본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EA%B9%80%ED%9D%AC%ED%83%81
최신순
조회순
KAIST-LG에너지솔루션, 리튬금속전지 기술 혁신
리튬금속전지는 전기차의 주행거리를 크게 높일 수 있다는 것이 특징을 가지고 있다. 하지만, 리튬금속은 전지의 수명과 안정성 확보를 어렵게 하는 `덴드라이트(Dendrite)' 형성과 액체 전해액에 의한 지속적인 부식(Corrosion)이 발생하여 기술적 해결이 필요하다. 우리 대학 생명화학공학과 김희탁 교수와 LG에너지솔루션 공동연구팀이 차세대 전지로 주목받고 있는 `리튬금속전지(Lithium metal battery)'의 성능을 획기적으로 늘릴 수 있는 원천기술을 개발했다고 7일 밝혔다. 공동연구팀은 1회 충전에 900km 주행, 400회 이상 재충전이 가능한 리튬금속전지 연구 결과를 공개했다. 기존 리튬이온전지(Lithium-ion battery)의 주행거리인 약 600km보다 50% 높은 수준이다. 공동연구팀은 리튬금속전지의 구현을 위해 기존에 보고되지 않은 `붕산염-피란(borate-pyran) 기반 액체 전해액'을 세계 최초로 적용, 리튬금속 음극의 기술적 난제를 해결하고 그 근본원리를 규명했다. 붕산염-피란 전해액은 리튬금속 음극 표면에 형성된 수 나노미터 두께의 고체 전해질 층(Solid Electrolyte Interphase, SEI)를 치밀한 구조로 재구성함으로써 전해액과 리튬 간의 부식 반응을 차단한다. 이 `고체 전해질 층 재구성(SEI restructuring)' 기술은 덴드라이트와 부식 문제를 동시에 해결해 리튬금속 음극의 충전-방전 효율을 향상하는 것은 물론, 기존보다 배터리 음극재와 전해액의 무게를 크게 줄일 수 있어 에너지 밀도(Energy Density)를 높일 수 있는 특징이 있다. 특히 이번 연구에서 구현된 리튬금속전지는 구동 시 높은 온도와 압력이 요구되지 않아, 전기차의 주행거리를 높이기 위한 간소화된 전지 시스템 설계가 가능하다. 생명화학공학과 김희탁 교수는 "이번 연구는 지금까지 실현 불가능하다고 여겨진 액체 전해액을 기반으로 하는 리튬금속전지의 구현 가능성을 가시화한 연구ˮ 라고 말했다. 논문의 제1 저자인 권혁진 박사과정은 "리튬금속음극 계면의 나노스케일 제어를 통해 리튬금속전지의 한계를 극복할 수 있음을 보였다ˮ라고 연구의 의미를 강조했다. 이 연구결과는 세계적인 학술지 `네이처 에너지(Nature Energy)'에 11월 23일자 온라인 게재했다. ※ 네이처 에너지(Nature Energy) : 2023년 Clarivate Analytics가 발표한 Journal impact factor에서 에너지 분야 157개 학술지 중 1위, 총 2만 1천여 개 학술지 중 23위를 기록 ※ 논문명 : Borate–pyran lean electrolyte-based Li-metal batteries with minimal Li corrosion 이번 연구 성과는 카이스트와 LG에너지솔루션이 차세대 리튬금속전지 기술 개발을 위해 2021년 설립한 프론티어 연구소(Frontier Research Laboratory, FRL, 연구소장 김희탁 교수)를 통해 이뤄진 것이다. 이처럼 대학과 기업이 힘을 모아 배터리 기술의 혁신을 이뤄내고 있다.
2023.12.07
조회수 3818
그린수소 저가 생산 실마리 풀어
탄소중립의 필요성이 대두됨에 따라 수소를 에너지 캐리어로 활용하는 수소 에너지 사회로의 변화가 선택이 아닌 필수가 되어가고 있다. 이를 위해 수소를 생산하는 다양한 기술들이 제시되고 있으며, 수소 생산시 이산화탄소 배출이 전혀 없는 수소를 ‘그린수소 기술’이라고 한다. 그 중, 물을 전기분해하여 수소와 산소를 생성하는 수전해 기술이 변동성이 높은 재생에너지 기반 전력 시스템에 우수한 안정성을 가져, 앞으로 급증할 그린 수소의 수요를 책임질 차세대 시스템으로 주목받고 있다. 우리 대학 생명화학공학과 김희탁 교수 연구팀이 얇은 고분자 막을 분리막으로 사용하는 고분자전해질 수전해 시스템에서 양극 귀금속 촉매 함량을 낮췄을 때 발생하는 성능 악화 현상을 규명해 그린 수소 생산기술 저가화에 대한 실마리를 찾았다고 22일 밝혔다. 생명화학공학과 두기수 박사가 제1 저자로 참여한 이번 연구 결과는 국제학술지 `ACS 에너지 레터스(ACS Energy Letters)' 5월 12일 자 온라인판 표지논문으로 게재됐다. (논문명: Contact Problems of IrOx Anodes in Polymer Electrolyte Membrane Water Electrolysis) 양이온 전도성 고분자전해질 수전해는 물을 전기분해하여 수소 기체를 발생시키는 친환경 수소생산 장치로 기존의 알칼리성 수전해 대비 높은 성능과 높은 수소생산 순도를 강점으로 지닌다. 이 수전해 시스템은 산성 환경에서 작동하며 효율적인 물의 분해를 위해 귀금속 기반의 촉매를 사용한다. 하지만 백금, 이리듐 등의 귀금속 소재들은 수급 부족과 높은 가격 문제를 수반한다. 