본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%98%88%EC%A2%85%EC%B2%A0
최신순
조회순
예종철 교수 연구팀, 삼성휴먼테크 논문대상 신호처리분야 금상 수상
우리 대학 김재철AI대학원 예종철 교수팀이 `확산모델 (diffusion model)의 사후 샘플링(posterior sampling)을 이용한 일반적인 역문제 해결 기법'으로 제 29회 삼성휴먼테크논문대상에서 신호처리 분야 금상을 수상했다고 밝혔다. 삼성휴먼테크논문대상은 과학기술 저변 확대와 과학 인재 양성을 위해 삼성전자가 1994년 제정한 논문상으로, 매년 2,000편 가량의 논문 중 서면 및 발표 심사를 거쳐 창의성, 논리성, 실용성, 발전성이 뛰어난 논문을 선정하여 수여되는 상이다. 바이오및뇌공학과 박사과정 졍형진, 김정솔 학생이 공동 1저자로 참여한 이 논문은, 확산 모델과 사후 샘플링을 결합하여 일반적인 역문제에 대한 새로운 관점과 해결방법을 제시하였고, 그 실용성과 독창성을 인정받아 대학부 신호처리 분야 수상작 7편 중 1위로 금상을 수상하였다. 역문제는 영상을 획득하는 과정에서 이미징 시스템의 특성과 잡음의 영향으로 망가진 측정값으로부터 실제 신호를 복원하는 문제로 정의된다. 이러한 문제는 영상 화질 개선부터 위상 복원을 통한 세포 구조 시각화와 같은 다양한 과학 분야에서 중요성과 실용성을 가지며, 수십 년간 지속적으로 연구되어 왔다. 과거의 인공지능 및 딥러닝 알고리즘은 이미징 시스템이 선형이며 잡음이 없는 경우를 가정하여 역문제를 효과적으로 해결하였으나, 이러한 가정은 현실 세계에서의 상황과 비교하여 훨씬 단순화된 형태였다. 이 연구에서는 처음으로 확산 모델을 이용해 사후 샘플링을 진행하는 방법으로 역문제를 해결하였는데, 이는 확산 모델이 생성하는 중간 이미지로 측정값을 근사하고, 실제 측정값과의 차이가 줄어들도록 중간 이미지를 보정하는 방식으로 구현된다. 이를 통해 이미징 시스템이 선형 및 비선형인 경우, 그리고 이미징 시스템에서 흔히 발생하는 가우시안 잡음과 푸아송 잡음이 존재하는 경우에 대한 일반적인 역문제 해결이 가능함을 입증하였다. 나아가 개발된 기술은 여러 종류의 역문제에 대한 개별적 학습을 필요로 하지 않는 특성을 가지며, 이는 논문의 실용성을 높이고, 이전의 연구들과 차별성을 지니게 한다. 정형진, 김정솔 바이오및뇌공학과 박사과정 학생은 “큰 규모의 논문대회에서 연구의 내용을 인정받아 기쁘고, 좋은 논문을 작성할 수 있도록 지도해주신 예종철 교수님께 감사하다” 고 소감을 밝혔다. 또한, 알고리즘의 성능과 효율성을 높이는 연구를 이어나가 역문제의 해결이 필요한 다양한 과학 분야들에 기여하고 싶다는 희망을 전했다. 논문명: Diffusion Posterior Sampling for General Noisy Inverse Problems
2023.11.07
조회수 907
예종철 교수, 제10회 KSIAM-금곡학술상 수상
우리 대학 김재철AI대학원 예종철 교수 연구팀이 지난 11월 24일 제주도에서 열린 한국산업응용수학회(KSIAM) 가을정기학술대회에서 제10회 KSIAM-금곡학술상 수상자로 선정됐다. KSIAM-금곡학술상은 연령에 무관하게 연구의 수월성을 기준으로 수학 분야(응용수학 및 계산수학 분야) 및 공학 분야(계산과학공학 분야)에서 탁월한 연구업적을 통해 해당 학문 분야의 진보에 기여한 국내외 한인 연구자에게 수여된다. 예 교수는 인공지능 기반으로 응용수학의 중요한 분야인 역문제(inverse problem)를 푸는 연구를 국제적으로 선도하고, 이러한 인공지능망을 통한 역문제 해석 기법의 수학적 원리를 밝히는 것을 개척해 온 공로로 이 상을 받게 됐다. 여기서 역문제는 센서 등에서 얻어진 측정치에서 신호원을 복원하는 문제로서 의료, 자연과학 및 편미분방정식등 많은 분야에 사용이 되는 중요한 문제다. 