조성하고자 제정된 상이다. 현재까지 수학분야 9명, 물리학분야 12명, 화학분야 13명, 생명과학분야 11명 등 총 45명의 수상자가 선정되었다. ‘젊은과학자상’은 지난 1997년부터 만 40세 미만의 젊은과학자를 발굴․포상함으로써 연구개발에 대한 사기를 진작시키고 21세기 국가과학기술의 중추적인 역할을 담당할 주역을 양성하기 위한 상이다. 자연과학분야와 공학분야에서 각각 4명씩 격년제로 선정되어, 올해 수상자를 포함해 현재까지 50명의 수상자가 선정되었다. 제12회 한국과학상과 제13회 젊은과학자상 시상식은 안병만 교육과학기술부 장관과 박찬모 한국연구재단 이사장, 정길생 한국과학기술한림원장, 한국과학상과 젊은과학자상 수상자 및 관계자 120여명이 참석한 가운데 지난 3월 17일(수) 서울 그랜드힐튼호텔에서 동시에 개최됐다.
2010.03.21
조회수 16825
생명화학공학과 양승만교수 광자유체 신기술개발
생명화학공학과 양승만(梁承萬, 58세, 교육과학기술부 지정 광자유체집적소자 창의연구단 단장) 교수 연구팀이 다양한 기능을 갖는 나노입자를 제조하고 이들 입자들이 스스로 조립되는 ‘자기조립원리’를 규명하는 연구를 수행하여, 방대한 량의 정보를 처리할 수 있는 프로토타입(prototype)의 광․바이오 기능성 광자결정(photonic crystal)구조체를 개발했다. 자연계에 존재하는 대표적인 광자결정은 오팔보석, 나비의 날개, 공작새의 깃털 등이 있다. 이들 광자결정 물질들이 발산하는 아름다운 색깔은 색소에 의한 것이 아니라 이 물질들을 이루는 구조 자체가 규칙적인 나노구조로 되어 있기 때문이다. 즉, 광자결정은 굴절률이 다른 물질들이 규칙적으로 쌓여 조립된 3차원 구조체로 특정한 영역의 파장에 해당하는 빛만 완전히 반사시킨다. 이 성질을 이용하면 반도체가 전자의 흐름을 제어하듯 빛의 흐름을 제어할 수 있다. 이러한 광자결정의 특수한 기능 때문에 나노레이저, 다중파장의 광 정보를 처리할 수 있는 슈퍼프리즘(superprism), 빛을 원하는 위치로 가이드 할 수 있는 광도파로(waveguide) 등 차세대 광통신 소자와 현재의 컴퓨터 속도를 획기적으로 높일 수 있는 수십 테라급 초고속 정보처리능력을 갖춘 광자컴퓨터의 개발 등에 필요한 소재로 주목 받아왔다. 광자결정은 광자(빛)가 정보를 처리하는 미래에 오늘날의 반도체와 같은 역할을 할 것이므로 ‘빛의 반도체’라 불린다. 지난 20여 년 동안 자연 상태에 존재하는 광자결정의 나노구조를 인공적으로 제조하기 위한 연구가 많은 과학자들에 의하여 시도되어 왔지만 실용적인 구조를 얻는 데에는 한계가 있었다. 梁 교수팀은 2006년부터 교육과학기술부와 한국과학재단의 ‘창의적연구진흥사업’으로부터 지원을 받아 광자결정소재의 실용성을 확보하기 위한 연구를 수행하여 최근 해외 저명학술지로부터 크게 주목 받는 일련의 연구 성과를 거뒀다. 첫 번째 연구 성과로 굴절률 조절이 가능한 미세입자 대량 생산기술을 개발했다. 지금까지 구현된 3차원 광자결정은 결정을 이루는 물질의 굴절률이 1.5-2.0 정도로 낮고, 굴절률을 다양하게 조절할 수 있는 입자를 제조할 수 없어서 광자결정의 실용성에 한계가 있었다. 최근 梁 교수 연구팀은 굴절률을 1.4-2.8까지 마음대로 조절할 수 있는 입자를 대량으로 제조할 수 있는 실용적 방법을 개발했다. 제조된 고 굴절률 입자는 나노레이저, 광 공명기, 마이크로렌즈, 디스플레이 등 각종 광학소자와 광촉매 등으로 활용될 수 있다. 이 연구결과는 최근 어드밴스드 머티리얼스 인터넷판(6. 