특히, 이리듐 기반 촉매는 양극 반응에 가장 적합하지만 매장량이 적어 현재보다 십 분의 일 수준의 촉매가 요구되는 고분자전해질 수전해 장치를 개발할 필요가 있다. 하지만 이리듐 촉매 함량을 줄일 때 발생하는 급격한 성능 저하 현상이 고분자전해질 수전해 저가화의 발목을 잡고 있다. 이러한 문제해결을 위한 대부분의 연구는 이리듐을 대체하는 새로운 촉매의 발굴에 주력하고 있다. 수전해 시스템에 사용하는 전극은 이리듐 촉매와 바인더로 구성된 촉매층과 티타늄 확산층 결합된 구조를 가지고 있다. 김희탁 교수 연구팀은 고분자전해질 수전해의 양극 내 이리듐 촉매 함량을 낮췄을 때 발생하는 성능 저하 문제가 촉매층과 확산층 계면에서 바인더의 함량이 증가하기 때문이라는 새로운 시각을 제시하고 이를 규명했다. 이리듐 촉매와 티타늄 확산층이 접촉하면, 티타늄 표면에 존재하는 자연 산화막의 전자띠가 굽는 띠굽음(band bending) 현상이 일어난다. 연구팀의 결과에 따르면 낮은 이리듐 함량의 전극에서는 이 띠굽음 현상이 바인더에 의해 증폭된다. 전자띠가 굽을수록 전자전달이 더욱 어려워지므로 성능 저하가 발생하게 되는 것이다. 연구팀은 띠굽음 현상이 완화된 계면을 설계하는 경우, 이리듐 함량을 1/10 수준으로 저감시켜도 동일한 수전해 성능을 얻을 수 있음을 확인하였다. 이는 전극계면의 조성을 변화시킴으로써 비싼 귀금속 촉매 사용량을 획기적으로 저감 가능하다는 것을 증명했다. 김희탁 교수는 "이번 연구결과는 그동안 베일에 싸여있던 이리듐 저감형 수전해 전극의 성능 문제를 짚어 그 이유를 규명하고 해결 전략을 제공했다는 점에서 중요한 의미가 있다ˮ라고 말하면서, "이를 바탕으로 효율과 가격을 동시에 잡을 수 있는 그린 수소 생산 시스템의 개발에 응용되기를 기대한다ˮ고 말했다. 한편 이번 연구는 산업통상지원부 에너지기술개발사업의 지원을 받아 수행됐다.
2023.05.22
조회수 3809
음극재 없는 고에너지 리튬 배터리 구동을 위한 음극 집전체 개발
우리 대학 생명화학공학과 김희탁 교수(차세대이차전지인력양성센터장) 연구팀이 음극재가 없는 고에너지밀도 리튬 배터리 구동을 위한 음극 집전체 구조를 개발하고, 그 작동원리를 규명했다고 7일 밝혔다. 생명화학공학과 권혁진 박사과정과 이주혁 박사가 공동 제1 저자로 참여한 이번 연구 결과는 국제학술지 `네이처 커뮤니케이션즈 (Nature Communications)' 9월 20일 字 온라인판에 게재됐다. (논문명: An electron-deficient carbon current collector for anode-free Li-metal batteries) 음극재가 없는 리튬 전지(Anode-free Li battery)는 휴대용 전자기기와 전기자동차에 사용되는 리튬이온전지의 많은 부피와 무게를 차지하는 흑연 음극재를 없앤 차세대 구조의 전지다. 그 대신에 음극 활물질을 저장해두는 구리 집전체만이 음극 부품으로 들어가며, 집전체 위에 높은 에너지밀도를 가지는 리튬 금속 형태로 에너지가 저장된다. 음극재가 없는 리튬 전지는 기존 리튬이온전지와 비교해 60% 더 높은 에너지밀도를 구현할 수 있다는 점 때문에 산업계와 학계에서 활발하게 연구가 진행되고 있다. 하지만 리튬 이온이 흑연에 저장되지 않고 리튬 금속 형태로 음극에 저장될 경우, 리튬 금속의 수지상 성장으로 인해 지속적으로 비가역적인 리튬의 손실이 발생하며 충·방전 효율을 크게 떨어뜨리는 문제점이 발생한다. 또한, 반응성에 차이가 있는 구리와 리튬 사이에 미세전류가 흐르면서 리튬의 부식과 동시에 구리 표면에서 전해액이 분해되는 `갈바닉 부식(Galvanic corrosion)'이 발생한다. 김희탁 교수는 3차원 음극 집전체 표면의 일함수(고체의 표면에서 전자를 빼내는 데 필요한 에너지)를 높여 리튬의 수지상 성장을 억제하고 집전체 표면에서 리튬과 전해액의 부식을 억제할 수 있음을 규명하고 음극재 없는 리튬전지의 구동이 가능함을 검증했다. 연구팀은 탄소 집전체 표면에 인위적으로 탄소 결함 구조를 도입해 일함수를 높였고, 전자가 집전체 표면으로부터 탈출하기 어려워져 전해질이 전자를 받아 분해되는 환원반응이 크게 억제되는 현상을 확인했다. 동시에 일함수가 낮은 특성을 가지는 리튬 금속과는 강하게 상호작용을 하면서 집전체 위에 리튬 금속의 균일한 성장을 유도하고 안정적으로 에너지를 저장할 수 있음을 검증했다. 연구팀은 개발된 집전체를 통해 기존 구리 집전체 대비 월등하게 높은 성능을 보여줬고, 동시에 극미량의 전해액만이 전지 내에 주입되는 희박 전해액 환경에서도 구동할 수 있음을 확인했다. 김희탁 교수는 "이번 연구결과는 리튬 배터리의 궁극적 형태인 음극재 없는 리튬 배터리의 구현을 위한 집전체 설계 방향을 새롭게 제시했다는 점에서 중요한 의미가 있다ˮ라고 말하면서, "이를 바탕으로 다양한 차세대 리튬 전지의 음극 설계에 응용되기를 기대한다ˮ고 말헀다. 한편 이번 연구는 LG에너지솔루션, KAIST 나노융합연구소, 과학기술정보통신부 기후변화대응과제의 지원을 받아 수행됐다.