이러한 역문제는 측정치가 적거나 잡음이 많은 경우 전통적인 방식으로는 해결되지 않는데, 예종철 교수는 이러한 난제를 데이터 기반 인공지능 기술을 이용해 푸는 것을 개척해왔다. 예종철 교수는 이러한 연구 성과를 `미국 산업응용수학학회 이미징 사이언스 저널(SIAM Journal on Imaging Science)' `미국 산업응용수학학회 응용수학 저널(SIAM Journal on Applied Mathematics)', `네이처 머신 인텔리전스(Nature Machine Intelligence)', `네이처 커뮤니케이션즈(Nature Communications)', `전기전자학회 정보이론 트랜잭션(IEEE Transaction on Information Theory)', `전기전자학회 메디컬이미징 트랜잭션(IEEE Transaction on Medical Imaging)', `의료 이미지 분석(Medical Image Analysis)' 등 역문제 분야 응용수학 및 공학 분야의 최고 권위 학술지에 약 150여편의 논문을 발표하고, 신경정보처리학회(NeurIPS), 국제 컴퓨터 비전 및 패턴인식 학술대회(CVPR), 국제 머신러닝학회(ICML), 유럽컴퓨터비전학회(ECCV) 등 인공지능 분야 일류(top tier) 학술대회에 23편 이상의 논문을 게재하고, 총 논문 인용 횟수 1만 6천 회 이상으로 응용수학 분야의 탁월한 지명도 (H-index 59)를 보이고 있다. 특히 합성곱 신경망(컨볼루션 뉴럴 네트워크)의 구성 원리를 조화해석학 기법으로 밝힌 연구(`Deep Convolutional Framelets: A General Deep Learning Framework for Inverse Problems')는 미국 산업응용수학학회 이미징 사이언스 저널(SIAM Journal on Imaging Sciences)에서 가장 많이 인용된 논문 탑 10에 드는 연구로서 응용수학계에 많은 반향을 일으키고 있다. 예종철 교수는 "인공지능을 이용한 역문제에 대한 이론적인 연구가 수학계에서 인정받아 매우 기쁘고, 금곡학술상을 수상하게 되어 영광이다ˮ 라고 소감을 밝혔다.
2022.11.29
조회수 3339
스스로 진화하는 흉부 엑스선 인공지능 진단기술 개발
우리 대학 김재철AI대학원 예종철 교수 연구팀이 서울대학교 병원, 서울 아산병원, 충남대학교 병원, 영남대학교 병원, 경북대학교 병원과의 공동연구를 통해 결핵, 기흉, 코로나-19 등의 흉부 엑스선 영상을 이용한 폐 질환의 자동 판독 능력을 스스로 향상할 수 있는 자기 진화형 인공지능 기술을 개발했다고 27일 밝혔다. 현재 사용되는 대부분의 의료 인공지능 기법은 지도학습 방식 (Supervised learning)으로서 인공지능 모델을 학습하기 위해서는 전문가에 의한 다량의 라벨이 필수적이나, 실제 임상 현장에서 전문가에 의해 라벨링 된 대규모의 데이터를 지속해서 얻는 것이 비용과 시간이 많이 들어 이러한 문제가 의료 인공지능 발전의 걸림돌이 돼왔다. 이러한 문제를 해결하기 위해, 예종철 교수팀은 병원 현장에서 영상의학과 전문의들이 영상 판독을 학습하는 과정과 유사하게, 자기 학습과 선생-학생 간의 지식전달 기법을 묘사한 지식 증류 기법을 활용한 자기 지도학습 및 자기 훈련 방식(Distillation for self-supervised and self-train learning, 이하 DISTL) 인공지능 알고리즘을 개발했다. 제안하는 인공지능 알고리즘은 적은 수의 라벨데이터만 갖고 초기 모델을 학습시키면 시간이 지남에 따라 축적되는 라벨 없는 데이터 자체만을 가지고 해당 모델이 스스로 성능을 향상해 나갈 수 있는 것을 보였다. 실제 의료 영상 분야에서 전문가들이 판독한 정제된 라벨 획득의 어려움은 영상 양식이나 작업과 관계없이 빈번하게 발생하는 문제점이고, 이러한 영상 전문의의 부족 현상은 저소득 국가들과 개발도상국과 같이 결핵과 같은 다양한 전염성 질환이 많이 발생하는 지역에 많다는 점을 고려할 때, 예 교수팀에서 개발한 인공지능 알고리즘은 해당 지역에서 인공지능 모델을 자기 진화시키는 방식으로 진단 정확도를 향상하는 데 큰 도움을 줄 것으로 기대된다. 