19)과 제 17호(2008. 9)의 표지논문으로 게재 예정이다. 특히, 이 논문은 저명 학술지인 네이처 포토닉스(Nature Photonics)誌 8월호(8. 1)에 리서치 하이라이트(Research Highlights)로 선정되어 연구의 중요성과 응용성에 대하여 특별기사로 조명했다. 그림 1. 초고굴절률 타이타니아 입자의 전자 현미경 사진 두 번째 연구 성과로 광자유체 기술을 이용한 광결정구 연속생산 기술을 개발했다. 균일한 크기와 모양을 갖는 광자결정구를 빛을 매개로 반응시킴으로써 종래에 수십 시간이 소요되는 공정을 불과 수십 초 만에 연속적으로 제조할 수 있는 기술을 확보했다. 이들 광자결정구는 차세대 반사형디스플레이 색소나, 나노바코드, 생물감지소자 등으로 활용될 수 있다. 특히 주목할 것은 몇 개의 다른 색을 반사하는 야누스 광자결정구슬을 제조하였는데 이들은 전자종이와 같은 접거나 말 수 있는 차세대 디스플레이 소자에 활용될 수 도 있다. 이러한 광자결정 표시소재는 세계굴지의 화학회사인 독일 머크(Merck)社 등에서도 개발 중이며 이번 연구 결과는 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소이다. 주요 연구결과는 국제적저명학술지인 미국화학회지(JACS)와 어드밴스드 머티리얼스(Advanced Materials)誌에 6편의 논문을 최근 4개월(5~8월) 동안 연속 게재하여 광자결정의 실용성을 구현하는데 크게 기여했다고 인정받았다. 특히, 이들 논문들은 해당 학술지 편집인(Editor)과 심사위원들에 의하여 가장 앞선 연구결과로서 주목해야 할 논문(Advances in Advance)으로 선정됐으며, 9호(5. 5) 표지논문에 게재됐다. 그림 2. 3원광 광자결정구와 다색상 야누스 광자결정구의 현미경사진과 휘어지는 기판 위에 픽셀화된 3원광 광자결정. 세 번째 연구 성과로 광자유체 기술을 이용한 광결정 나노레이저를 개발했다. 현재까지 개발된 나노레이저는 발생하는 고열로 인하여 발진하는 레이저의 파장을 변화시키기 어려운 단점이 있었다. 梁 교수 연구팀은 KAIST 물리학과의 이용희 교수 연구팀과 공동으로 연속가변파장 나노레이저를 최초로 개발했다. 레이저를 발진하는 광자결정과 매우 미세한 유량을 도입할 수 있는 미세유체소자를 결합한 후 물과 같은 액체를 흘려줌으로써 온도를 낮추어 연속파 레이저 발진을 가능케 하였다. 또한 굴절률이 다른 액체를 흘려주어 광밴드갭을 조절함으로써 레이저의 파장을 조절 할 수 있었다. 가변파장 나노레이저는 신약개발 등 생명공학에서 요구되는 극미량의 시료로부터 방대한 량의 바이오정보를 광학적으로 신속하게 처리하는데 필요한 광원으로 사용될 수 있다. 이 연구 결과는 광물리 분야의 저명학술지인 옵틱스 익스프레스(Optics Express)에 게재(4. 9) 됐으며 이 논문의 독창성과 실용성은 영국왕립화학회(Royal Society of Chemistry)에서 발간하는 저명학술지 랩온어칩(Lab on a Chip) 8월호(8. 1)에 해설과 함께 “리서치 하이라이트”로 소개됐다. 그림 3. 나노레이저 발진모드
2008.08.19
조회수 21900
이용희 교수, 이주장 교수, 유회준 교수, 美 IEEE 펠로우에 선임