2021.10.08
조회수 8766
세계 최고 수명을 지닌 불타지 않는 ESS(에너지저장시스템) 수계전지 개발
우리 대학 생명화학공학과 김희탁 교수(나노융합연구소 차세대배터리센터) 연구팀이 아연 전극의 열화 메커니즘을 규명하고 이를 해결함으로써 전 세계에서 보고된 모든 레독스 흐름 전지 가운데 가장 오래가는 수명을 가지는 수계 아연-브롬 레독스 흐름 전지 개발에 성공했다고 5일 밝혔다. 생명화학공학과 이주혁 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `Energy and Environmental Science'에 최근(9월) 게재되는 한편 표지논문으로 선정됐다. (논문명: Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries) 최근 들어 신재생에너지의 간헐성을 보완하고 전력 피크 수요를 충당하기 위해 신재생에너지 및 심야 전력을 대용량으로 저장, 필요할 경우 저장된 에너지를 설비에 공급함으로써 에너지 이용 효율을 높일 수 있는 에너지저장시스템(Energy storage systems, 이하 ESS) 기술이 각광받고 있다. 현재 대부분의 ESS는 값이 저렴한 `리튬이온전지' 기술을 채택하고 있지만, 리튬이온전지는 태생적으로 발화로 인한 화재 위험성 때문에 대용량의 전력을 저장하는 ESS에는 적합하지 않다는 지적을 받아왔다. 실제 2017년~ 2019년까지 2년간 국내에서 발생한 리튬이온전지로 인한 ESS 화재사고 33건 가운데 가동이 중단된 곳은 전체 중 35%에 달한다. 현재까지 집계된 손해액만도 약 7,000억 원 이상으로 추정되고 있다. 따라서 최근에는 배터리 과열 현상을 원천적으로 차단할 수 있는 수계(물) 전해질을 이용한 *레독스 흐름 전지가 큰 주목을 받고 있다. 특히, 초저가의 브롬화 아연(ZnBr2)을 활물질로 이용하는 아연-브롬 레독스 흐름 전지는 다른 수계 레독스 흐름 전지와 비교할 때 높은 구동 전압과 함께 에너지 밀도를 높일 수 있고, 가격이 싸다는 장점 때문에 70년대부터 ESS용으로 개발돼왔다. ☞ 레독스 흐름 전지(Redox flow battery): 레독스 흐름 전지는 양극 및 음극 전해액 내에 활물질을 녹여서 외부 탱크에 저장한 후 펌프를 이용해 전극에 공급하면 전극 표면에서 전해액 내의 활성 물질의 산화·환원 반응을 이용해 에너지는 저장하는 전지이다. 문제는 아연-브롬 레독스 흐름 전지의 경우 아연 음극이 나타내는 짧은 수명 때문에 상용화가 지연되고 있다는 점이다. 특히 아연 금속이 충·방전 과정 중에 보이는 불균일한 돌기 형태의 *덴드라이트 형성은 전지의 내부 단락을 유발해 수명을 단축하는 주요 원인으로 지적되고 있다. 현재 덴드라이트 형성 메커니즘은 명확히 규명되진 않고 있지만 충전 초기 전극 표면에 형성되는 아연 핵의 불균일성 때문일 것으로 전문가들은 추정하고 있다. 이런 문제 해결을 위해 그동안 균일한 핵의 생성을 유도하는 기술이 경쟁적으로 개발돼왔으나, 여전히 충분한 수명향상 효과를 얻지 못하고 있다. ☞ 덴드라이트(Dendrite): 아연 이온이 환원되어 금속 전극 표면에 증착될 때, 금속 표면 일부에서 비정상적으로 성장하는 나뭇가지 형태의 결정. 김희탁 교수 연구팀은 낮은 표면에너지를 지닌 탄소 전극 계면에서는 아연 핵의 `표면 확산(Surface diffusion)'을 통한 `자가 응집(Self-agglomeration)' 현상이 발생한다는 사실에 주목하고 양자 역학 기반의 컴퓨터 시뮬레이션과 전송 전자 현미경 분석을 통해 자가 응집 현상이 아연 덴드라이트 형성의 주요 원인임을 규명하는 데 성공했다. 연구팀은 이와 함께 특정 탄소결함구조에서는 아연 핵의 표면 확산이 억제되기 때문에 덴드라이트가 발생하지 않은 사실을 발견했다. 탄소 원자 1개가 제거된 단일 빈 구멍 결함(single vacancy defect)은 아연 핵과 전자를 교환하며, 강하게 결합함으로써 표면 확산이 억제되고 균일한 핵생성 또는 성장을 가능하게 한다. 김 교수 연구팀은 고밀도의 결함 구조를 지닌 탄소 전극을 아연-브롬 레독스 흐름 전지에 적용해, 리튬이온전지의 30배에 달하는 높은 충·방전 전류밀도(100 mA/cm2)에서 5,000 사이클 이상의 수명 특성을 구현하는데 성공했다. 연구팀 관계자는 지금까지 다양한 레독스 흐름 전지에 대해 보고된 결과 중 가장 뛰어난 수명성능을 지닌 전지라는 점을 강조했다. 우리 대학 나노융합연구소 차세대배터리센터장 김희탁 교수는 "차세대 수계 전지의 수명 한계를 극복하기 위한 새로운 기술을 제시한 게 이번 연구의 성과”라면서 "기존 리튬이온전지보다 저렴할 뿐만 아니라 에너지 효율 80% 이상에서 5,000 사이클 이상 구동이 가능하다는 점에서 신재생에너지의 확대 및 ESS 시장 활성화에 기여할 것”이라고 밝혔다. 한편 이번 연구는 우리 대학 나노융합연구소와 과학기술정보통신부의 지원을 받아 수행됐다.