예종철 교수는 “지도학습 방식으로 성능을 향상하기 위해서는 전문가 라벨을 지속해서 획득해야 하고, 비 지도학습 방식으로는 성능이 낮다는 문제점을 극복한 DISTL 모델은 영상 전문의들의 인공지능 학습을 위한 레이블 생성 비용과 수고를 줄이면서도 지도학습 성능을 뛰어넘었다는 점에서 의미가 있고, 다양한 영상 양식 및 작업에 활용할 수 있을 것으로 기대된다”라고 말했다. 예종철 교수 연구팀의 박상준 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)'에 7월 4일 자로 게재됐다. 한편 이번 연구는 중견연구자지원사업, 범부처전주기의료기기연구개발사업 및 한국과학기술원 중점연구소 사업등의 지원을 받아 수행됐다. *논문명: Self-evolving vision transformer for chest X-ray diagnosis through knowledge distillation 논문 링크: https://www.nature.com/articles/s41467-022-31514-x
2022.07.27
조회수 3372
새로운 인공지능 형광 현미경 적용, 뇌 신경세포 등 3차원 고화질 영상기술 개발
우리 대학 김재철 AI 대학원 예종철 교수 연구팀이 서울대학교 장성호 교수팀, 포스텍 김기현 교수팀과 공동연구를 통해 형광 현미경의 오랜 문제인 이방성(Anisotropy)을 해결해, 3차원 영상 화질을 획기적으로 끌어올리는 인공지능 기술을 개발했다고 29일 밝혔다. 이방성 문제란 형광 현미경으로 3차원 영상을 획득하는 데 있어 빛의 성질로 인해 영상 공간 방향 간에 적게는 2~3배, 많게는 10배까지도 화질 차이가 발생하는 문제를 뜻한다. 예를 들면 3차원 영상을 보는 각도마다 화질의 차이가 발생하는 것이다. 연구팀은 수학적 기법인 최적 수송이론 기반을 둔 새로운 인공지능 시스템을 개발해 공초점 현미경과 광 시트 현미경에 적용했다. 기존 인공지능 기법들과는 다르게, 인공지능 학습 데이터가 따로 필요하지 않고, 하나의 3차원 영상만으로도 인공지능 학습에 적용할 수 있다는 점에서 획기적이라 볼 수 있으며, 생물학 연구자들에게 생물 표본의 3차원 고화질 영상 획득에 큰 도움을 줄 것으로 기대된다. 예종철 교수는 "3차원 영상 획득에 있어 극복하기 어려웠던 현미경의 물리적 한계를 인공지능 기술을 통해 뛰어넘었다는 점에서 의미가 있고, 비지도 학습 기반으로 훈련이 진행되기 때문에, 다양한 많은 종류의 3차원 영상 촬영 기법에도 확장 적용 가능하며, 또한 인공지능 연구의 새로운 응용을 개척했다는 데 의미가 있다ˮ 고 말했다. 김재철 AI 대학원의 예종철 교수가 주도하고, 박형준 연구원이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)' 6월 8일 字 온라인판에 게재됐다. *논문명 : Deep learning enables reference-free isotropic super-resolution for volumetric fluorescence microscopy 논문 링크: https://www.nature.com/articles/s41467-022-30949-6
2022.06.29
조회수 3973
인공지능으로 3차원 고해상도 나노입자 영상화 기술 개발
우리 대학 바이오및뇌공학과 예종철 교수 연구팀이 삼성전자 종합기술원과 공동연구를 통해 나노입자의 3차원 형상과 조성 분포의 복원 성능을 획기적으로 향상한 인공지능 기술을 개발했다고 16일 밝혔다. 공동연구팀은 에너지 분산형 X선 분광법(EDX)을 주사 투과전자현미경(STEM)과 결합한 시스템을 활용했다. 이번 연구를 통해 나노입자를 형성하고 있는 물질의 형상과 조성 분포를 정확하게 재구성함으로써, 실제 상용 디스플레이를 구성하는 양자점(퀀텀닷)과 같은 반도체 입자의 정확한 분석에 도움을 줄 것으로 기대된다. 