우리 학교 물리학과 이용희(李用熙, 52, 맨왼쪽) 교수, 전기및전자공학과 이주장(李柱張, 59, 가운데) 교수, 전기및전자공학과 유회준(柳會峻 47세,오른쪽) 교수가 美 전기전자학회(IEEE) 최고 영예인 펠로우(Fellow, 석학회원)에 선임됐다. 이용희 교수는 ‘수직공진 표면광 레이저와 광결정 레이저 분야의 업적(for contributions to photonic devices based upon vertical cavity surface emitting lasers and photonic crystals)"을 인정받아 펠로우에 선임됐다. 이용희 교수는 반도체 레이저 및 광결정 광학 분야의 세계적 석학으로 국제과학기술논문색인(SCI) 등재 학술지에 130여편의 논문이 수록되었으며, 지금까지 전 세계적으로 2천500회 이상 인용되고 있다. 지난 5년간 대규모 국제학술대회에서 30회 이상 초청강연을 하는 등 국제 학회에서도 업적을 인정받고 있다. 2003년에는 美 전기전자학회(IEEE) 레이저ㆍ전자광학회(LEOS) ‘우수강연상(Distinguished Lecturer Award)’을 수상했다. 또한 지능 강인 제어와 로봇 분야의 세계적 석학인 이주장 교수는 국외 학술지 97편, 국내 학술지 38편의 논문을 포함, 총 538편의 관련 분야 논문을 발표하고 국내외 다수의 특허도 보유하고 있다.이주장 교수는 국제학회 초청강연과 국제 워크샵 개최 등 국제 협력 증진에도 크게 기여하고 있다. 2008년 IEEE 산업정보 국제학술회의(IEEE INDIN 2008, 대전), 2009년 IEEE 산업전자 국제학술회의(IEEE ISIE 2009, 서울)의 대회장을 맡고 있다. 현재 IEEE 산업전자학회(IES) 이사이며, IEEE 산업전자학회 논문지(IEEE Transaction on Industrial Electronics)와 IEEE 산업정보학회 논문지(IEEE Transaction on Industry Informatics)의 편집위원로 활동하고 있다. 2005년에는 한국 제어로봇 시스템 학회(ICROS)와 일본 제어계측 학회(SICE) 펠로우에 선임되기도 했다. 이번에 선임된 3명의 교수 중 최연소인 유회준 교수는 ‘저전력 초고속 초고밀도 집적회로 설계 분야의 업적(for contributions to low-power and high-speed VLSI design)’을 인정받아 펠로우에 선임됐다. 우리 학교 전기전자공학과에서 박사학위를 받고 현대전자 등의 산업체를 거쳐 1998년 우리 학교 교수로 부임한 이 후 독자적으로 연구한 결과들을 국제적으로 인정받아 IEEE 펠로우로 선임되어 더욱 눈길을 끈다. 유교수는 세계 최고의 권위를 자랑하는 IEEE 국제고체회로학회(ISSCC)에 지난 8년간 17편의 논문을 발표하여 연평균 세계 최다 논문 발표 실적을 보유하고 있다. IEEE 아시아 고체소자회로학회(A-SSCC)와 IEEE 아시아남태평양설계학회(ASP-DAC)등에서 최우수 논문상을 4회 수상한 바 있다. 유 교수는 지난 10년간 180편의 국제 논문을 발표하였으며 48건의 특허를 보유하고 있다. 특히 ‘저전력 3차원 영상 처리기’, ‘칩 상 네트워크 설계 기술’, 및 ‘인체 매질 통신 칩’ 분야에서 세계 최고의 연구자로 인정받고 있다. 이 외에도 IEEE 고체소자회로학회의 집행위원회, IEEE 초고밀도 집적회로 심포지움 학회 집행위원회 이사로 활동하고 있다. 또한 IEEE 아시아 고체소자회로학회 조정위원회의 이사이며 2008년 이 학회의 대회장으로 초고밀도집적회로(VLSI) 설계 및 시스템 온 칩(SoC)분야에서 가장 권위 있는 세계 3대 학회를 선도해 나아가고 있다. IEEE는 전기전자 분야 세계 최대 학회로 회원 가운데 연구업적이 특히 뛰어난 최상위 0.1%내 회원만을 매년 펠로우에 선임한다.