2020.10.05
조회수 29471
전해액 사용량을 4배 줄인 리튬-황 전지 개발
우리 연구진이 리튬-황 전지를 경제적으로 설계하되 성능은 획기적으로 개선한 기술개발에 성공해 차세대 배터리 기술개발에 한 발 더 다가섰다. 우리 대학 생명화학공학과 김희탁 교수팀이 기존 대비 전해액의 함량을 4배 이상 줄인 리튬-황 전지를 개발했다고 25일 밝혔다. 리튬-황 전지는 차세대 배터리 기술 중 연구개발이 가장 활발하게 이뤄지는 기술이다. 리튬-황 전지는 휴대용 전자기기와 전기자동차에 사용되는 리튬이온전지에 비해 에너지 밀도가 2~3배 높아서 이를 사용하면 전기동력 기체 무게를 크게 줄일 수 있기 때문이다. 리튬-황 전지는 가벼운 황과 리튬금속을 활물질(화학적으로 반응하여 전기에너지를 생산하는 물질)로 이용하기 때문에 중금속 기반인 리튬이온전지에 비해 경량화가 가능하다. 특히 지구에 풍부하게 존재하는 황을 활용해 저가의 전지를 구현할 수 있다는 점 때문에 산업계와 학계로부터 그동안 많은 주목을 받아왔다. 다만 리튬-황 전지는 리튬이온전지와 달리 매우 높은 전해액 함량을 갖고 있다. 전지 무게의 40%에 달하는 과량의 전해질 사용은 전지 무게 증가로 인해 그동안 리튬-황 전지의 고에너지밀도 구현에 큰 걸림돌이 돼왔다. 리튬-황 전지는 황이 방전되고 난 후의 산물인 `리튬 폴리 설파이드(Lithium poly sulfide)'가 전해액에 용해된 상태에서 빠른 충 ‧ 방전 특성을 갖는다. 이 전해액 양을 낮추면 리튬 폴리 설파이드의 용해량이 감소해 용량 및 출력이 저하되는 문제가 발생한다. 또 리튬금속 음극이 전해액을 분해해 전해액이 고갈되는 문제는 낮은 전해 액체량에서 더욱 심해져 결국 전지 수명을 떨어뜨린다. 김희탁 교수 연구팀은 이번 연구를 통해 리튬 나이트레이트 염과 같이 높은 전자공여(다른 화합물에 전자를 주는 성질) 능력이 있는 염을 전해질에 주입하면 폴리 설파이드의 용해도를 증가시킴과 동시에 리튬금속에서 전해질 분해를 억제할 수 있음을 규명했다. 리튬이온과 결합력이 강한 나이트레이트 음이온이 리튬이온의 `용매화 껍질(Solvation Shell)' 역할을 수행함으로써 리튬 폴리 설파이드의 해리도를 증가시켜 결과적으로 용해도가 향상된다는 사실도 증명했다. 아울러 용매화 껍질 구조변화가 전해액 용매 분자와 리튬금속과의 접촉을 낮춰 분해반응을 억제하는 현상도 확인했다. 김희탁 교수팀은 이번 연구를 통해 전해액 성분 중 리튬 염 물질 하나만을 교체하는 간단한 방법으로 에너지 밀도를 높이면서 고가의 전해액 사용량을 4배 이상 줄여 가격을 대폭 절감하는 성과를 거뒀다. 김희탁 교수는 "이번 연구는 황 양극과 리튬금속 음극의 성능을 동시에 높일 수 있는 전해액 설계원리를 제시했다는 점에서 의미가 크다ˮ면서 "차세대 전지 전해액 설계산업 전반에 걸쳐 넓게 응용되기를 기대한다ˮ고 말했다. KAIST 생명화학공학과 석사졸업생인 추현원 학생(現 MIT 박사과정 재학 중)과 정진관 박사과정이 공동 제1 저자로 참여한 이번 연구결과는 국제 학술지 `어드밴스드 에너지 머티리얼즈(Advanced energy materials)' 6월 2일 字 표지논문으로 실렸다. (논문명: Unraveling the Dual Functionality of High-Donor-Number Anion in Lean-Electrolyte Lithium-Sulfur Batteries) 한편, 이번 연구는 LG화학, KAIST 나노융합연구소, 과학기술정보통신부 기후변화대응과제의 지원을 받아 수행됐다.