예종철 교수 연구팀의 한요섭 박사, 차은주 박사과정, 정형진 석사과정과 삼성종합기술원의 이은하 전문연구원팀의 장재덕, 이준호 전문연구원이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 머신 인텔리전스(Nature Machine Intelligence)' 2월 8일 字 온라인판에 게재됐다. (논문명 : Deep learning STEM-EDX tomography of nanocrystals) 에너지 분산형 X선 분광법(이하 EDX)은 나노입자의 성분 분석에 주로 이용되며, X선과 반응한 물체의 성분에 따라 고유한 방출 스펙트럼을 보인다는 점에서 화학적인 분석이 가능하다. 퀀텀닷 및 배터리 등 다양한 나노 소재의 열화 메커니즘과 결함을 해석하기 위해 형상 및 조성 분포 분석이 가능한 이 분광법의 필요성과 중요도가 급증하고 있다. 그러나 EDX 측정 신호의 해상도를 향상하기 위해, 나노 소재를 오랜 시간 전자빔에 노출하면 소재의 영구적인 피해가 발생한다. 이로 인해 나노입자의 3차원 영상화를 위한 투사(projection) 데이터 획득 시간이 제한되며, 한 각도에서의 스캔 시간을 단축하거나 측정하는 각도를 줄이는 방식이 사용된다. 기존의 방식으로 획득된 투사 데이터를 이용해 3차원 영상을 복원할 시, 미량 존재하는 원자 신호의 측정이 불가능하거나 복원 영상의 정밀도와 해상도가 매우 낮다. 그러나 공동 연구팀이 자체 개발한 인공지능 기반의 커널 회귀(kernel regression)와 투사 데이터 향상(projection enhancement)은 정밀도와 해상도를 획기적으로 발전시켰다. 연구팀은 측정된 데이터의 분포를 네트워크가 스스로 학습하는 인공지능 기반의 커널 회귀를 통해 스캔 시간이 단축된 투사 데이터의 신호 대 잡음비(SNR)를 높인 데이터를 제공하는 네트워크를 개발했다. 그리고 개선된 고화질의 EDX 투사 데이터를 기반으로 기존의 방법으로는 불가능했던 적은 수의 투사 데이터로부터 더욱 정확한 3차원 복원 영상을 제공하는 데 성공했다. 연구팀이 개발한 알고리즘은 기존의 EDX 측정 신호 기반 3차원 재구성 기법과 비교해 나노입자를 형성하고 있는 원자의 형상과 경계를 뚜렷하게 구별했으며, 복원된 다양한 코어-쉘(core-shell) 구조의 퀀텀닷 3차원 영상이 샘플의 광학적 특성과 높은 상관관계를 나타내는 것이 확인됐다. 예종철 교수는 "연구에서 개발한 인공지능 기술을 통해 상용 디스플레이의 핵심 기반이 되는 퀀텀닷 및 반도체 소자의 양자 효율과 화학적 안정성을 더욱 정밀하게 분석할 수 있다ˮ고 말했다.
2021.02.16
조회수 78383
정확성이 획기적으로 향상된 코로나19 영상 진단 기술 개발
우리 대학 바이오및뇌공학과 예종철 교수 연구팀이 흉부 단순 방사선 촬영 영상으로 신종 코로나바이러스 감염증(이하 코로나19) 진단의 정확성을 획기적으로 개선한 인공지능(AI) 기술을 개발했다. 예 교수 연구팀이 개발한 인공지능 기술을 사용해 코로나19 감염 여부를 진단한 결과, 영상 판독 전문가의 69%보다 17%가 향상된 86%이상의 우수한 정확성을 보였다고 KAIST 관계자는 설명했다. 이 기술을 세계적으로 대유행하는 코로나19 선별 진료(Triage)체계에 도입하면 상시 신속한 진단이 가능할 뿐만 아니라 한정된 의료 자원의 효율적인 사용에 큰 도움을 줄 것으로 기대된다. 오유진 박사과정과 박상준 박사과정이 공동 1저자로 참여한 이 연구 결과는 국제 학술지 `아이트리플이 트랜잭션 온 메디컬 이미징(IEEE transactions on medical imaging)'의 `영상기반 코로나19 진단 인공지능기술' 특집호 5월 8일 字 온라인판에 게재됐다. (논문명 : Deep Learning COVID-19 Features on CXR using Limited Training Data Sets) 현재 전 세계적으로 확진자 500만 명을 넘긴 코로나19 진단검사에는 통상 역전사 중합 효소 연쇄 반응(RT-PCR, Reverse Transcription Polymerase Chain Reaction)을 이용한 장비가 사용된다. RT-PCR 검사의 정확성은 90% 이상으로 알려져 있으나, 검사 결과가 나오기까지는 많은 시간이 걸리며 모든 환자에게 시행하기에 비용이 많이 든다는 단점이 있다. 