본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%B0%95%EC%84%B1%ED%99%8D
최신순
조회순
박성홍 교수팀, RSNA/MICCAI/ASNR 3개 국제학회 공동주관 Brain Tumor Segmentation Challenge 1등상 수상
우리 대학 바이오및뇌공학과 박성홍 교수 연구실(연구실명: 자기공명영상 연구실, Magnetic Resonance Imaging Laboratory)에서 전세계 Brain Tumor Segmentation Challenge에서 1등상을 수상했다고 12월 3일 밝혔다. Brain Tumor Segmentation Challenge(BRATS)는 Multi-modal MRI data를 기반으로 Brain Tumor를 가장 정확히 구획화(Segmentation)하는 딥러닝 네트워크 개발을 놓고 매년 전세계적으로 경쟁하는 대회로서 올해로 10회째를 맞고 있다. 올해 BRATS 대회는 전세계적으로 가장 큰 규모의 학회 중 하나인 RSNA(Radiological Society of North America), 그리고 MICCAI(Medical Image Computing and Computer Assisted Intervention) 및 ASNR(American Society of Neuroradiology) 3개의 학회가 파트너로 개최하였다. 지난 7월 대회가 시작되었고 8월 1차 버전의 딥러닝 네트워크 제출, 9월 선별된 네트워크들에 대한 MICCAI 학회 초록 발표, 10월 최종 딥러닝 네트워크 제출, 11월 RSNA 학회에서 수상자 발표의 순으로 진행되었다. 올해는 Brain Tumor AI Challenge라는 이름으로 두 개의 Category(Brain Tumor Segmentation, Brain Tumor Radiogenomic Classification)로 나뉘어서 병렬로 진행되었다. 올해 Brain Tumor Segmentation 분야에는 3개월 동안 전세계에서 2,200개 이상의 팀이 30,000건 이상의 제출물과 함께 대회에 참가하였다. Nvidia(2018년 대회 우승자)와 같이 해당 분야의 선두 기업에서도 많이 참가했다. Brain Tumor Segmentation 분야에서 1등상 수상자는 박성홍 교수 연구실의 후안 민 루(Huan Minh Luu) 박사과정 학생으로 Brain Tumor Segmentation의 performance를 개선하는 U-net 기반 딥러닝 네트워크를 개발하였다. 구체적으로, 더 큰 훈련 데이터에서 효과적으로 학습하기 위해 nnUNet(no-new UNet)부터 네트워크 크기를 늘리고 배치 정규화를 그룹 정규화로 바꾸는 수정이 추가되었다. 여러 모델이 다른 설정으로 훈련되었고 최종 앙상블은 테스트 데이터에 대한 평가를 위해 주최자에게 제출됐다. 이 간단한 접근 방식은 어텐션 또는 트랜스포머 아키텍처를 사용하는 다른 복잡한 방법보다 성능이 우수하여 효과적인 것으로 입증됐다. 주최 측에 따르면 Luu의 제출물은 다른 경쟁자들의 제출물에 비해 통계적으로 훨씬 우수했음이 확인됐다. 1등상 수상팀에게는 상금 미화 $6000불(한화 7백만원 상당)이 수여되며, 시상식은 11월 29일 RSNA 학회에서 진행됐다. Brain Tumor Segmentation (BRATS) Challenge 소개 매년 전세계적으로 Multimodal MRI 영상기반 Brain Tumor를 정확하게 구획화하는 딥러닝 네트워크를 개발하는 대회로서 올해는 RSNA/MICCAI/ASNR 3개의 국제학회에서 공동으로 주관하여 Brain Tumor AI Challenge라는 이름으로 두 개의 category(Brain Tumor segmentation, Brain Tumor Radiogenomic Classfication)로 나누어서 병렬로 진행하였다. 자세한 내용은 아래 대회 홈페이지를 통해 확인할 수 있다. https://www.rsna.org/education/ai-resources-and-training/ai-image-challenge/brain-tumor-ai-challenge-2021
2021.12.06
조회수 8371
딥러닝 통해 MRI 다중 대조도 영상 복원 기법 개발
바이오및뇌공학과 박성홍 교수 연구팀이 자기공명영상장치(MRI)의 다중 대조도 영상을 복원하기 위한 새로운 딥러닝 네트워크를 개발했다. 이번 연구를 통해 병원에서 반복적으로 획득하는 다중 대조도 MRI 영상을 얻는 시간이 크게 줄어 편의성 증대, 촬영비용 절감 등의 효과를 볼 것으로 기대된다. 도원준 박사가 1 저자로, 서성훈 박사과정이 공동 1 저자로 참여한 이번 연구는 우수성을 인정받아 국제 학술지 ‘메디컬 피직스 (Medical Physics)’ 2020년 3월호 표지 논문으로 게재됐다. 일반적으로 임상적 환경에서 MRI 촬영은 정확한 진단을 위해 두 개 이상의 대조도로 진행돼 촬영시간이 길어진다. 이에 따라 MRI 촬영비용도 비싸지며 환자들의 불편함을 유발하고, 영상의 품질 역시 환자의 움직임 등으로 인해 낮아질 수 있다. 문제 해결을 보완하기 위해 박 교수 연구팀은 다중 대조도 획득의 특징을 활용한 새로운 딥러닝 기법을 개발해 기존 방식보다 데이터를 적게 수집하는 방식으로 MRI 영상획득 시간을 크게 단축했다. MRI 영상에서 데이터를 적게 수집하는 것은 영상의 주파수 영역에서 이뤄지며, 일반적으로 위상 인코딩의 개수를 줄이는 것으로 영상획득 시간을 감소시키는 것을 뜻한다. 영상획득 시간은 줄어든 인코딩 개수의 비율만큼 줄어들게 되며, 이번 연구에서는 촬영시간을 최대 8배까지 줄여 영상을 복원했다. 연구팀은 임상에서 정확한 진단을 위해 MRI 영상을 다중 대조도로 얻는다는 점을 활용해 복원의 효율을 높였으며, 실제로 데이터를 얻을 당시의 전략을 고려해 네트워크들을 따로 개발했다. 구체적으로 ▲다중 대조도 전체 프로토콜의 촬영시간을 모두 줄이는 네트워크(X-net)와 ▲하나의 프로토콜은 전체 인코딩 데이터를 획득하고 나머지 프로토콜들은 촬영시간을 크게 줄이는 네트워크(Y-net)를 따로 개발해 MRI 다중 대조도 영상을 촬영하는 목적에 맞춰 다르게 최적화했다. 박성홍 교수는 “병원에서 반복적으로 시행하는 다중 대조도 MRI 촬영의 특성을 잘 살려서 성능을 극대화한 딥러닝 네트워크의 개발에 의의가 있다”라며, “병원에서 환자의 MRI 촬영시간을 줄이는 데 도움을 줄 것으로 기대한다”라고 말했다. 서울대학교병원 최승홍 교수와 공동연구로 진행한 이번 연구는 한국연구재단과 한국보건산업진흥원의 지원을 받아 수행됐다.
2020.03.27
조회수 14634
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1