2020.06.25
조회수 20499
김희탁 김상욱 교수, 멤브레인 필요 없는 새로운 물 기반 전지 개발
우리 대학 생명화학공학과 김희탁 교수와 신소재공학과 김상욱 교수 공동 연구팀이 전기화학 소자의 핵심 부품인 멤브레인을 사용하지 않고도 에너지 효율 80% 이상을 유지하면서 1천 번 이상 구동되는 새로운 개념의 물 기반 아연-브롬 전지를 개발했다. 이번 연구를 통해 일본, 미국의 수입에 의존해 온 다공성 분리막이나 불소계 이온교환막을 사용하지 않는 기술로, 해당 기술에 대한 대외 의존도를 낮출 수 있을 것으로 기대된다. 이주혁 박사과정과 변예린 박사후연구원이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced materials)’12월 27일자 표지논문에 선정됐다.(논문명: High-Energy Efficiency Membraneless Flowless Zn-Br Battery: Utilizing the Electrochemical-Chemical growth of Polybromides) 최근 태양광, 풍력 등 신재생에너지의 불안정한 전력 공급을 해결하기 위해 전기 에너지를 미리 저장했다가 필요한 시간대에 사용할 수 있는 에너지저장장치(ESS)가 주목받고 있다. 현재는 리튬이온전지가 에너지저장장치용 이차전지로 사용되고 있으나 발화성 유기 전해액 및 리튬계 소재로 인한 발화의 위험성을 지니고 있다. 지난 2017년부터 올해 10월까지 총 21건의 에너지저장장치 화재사고가 발생했으며, 전체 에너지저장장치 시설 1천 490개 중 35%인 522개의 가동이 중단되기도 했다. 이러한 이유로 물을 전해질로 사용한 비 발화성 물 기반 이차전지 기술이 에너지저장장치용 차세대 이차전지로 주목받고 있다. 특히 다양한 물 기반 전지 기술 중 아연과 브롬을 활물질로 사용하는 아연-브롬 레독스 흐름 전지는 높은 구동 전압 및 높은 에너지 밀도를 가져 1970년대부터 지속해서 개발돼왔다. 그러나 아연-브롬 레독스 전지는 브롬이 아연과 반응해 전지 수명을 단축시키는 문제로 인해 상용화가 지연됐다. 이러한 반응을 억제하기 위해 펌프를 이용해 브롬이 함유된 전해질을 외부 탱크로 이송해 왔으나, 이는 펌프 구동을 위한 에너지 소모 및 브롬에 의한 외부 배관이 부식되는 문제를 동반한다. 브롬을 포획하는 전해질 첨가제 및 브롬의 이동을 차단할 수 있는 멤브레인에 대한 개발이 진행됐으나, 가격증가 및 출력 저하의 문제점이 발생했다. 김희탁 교수와 김상욱 교수 공동 연구팀은 일본, 미국에 의존하던 값비싼 멤브레인 소재와 어떠한 첨가제도 사용하지 않는 새로운 물 기반 아연-브롬 전지를 개발했다. 전해질 내의 이온과 외부 전기회로 사이의 전자를 주고받는 한정된 역할만 수행하던 전극의 기능에 멤브레인과 첨가제가 담당하던 브롬을 포획할 수 있는 기능을 추가했다. 질소가 삽입된 미세기공 구조를 전극 표면에 도입해 미세기공 내부에서 비극성 브롬을 극성 폴리브롬화물로 전환한 뒤, 질소 도핑 카본과 폴리브롬화물간 쌍극자-쌍극자 상호 작용을 통해 폴리브롬화물을 기공 내부에 고정했다. 이 기술은 멤브레인의 기능을 전극이 담당하므로 고가의 멤브레인이 필요 없으며, 브롬을 외부 탱크가 아닌 전극 내부에 저장함으로써 펌프 및 배관을 제거할 수 있어 가격 저감 및 에너지 효율을 증대했다. 연구팀이 개발한 다기능성 전극을 이용한 멤브레인을 사용하지 않는 물 기반의 아연-브롬 전지는 리튬-이온 전지보다 45배 저렴할 뿐 아니라, 에너지 효율 83% 이상을 보이며 1천 사이클 이상 운전이 가능하다. 김상욱 교수는 “차세대 물 기반 전지의 한계를 극복하기 위한 나노소재 기술을 이용한 새로운 해결책을 제시했다”라고 말했다. 김희탁 교수는 “이번 연구를 통해 기존보다 안전하고 경제적인 에너지저장장치의 개발이 가속화되기를 기대한다”라고 말했다. 이번 연구는 KAIST 나노융합연구소, 에너지클라우드 사업단, 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단의 지원을 받아 수행됐다. 그림 1. 브롬 활물질을 전극내부에서 폴리브롬화물로 전환하여 저장하는 다기능성 전극의 메커니즘의 모식도와 멤브레인을 장착하지 않고 구동되는 전지의 실제 모습 그림 2. 질소가 도핑된 미세기공이 코팅된 다기능성 전극의 제조 과정
2020.01.08
조회수 16505
김희탁 교수, 바나듐레독스 흐름전지용 전해액 신공정 개발