컴퓨터 단층촬영(CT, Computed Tomography)을 이용한 검사도 비교적 높은 정확성을 보이지만 일반적인 X선 단순촬영 검사에 비해 많은 시간이 소요되고 바이러스에 의한 장비의 오염 가능성 때문에 선별 진료에 사용되기 어렵다. 흉부 단순 방사선 촬영(CXR, Chest X-ray)은 여러 폐 질환에서 표준 선별 검사로 활용되고 있지만 코로나19에는 RT-PCR와 CT 검사에 비해 정확성이 현저하게 떨어진다. 그러나, 최근 팬데믹으로 세계 각국에서 확진자 수가 급증함에 따라 비용이 적게 들어가고 검사방법이 용이한 CXR 검사를 정확성을 높여 활용하자는 요구가 증가하고 있다. 그동안 심층 학습(Deep Learning) 기법을 적용해 CXR 영상을 통해 코로나19를 진단하는 여러 연구사례가 보고되고 있지만 진단 정확성을 높이기 위해서는 많은 양의 데이터 확보가 필수적이며 현재와 같은 비상 상황에서는 일관되게 정제된 대량의 데이터를 수집하기가 극히 어렵다. 예 교수 연구팀은 자체 개발한 전처리(Preprocessing)와 국소 패치 기반 방식(Local Patch-based Approach)을 통해 이런 문제점을 해결했다. 적은 데이터 세트에서 발생할 수 있는 영상 간 이질성(Heterogeneity)을 일관된 전처리 과정으로 정규화한 뒤, 국소 패치 기반 방식으로 하나의 영상에서 다양한 패치 영상들을 얻어냄으로써 이미지의 다양성을 확보했다. 또 국소 패치 기반 방식의 장점을 활용한 새로운 인공지능 기술인 `확률적 특징 지도 시각화(Probabilistic Saliency Map Visualization)' 방식을 활용해 CXR 영상에서 코로나19 진단에 중요한 부분을 고화질로 강조해주는 특징 지도를 만들었는데 이 지도가 진단 영상학적 특징과 일치하는 것을 확인했다. 예종철 교수는 "인공지능 알고리즘 기술을 환자의 선별 진료에 활용하면 코로나19 감염 여부를 상시 신속하게 진단할 수 있고 이를 통해 가능성이 낮은 환자를 배제함으로써 한정된 의료 자원을 보다 우선순위가 높은 대상에게 효율적으로 배분할 수 있게 해줄 것ˮ 이라고 말했다. 한편, 이 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
2020.05.25
조회수 11378
예종철 교수, IEEE 의용생체공학회 특훈강연교수 임명
우리 대학 바이오및뇌공학과 예종철 교수가 국제전기전자공학회 산하 의용생체공학회(IEEE Engineering in Medicine and Biology Society :IEEE EMBS)의 특훈강연교수(Distinguished Lecturer: DL)로 임명됐다. 이번 특훈강연교수는 국제전기전자공학회 산하 의용생체공학회가 선정하는 것으로, 학회 내 큰 포상 중 하나이다. 예 교수는 2020년부터 2년간 특훈강연교수로 활동한다. 예종철 교수는 의료영상복원 분야의 인공지능 기술 관련 선도적인 연구를 인정받아 특훈강연교수에 임명됐다. 예 교수는 국제전기전자공학회 산하 의용생체공회를 대표해 해당 주제 관련 초청 강의를 진행할 예정이다. 국제전기전자공학회 산하 의용생체공학회 특훈강연교수 프로그램이란 의용생체공학 분야 발전의 추세와 최첨단 기술을 전 세계 의용생체공학 연구자와 학회 회원을 대상으로 교육하기 위한 프로그램으로, 국제전자공학회의 후원으로 회원들이 해당 특훈강연교수의 연구주제에 대한 초청 강의를 들을 수 있다. 예 교수는 “의료영상에서 인공지능의 중요성이 증가하는 시점에서 이 분야의 공헌을 국제적으로 인정받아 국제전기전자공학회 산하 의용생체공학회에서 특훈강연교수가 되었다는 점에서 자부심을 느낀다”라고 밝혔다.