2007.11.21
조회수 23860
KAIST 학술.연구.국제협력대상 수상자 선정
학술대상에 이용희 물리학과 교수 연구대상에 임종태 전자전산학과 교수 국제협력대상에 변증남 전자전산학과 교수 한국과학기술원(KAIST)은 개교 34주년을 맞이하여 KAIST 학술대상에 이용희(李用熙, 50, 물리학과) 교수, 연구대상에 임종태(林鐘泰, 56, 전자전산학과) 교수, 국제협력대상에 변증남(卞增男, 62, 전자전산학과) 교수를 선정했다. 시상식은 16일 오전 교내 대강당에서 열리는 개교기념식에서 있게 된다. 학술대상을 수상하는 李 교수는 지난 1년간 SCI급 국제학술지에 14편의 우수한 논문을 게재했고, 국제학술대회 초청강연을 9회 수행하는 등 활발한 학술활동을 펼쳐왔다. 연구대상을 수상하는 林 교수는 지난 5년간 연구개발성과의 탁월성이 국내외에서 인정되고 대학발전에 크게 기여한 공로를 인정받았으며, 연구계약고, O/H 흡수실적, 기술료 수입실적, 산업재산권 등록실적 등을 종합한 총 점수가 가장 우수하여 선정됐다. 국제협력대상을 수상하는 卞 교수는 3년간 국제퍼지시스템학회 회장의 직무를 수행중이고, 독일 브레멘 대학을 포함한 해외 3개 대학의 자문교수 활동, 대규모 국제학술대회의 총대회장 4회 역임 등 국제협력과 교류 분야에서 탁월한 활동을 펼쳐왔다. 2005년도 KAIST 개교 34주년 기념식 포상 및 표창대상자 학술.교육.공로 및 신지식인 부문 학술대상 물리학과 이용희 교수 학술상 물리학과 최기운 교수, 생명과학과 임대식 부교수, 기계공학과 성형진 교수, 항공우주공학과 이인교수 우수강의대상 테크노경영대학원 김영걸 교수 우수강의상 인문사회 홍명순 교수, 수학과 구자경 교수, 테크노경영대학원 이창양 부교수, 응용수학과 권길헌 교수, 테크노경영대학원 박남규 조교수 공적상 기계공학과 허훈 교수 신지식인상 신소재공학과 박종욱 교수 연구부문 우수교원 연구대상 전기및전자공학과 임종태 교수 연구상 기계공학과 권대갑 교수, 생명화학공학과 김종득 교수, 전기및전자공학과 나종범 교수 국제협력부문 우수교원 국제협력대상 전기및전자공학과 변증남 교수 국제협력상 생명화학공학과 김상돈 교수, 원자력및양자공학과 성풍현 교수, 바이오시스템학과 조영호 부교수 직원 공로부문 표창대상자 공적상 교무팀 강봉수 책임행정원, 기획예산팀 원동혁 행정원 기여상 서울캠퍼스운영팀 윤여갑 기술원, 실용화지원팀 김인현 책임사무원, 원자력및양자공학과 유남희 선임사무원 모범상 어학센터 조왕식 선임행정원, 연구관리팀 오세만 선임행정원, 인사팀 최용호 선임행정원, 정보통신팀 조준형 기술원 시설팀 강기순 책임기술기사, 물리학과 홍순미 책임사무원, 홍보팀 조재영 책임사무원
2005.02.15
조회수 25439
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2