〈 김희탁 교수, 허지윤 박사과정, KIER 이신근 박사〉 우리 대학 생명화학공학과/나노융합연구소 차세대배터리센터 김희탁 교수와 한국에너지기술연구원(원장 곽병성) 에너지소재연구실 이신근 박사 공동연구팀이 생산 비용을 40% 줄인 바나듐 레독스 흐름전지용 고순도 전해액 생산 공정 개발에 성공했다. 허지윤 박사과정이 1 저자로 참여한 이번 연구 결과는 국제학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’ 9월 27일 자 온라인판에 게재됐고, 우수성을 인정받아 에디터 하이라이트(Editor’s Highlight)로 선정됐다. (논문명: Catalytic production of impurity-free V3.5+ electrolyte for vanadium redox flow batteries) 최근 리튬이온전지 기반 대용량 에너지 저장장치의 발화사고가 빈번하게 발생하면서 수계 전해질을 이용하는 비 발화성 바나듐 레독스 흐름전지에 대한 관심이 커지고 있다. 바나듐 레독스 흐름전지는 안전성뿐 아니라 내구성 및 대용량화의 장점이 있어 대용량 에너지 저장장치로의 응용이 기대되고 있으나, 리튬이온전지 대비 높은 가격으로 인해 시장 확대가 지연되고 있다. 바나듐 레독스 흐름전지의 부품 소재 중 바나듐 전해액은 전지의 용량, 수명과 성능을 결정하는 핵심 소재이며 전체 전지 가격의 50% 이상을 차지하고 있어, 바나듐 전해액의 저가격화는 바나듐 레독스 흐름전지 시장 확대의 핵심이라 할 수 있다. 상업적으로 이용되는 바나듐 전해액은 3.5 가의 산화수를 가지며, 이는 5가의 바나듐옥사이드(V2O5) 전구체를 전기분해를 이용해 환원시켜 제조된다. 그러나 전기분해 방식은 고가의 전기분해 장치가 필요하고 에너지 소비가 크며 전기분해 중 생성되는 높은 산화수의 전해액의 재처리가 필요하다. 이에 전기분해 방식을 벗어나 화학적으로 바나듐을 환원시키는 공정이 전 세계적으로 연구됐지만, 환원제의 잔류물에 의한 전해액 오염으로 인해 상업화에 성공한 사례가 없었다. 김 교수와 이 박사 공동연구팀은 유기 연료전지의 촉매 기술을 응용해 잔류물이 남지 않는 환원제인 포름산의 활성을 증대시켜 바나듐을 3.5가로 환원시키는 기술을 개발했다. 연구팀은 이 기술을 이용해 시간당 2리터(L)급 촉매 반응기를 개발했고 연속 공정을 통한 고순도의 3.5가 바나듐 전해액 생산에 성공했다. 이번 촉매반응을 이용한 제조공정은 전기분해 방식 대비 효율적인 공정 구조를 가져 생산 공정 비용을 40% 줄일 수 있다. 또한, 촉매 반응기를 통해 생산된 전해액은 기존 전기분해 방식으로 만들어지는 전해액과 동등한 성능을 보여 그 품질이 검증됐다. 나노융합연구소 차세대배터리센터장 김희탁 교수는 “촉매를 이용한 화학적 전해액 제조기술은 원천성을 가지고 있어, 비 발화성 대용량 에너지 저장장치 분야의 국가 경쟁력을 높일 수 있다”라고 말했다. 한국에너지기술연구원 에너지소재연구실 이신근 박사는 “한국에너지기술연구원에서 개발된 촉매 반응기를 통해 기술의 산업화가 촉진될 것으로 기대한다”라고 말했다. 이번 연구는 산업통상자원부 한국에너지기술평가원 ESS기술개발 사업의 지원을 받아 KAIST, 에너지기술연구원, 연세대학교, ㈜이에스가 참여한 컨소시엄을 통해 개발됐다. □ 그림 설명 그림1. 촉매반응을 통한 3.5가 바나듐 전해액의 생산 및 기존 전기분해를 이용한 3.5가 전해액 생산 비교 그림2. 연구에서 개발된 촉매반응기 및 이를 이용한 전해액 연속 제조
2019.10.28
조회수 13509
김희탁 교수, 이론용량 92% 구현한 리튬-황 전지 개발
〈 추현원 석사과정, 김희탁 교수 〉 우리 대학 생명화학공학과/나노융합연구소 차세대배터리센터 김희탁 교수 연구팀이 이론용량의 92%를 구현하고 높은 용량 밀도 (4mAh/cm2)를 가지는 고성능, 고용량 리튬-황 전지를 개발했다. 추현원 석사과정과 노형준 박사과정이 1 저자로 참여한 이번 연구는 국제학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’ 1월 14일 자 온라인판에 게재됐고 우수성을 인정받아 에디터스하이라이트에 선정됐다. (논문명 : Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions) ( https://www.nature.com/ncomms/editorshighlights ) 리튬-황 전지는 리튬-이온 전지보다 약 6~7배 높은 이론 에너지밀도를 갖고 원료 물질인 황의 가격이 저렴해 리튬-이온 전지를 대체할 차세대 리튬 이차전지로 주목받고 있다. 