2020.02.18
조회수 5848
재촬영 없이 MRI 강조영상 얻는 AI 기술 개발
우리 대학 바이오및뇌공학과 예종철 교수 연구팀 자기공명영상(magnetic resonance imaging: MRI)에서 재촬영 없이도 누락된 강조영상을 얻을 수 있는 인공지능 기술을 개발했다. 이 연구를 통해 각 질환별로 강조영상이 암의 진단에 미치는 영향을 객관적으로 밝힐 수 있으며, 실제 임상에서 고비용의 MRI를 효과적이고 체계적으로 활용할 수 있는 방안을 설계할 수 있을 것으로 기대된다. 이동욱 박사가 1 저자로 참여하고 건국대 의과대학 영상의학과 문원진 교수팀이 참여한 이번 연구 결과는 국제 학술지 ‘네이처 머신인테리젼스(Nature Machine Intelligence)’ 1월 18일 자 온라인판에 게재됐다. (논문명 : Assessing the importance of magnetic resonance contrasts using collaborative generative adversarial networks). MRI는 엑스선 컴퓨터 단층촬영, 초음파와 더불어 임상 진단에서 중요한 역할을 하는 진단 장비이다. 특히 비침습적 방법으로 고해상도의 영상을 얻기 때문에 종양이나 병변을 관찰하며 진단하는데 매우 중요한 임상 정보를 제공한다. 이는 영상의 대조도 (contrast)를 다양하게 조절할 수 있는 MRI의 특징 덕분이다. 예를 들어 뇌종양을 진단하는 데 활용되는 T1·T2 강조영상, FLAIR 기법 영상, T1 조영증강 영상 등 여러 가지 대조 영상을 얻어 진단에 사용함으로써 종양을 찾을 수 있다. 하지만 실제 임상 환경에서는 강조영상을 모두 얻기 어려운 경우가 많다. 여러 장의 강조영상 촬영을 위해 촬영시간이 길어지기도 하고, 잡음이나 인공음영 발생으로 인해 진단에 사용하기 어려운 경우가 많기 때문이다. 또한, 뇌질환진단을 위한 MRI 검사는 의심 질환이 무엇인지에 따라 필수 강조영상이 달라지며, 이후 특정 질환으로 진단명이 좁혀지면서 부득이하게 누락된 강조영상을 확보하기 위한 재촬영이 필요한 경우가 많다. 이러한 상황에 의해 많은 시간과 비용이 소모된다. 최근 인공지능 분야에서 생성적 적대 신경망(Generative adversarial networks, GAN)이라는 딥러닝을 이용해 영상을 합성하는 기술이 많이 보고되고 있지만, 이 기술을 MRI 강조영상 합성에 사용하면 준비하고 미리 학습해야 하는 네트워크가 너무 많아지게 된다. 또한, 이러한 기법은 하나의 영상에서 다른 영상으로의 관계를 학습하기 때문에 몇 개의 강조영상의 존재하더라도 이 정보 간의 시너지를 활용하는 영상 학습기법이 없는 현실이다. 예 교수 연구팀은 자체 개발한 ‘협조·생성적 적대신경망(Collaborative Generative Adversarial Network : CollaGAN)’이라는 기술을 이용해 여러 MRI 강조영상의 공통 특징 공간을 학습함으로써 확장성의 문제를 해결했다. 이를 통해 어떤 대조 영상의 생성이 가능한지와 불가능한지에 대한 질문과, 그에 대한 체계적인 대답 기법을 제안했다. 즉, 여러 개의 강조영상 중에서 임의의 순서 및 개수로 영상이 없어져도 남아있는 영상을 통해 사라진 영상을 복원하는 기법을 학습한 후 합성된 영상의 임상적 정확도를 평가해, 강조 영상 간 중요도를 자동으로 평가할 수 있는 원천 기술을 개발했다. 예 교수 연구팀은 건국대 문원진 교수 연구팀과의 협력을 통해 T1강조·T2강조 영상과 같이 내인성 강조영상은 다른 영상으로부터 정확한 합성이 가능하며, 합성된 강조영상이 실제 영상과 매우 유사하게 임상 정보를 표현하고 있다는 것을 확인했다. 연구팀은 확보한 합성 영상이 뇌종양 분할기법을 통해 뇌종양 범위를 파악하는데 유용한 정보를 제공한다는 것을 확인했다. 또한, 현재 많이 사용되는 합성 MRI 기법(synthetic MRI)에서 생기는 인공음영 영상도 자동 제거가 가능함이 증명됐다. 이 기술을 이용하면 추가적인 재촬영을 하지 않고도 필요한 대조 영상을 생성해 시간과 비용을 비약적으로 줄일 수 있을 것으로 기대된다. 건국대 영상의학과 문원진 교수는 “연구에서 개발한 방법을 이용해 인공지능을 통한 합성 영상을 임상현장에서 이용하면 재촬영으로 인한 환자의 불편을 최소화하고 진단정확도를 높여 전체의료비용 절감 효과를 가져올 것이다”라고 말했다. 예종철 교수는 “인공지능이 진단과 영상처리에 사용되는 현재의 응용 범위를 넘어서, 진단의 중요도를 선택하고 진단 규약을 계획하는 데 중요한 역할을 할 수 있는 것을 보여준 독창적인 연구이다”라고 말했다. 이 연구는 한국연구재단의 중견연구자지원사업을 받아 수행됐다. □ 그림 설명 그림1. CollaGAN의 작동 원리의 예