그러나 리튬-황 전지는 구동 중 방전 생성물인 황화 리튬이 전극 표면에 쌓이고 전극 표면에서 전자전달을 차단해 리튬-황 전지의 이론용량 구현이 불가능하다는 한계를 갖는다. 이러한 전극 부동화의 문제를 완화하기 위해 과량의 도전제를 전극에 도입해 왔으나 이는 리튬-황 전지의 에너지 밀도를 크게 낮추는 문제를 발생시키며, 이론용량 구현이 70%를 넘지 못하는 한계를 보였다. 연구팀은 문제 해결을 위해 기존 리튬-황 전지의 전해질에 사용하던 리튬 염을 대체해 높은 전자기여도를 가지는 음이온 염을 이용했다. 이 전해질 염은 전지 내부의 황화리튬의 용해도를 높여 전극 표면에 3차원 구조의 황화리튬 성장을 유도하고 이는 전극의 부동화를 효율적으로 억제해 높은 용량을 구현할 수 있게 한다. 연구팀은 이 전해액 기술을 바탕으로 기존 리튬-이온 전지와 동등한 수준의 면적당 용량 밀도를 갖는(4mAh/cm2) 고용량 황 전극에 대해 이론용량 92%인 수준을 구현해 기존 리튬-황 전지 기술의 한계를 넘었다. 또한 리튬 음극 표면에 안정한 부동피막을 형성해 100 사이클 이상 구동 시에도 안정적인 수명을 구현했다. 특히 새로운 전해질 설계를 통한 황화리튬의 구조 제어 기술은 다양한 구조의 황 전극 및 구동 조건에서 적용 가능해 산업적으로도 큰 의미를 지닐 것으로 보인다. 김희탁 교수는 “리튬-황 전지의 한계를 돌파하기 위한 새로운 물리 화학적 원리를 제시했다”라며 “리튬-황 전지의 이론용량의 90% 이상을 100 사이클 이상 돌리면서도 용량 저하 없이 구현했다는 점에서 새로운 이정표가 될 것으로 기대한다”라고 말했다. 이번 연구는 나노융합연구소, 한국연구재단 및 LG화학의 지원을 받아 수행됐다. □ 그림 설명 그림1. 전해질에 따른 전극 위 리튬 설파이드 성장 구조 및 축적 메커니즘 그림2. 리튬황전지의 사이클 용량 및 수명 특성
2019.01.31
조회수 14063
김희탁, 정희태 교수, 수명 5배 늘린 바나듐레독스-흐름전지 개발
〈 김수현 박사과정, 김희탁 교수, 최정훈 박사과정 〉 우리 대학 생명화학공학과 정희태, 김희탁 교수 공동 연구팀(차세대배터리센터)이 용량 유지율 15배, 수명을 5배 향상시킨 바나듐레독스-흐름전지를 개발했다. 신재생 에너지의 발전과 함께 이를 통해 생산된 에너지를 효율적이고 안전하게 저장할 수 있는 대용량 에너지 저장장치의 필요성이 커지고 있다. 바나듐레독스-흐름전지는 폭발 위험이 없는 이차전지로 대용량화에 적합해 기존 에너지 저장장치를 대체할 수 있을 것으로 기대된다. 김수현, 최정훈 박사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘나노 레터스(Nano letters)’ 5월 3일자 온라인 판에 게재됐다. (논문명 : Pore Size-Tuned Graphene Oxide Framework as lon-Selective and Protective Layers on Hydrocarbon Membranes for Vanadium Redox Flow Batteries) 기존의 바나듐레독스-흐름전지는 과불소계 분리막의 활물질 투과도가 높아 충․방전 효율과 용량 유지율이 매우 낮다는 한계가 있다. 이를 해결하기 위해 낮은 활물질 투과도를 갖는 탄화수소계 분리막을 적용시키고자 했지만 활물질인 바나듐5가 이온에 의해 열화 현상이 발생하고 전지 수명이 급감하는 문제가 있었다. 따라서 활물질인 바나듐 이온의 크기보다는 작으면서 전하 운반체인 수소 이온보다는 큰 기공 크기를 갖는 분리막 개발의 필요성이 커지고 있다. 공동 연구팀은 산화그래핀 간의 가교 반응을 통해 바나듐레독스-흐름전지에 적합한 기공 크기를 갖는 산화그래핀 골격체 분리막을 구현하는 데 성공했다. 가교에 의해 수화 팽창(moisture expansion, 습기나 물을 흡수해 팽창하는 현상)이 제한된 산화그래핀 간 층간 간격을 선택적 이온의 투과를 위한 기공으로 활용하는 원리이다. 이 산화그래핀 골격체는 기공 크기를 통한 분리 성능이 뛰어나 매우 높은 수소 이온-바나듐 이온 선택성을 갖는다. 연구팀의 분리막은 바나듐레독스-흐름전지의 용량 유지율을 기존 과불소계 분리막의 15배, 충․방전 사이클 수명 또한 기존 탄화수소계 분리막에 비해 5배 이상 향상시켰다. 