2020.01.30
조회수 9128
예종철 교수, 국제전기전자학회 석학회원 선임
우리 대학 바이오및뇌공학과 예종철 교수가 국제전기전자학회(IEEE) 석학회원(Fellow)에 선임됐다. 국제전기전자학회(IEEE)는 지난 1일 학회 홈페이지를 통해 바이오 의료영상 분야 신호처리와 인공지능 기술에 대한 공로를 인정해 국제전기전자학회 신호처리 소사이어티(IEEE Signal Processing Society)의 추천을 받아 예종철 교수를 석학회원에 선임했다고 밝혔다. 전기 전자 분야 세계 최대 학회인 국제전기전자학회는 연구 업적이 특히 뛰어난 최상위 0.1% 내 회원을 석학회원으로 선정한다. 예종철 교수는 국제전기전자학회 산하 학술지를 포함한 의료영상 분야의 세계적 학술지에 100여 편의 국제 논문을 발표했고, 국제자기공명의과학회(ISMRM:International Society for Magnetic Resonance Imaging) 연례 학회에서 의료 인공지능에 관한 기조 강연을 하는 등 이 분야에서 세계적인 실력자로 권위를 인정받고 있다. 특히 2004년 부임한 이후 독자적으로 연구한 결과들을 국제적으로 인정받아 석학회원에 선임됨으로써 그 의미를 더했다. 예 교수는 이밖에 국제전기전자학회 신호처리 소사이어티의 계산영상학(Computational Imaging) 기술위원회에서 차기 의장으로, 미국 아이오와주에서 개최되는 2020년 국제전기전자학회 의료영상심포지움(IEEE Symposium on Biomedical Imaging: ISBI) 의장으로 각각 임명되는 등 영상 분야의 세계적인 학회를 이끌어 가고 있다. 예 교수는 “의료영상에서 인공지능의 중요성이 나날이 커지고 있는 상황에서 이 분야의 공헌을 국제적으로 인정받아 석학회원이 되었다는 점에서 자부심을 느낀다”라고 말했다.
2019.12.10
조회수 6555
예종철 교수, 국제 응용 역문제 학회 기조강연
〈 예종철 교수 〉 우리 대학 바이오및뇌공학과 예종철 교수가 응용 수학분야 대표 학회 중 하나인 국제 응용 역문제 학회(Applied Inverse Problems Conference)에서 기조연설자로 선정돼 강연을 진행했다. 예 교수는 7월 11일 프랑스 그랑노블에서 열린 제10회 AIP 학회에서 세계 각국의 응용수학자 8백여 명을 대상으로 ‘역문제를 위한 인공지능 네트워크의 기하학적인 구조의 이해(Understanding Geometry of Encoder-Decoder CNN for Inverse Problems)’라는 주제로 영상처리 및 역문제에 사용되는 인공지능기술의 현황을 소개하고, 예 교수가 개척해 온 인공지능망의 기하학적인 구조에 대한 최신 이론을 발표했다. 예 교수는 의료 영상 복원 등 다양한 역문제에 적용되는 인공지능 기술을 개척하고, 이것이 동작하는 원리에 대한 기하학적인 구조를 밝히는 등 역문제 분야 인공지능 기술을 주도하는 점을 인정받아 이번 기조연설자로 선정됐다. 예 교수는 기조연설을 통해 “인공지능기술은 블랙박스가 아니라 조합적인 표현되는 최적화된 기저함수로서 이해할 수 있으며, 인공지능은 기존의 조화분석론(harmonic analysis)의 지평을 확대할 수 있는 새로운 수학 분야로 떠오르고 있다”라고 말했다. 또한 “인공지능은 기존의 질병 진단을 뛰어넘어 의사들의 진료를 더 정확하게 도우며 환자의 편의를 극대화할 수 있는 고화질, 저선량, 고속 촬영 기술을 가능하게 한 핵심기술로 떠오르고 있으므로 많은 연구가 필요하다”라고 인공지능 기술이 나아가야 할 미래방향을 제시했다.
2019.07.25
조회수 7600
예종철 교수, 국제자기공명의과학회(ISMRM)에서 기조강연
〈 예종철 교수 〉 우리 대학 바이오및뇌공학과 예종철 교수가 5월 14일 캐나다 몬트리올에서 열린 제27회 ‘국제자기공명의과학회(ISMRM, International Society for Magnetic Resoance in Medicine) 연차 총회에서 기조 강연을 했다. ’의료인공지능(Machine Learning for Medical Imaging)‘을 주제로 강연을 한 예종철 교수는 인공지능을 이용한 고속 MRI 획득 및 복원 기술의 연구를 소개하고, 인공지능 블랙박스를 해석하기 위한 수학적 이론을 발표했다. ISMRM 연차 총회는 전 세계 수 천명의 과학자와 의사들이 참여하는 자기공명영상(MRI) 분야 최대 학회이다. 예 교수는 방사선학 분야 대표 언론 AuntMinnie.com과 총회 이후 진행된 인터뷰를 통해 “인공지능이 단지 진단의 영역을 넘어 기존에 불가능했던 고화질의 영상을 만들어 의사들의 진단을 더욱 정확하게 하는 새 방향으로 급격히 발전하고 있다”라고 말했다.
2019.05.22
조회수 6188
예종철 교수, 인공지능 블랙박스의 원리 밝혀
〈 예종철 교수, 한요섭 연구원, 차은주 연구원 〉 우리 대학 바이오및뇌공학과 예종철 석좌교수 연구팀이 인공지능의 기하학적인 구조를 규명하고 이를 통해 의료영상 및 정밀분야에 활용 가능한 고성능 인공신경망 제작의 수학적인 원리를 밝혔다. 연구팀의 ‘심층 합성곱 프레임렛(Deep Convolutional Framelets)’이라는 새로운 조화분석학적 기술은 인공지능의 블랙박스로 알려진 심층 신경망의 수학적 원리를 밝혀 기존 심층 신경망 구조의 단점을 보완하고 이를 다양하게 응용 가능할 것으로 기대된다. 예종철 석좌교수가 주도하고 한요섭, 차은주 박사과정이 참여한 이번 연구는 응용수학 분야 국제 학술지 ‘사이암 저널 온 이매징 사이언스(SIAM Journal on Imaging Sciences)’ 4월 26일자 온라인 판에 게재됐다. 심층신경망은 최근 폭발적으로 성장하는 인공지능의 핵심을 이루는 딥 러닝의 대표적인 구현 방법이다. 이를 이용한 영상, 음성 인식 및 영상처리 기법, 바둑, 체스 등은 이미 사람의 능력을 뛰어넘고 있으며 현재 4차 산업혁명의 핵심기술로 알려져 있다. 그러나 이러한 심층신경망은 그 뛰어난 성능에도 불구하고 정확한 동작원리가 밝혀지지 않아 예상하지 못한 결과가 나오거나 오류가 발생하는 문제가 있다. 이로 인해 ‘설명 가능한 인공지능(explainable AI: XAI)’에 대한 사회적, 기술적 요구가 커지고 있다. 연구팀은 심층신경망의 구조가 얻어지는 고차원 공간에서의 기하학적 구조를 찾기 위해 노력했다. 그 결과 기존의 신호처리 분야에서 집중 연구된 고차원 구조인 행켈구조 행렬(Hankel matrix)을 기저함수로 분해하는 과정에서 심층신경망 구조가 나오는 것을 발견했다. 행켈 행렬이 분해되는 과정에서 기저함수는 국지기저함수(local basis)와 광역기저함수(non-local basis)로 나눠진다. 연구팀은 광역기저함수와 국지기저함수가 각각 인공지능의 풀링(pooling)과 필터링(filtering) 역할을 한다는 것을 밝혔다. 기존에는 인공지능을 구현하기 위한 심층신경망을 구성할 때 구체적인 작동 원리를 모른 채 실험적으로 구현했다면, 연구팀은 신호를 효과적으로 나타내는 고차원 공간인 행켈 행렬를 찾고 이를 분리하는 방식을 통해 필터링, 풀링 구조를 얻는 이론적인 구조를 제시한 것이다. 이러한 성질을 이용하면 입력신호의 복잡성에 따라 기저함수의 개수와 심층신경망의 깊이를 정해 원하는 심층신경망의 구조를 제시할 수 있다. 연구팀은 수학적 원리를 통해 제안된 인공신경망 구조를 영상잡음제거, 영상 화소복원 및 의료영상 복원 문제에 적용했고 매우 우수한 성능을 보임을 확인했다. 예종철 교수는 “시행착오를 반복해 설계하는 기존의 심층신경망과는 달리 원하는 응용에 따라 최적화된 심층신경망구조를 수학적 원리로 디자인하고 그 영향을 예측할 수 있다”며 “이 결과를 통해 의료 영상 등 설명 가능한 인공지능이 필요한 다양한 분야에 응용될 수 있다”고 말했다. 이번 연구는 과학기술정보통신부의 중견연구자지원사업(도약연구) 및 뇌과학원천기술사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 수학적인 원리를 이용한 심층신경망의 설계 예시 그림2. 영상잡음제거 결과 그림3. 영상에서 80% 화소가 사라진 경우 인공신경망을 통해 복원한 결과
2018.05.10
조회수 14192
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2