연구팀의 산화그래핀 골격체를 통한 기공 크기 조절 기술은 다양한 크기의 이온을 활용하는 이차전지, 센서 등의 전기화학적 시스템에 적용 가능할 것으로 보인다. 김희탁 교수는 “레독스 흐름전지 분야의 고질적인 문제인 활물질의 분리막을 통한 크로스오버 및 이에 따른 분리막 열화문제를 나노기술을 통해 해결할 수 있음을 보여줬다”며 “바나듐레독스-흐름전지 뿐만 아니라 다양한 대용량 에너지 저장장치용 이차전지에 적용될 수 있을 것이다”고 말했다. 이번 연구는 한국화학연구원 주요사업, 에너지기술평가원과 기후변화연구허브사업의 지원을 통해 수행됐다. □ 그림 설명 그림1. 산화그래핀 골격체를 통한 수화 바나듐 이온과 수소 이온의 선택적 이온 투과에 대한 모식도 그림2. 바나듐레독스-흐름전지의 사이클 용량 특성
2018.06.07
조회수 12507
김희탁 교수, 도넛모양 황화리튬 이용 리튬황이온전지 개발
〈 팽민 예 연구교수, 김희탁 교수 〉 우리대학 생명화학공학과 김희탁 교수(나노융합연구소 차세대배터리센터) 연구팀이 기존 리튬이온전지보다 높은 에너지 밀도를 가지면서 저렴하고 600사이클 이상의 수명을 갖는 도넛 모양 활물질 구조의 리튬황이온전지를 개발하는데 성공했다. 전기자동차의 배터리로 사용되는 리튬이온전지는 낮은 에너지 밀도 때문에 1회 충전시 가능 주행 거리가 짧아 높은 에너지 밀도를 구현할 수 있는 리튬황전지의 개발이 10여 년 간 경쟁적으로 이뤄져 왔지만 리튬황전지는 음극인 리튬금속전극의 취약한 가역성으로 인해 전지의 사이클 수명을 확보하는데 어려움이 많았다. 이러한 문제 해결을 위해 연구팀은 리튬금속음극 대신 리튬이온전지에 사용되는 사이클 수명이 우수한 흑연음극 이용과 함께 용량이 높은 황화리튬(Li2S) 양극을 결합해 에너지 밀도와 수명 향상에 힘썼다. 그러나 황화리튬이 고가이고, 흑연음극과 황화리튬 양극의 사이클 수명을 동시에 만족하는 전극 및 전해액 설계기술이 없어 기술적인 한계가 있었다. 이에 연구팀은 저가의 황산리튬(Li2SO4)을 원재료로 도넛 모양의 황화리튬 양극 활물질을 제조했다. 그러면서 고농도 염 전해액을 이용해 흑연음극과 황화리튬 양극을 이용한 리튬황이온 전지를 구현했다. 내부가 비어있는 도넛 모양의 황화리튬은 리튬이온의 전달력을 향상시켜 높은 충, 방전 가역성을 보였고, 고농도 염 전해액은 흑연전극 표면에 안정적인 막을 형성해 우수한 내구성을 보였다. 연구팀은 이 기술을 통해 기존 리튬이온전지보다 30% 높은 에너지 밀도를 구현함과 동시에 600사이클 이상의 수명을 확보하는 데 성공했다. 연구팀의 도넛모양 황화리튬 전극은 저가의 원재료를 이용하면서 단일 열처리 공정으로 제조할 수 있고, 기존 리튬이온전지에 적용할 수 있어 산업적으로 활용할 수 있을 것으로 보인다. 김희탁 교수는 “저가 황 화합물을 리튬이온전지에 적용해 에너지 밀도와 수명을 동시에 향상시킬 수 있음을 증명했다”고 말했다. 이번 연구는 KAIST 나노융합연구소와 한국과학기술연구원 및 한국연구재단 기초연구지원사업의 지원으로 수행됐다. 팽민 예(Fangmin Ye) 연구교수가 1저자로 참여한 이번 연구 결과는 재료과학분야 국제학술지 ‘어드밴스드 사이언스(Advanced Science)’ 지난 7일자 온라인 판 논문에 게재됐다. □ 그림 설명 그림1. 도넛 모양 황화리튬 활물질 구조 및 제조 원리
2018.05.24
조회수 13542
대한민국 100대 기술 이끌 주역에 우리 대학 교수 8인 선정
한국공학한림원이 지난 18일 발표한 2025년 대한민국 성장엔진이 될 미래 100대 기술과 그 주역 238명에 우리 대학 교수 8명이 선정됐다. 한국공학한림원은 가까운 미래인 2025년에 상용화가 가능하며 산업발전에 크게 기여할 기술을 중심으로 선정했고, 현재 이들 기술 개발에 있어 핵심 역할을 수행하고 있는 기술별 주역을 3명 이내로 뽑았다고 밝혔다. 미래 한국을 먹여 살릴 젊은 주역을 격려하고 더 많은 인재를 키우기 위해 젊은 연구자(엔지니어) 중심으로 선정했다고 말했다. 238명 주역들을 기관별로 분류해보면 대학이 78명으로 가장 많았고, 대기업 76명, 정부출연연구소를 포함한 공공기관 65명, 중소·중견기업 19명 순이었다. 우리 대학은 교육기관 중 서울대에 이어 2번째로 많은 주역을 배출했다. 학과별로는 생명화학공학과가 4명으로 가장 많은 인원을 차지했고 항공우주공학과, 원자력및양자공학과, 바이오및뇌공학과, 신소재공학과가 각각 1명씩 선정됐다. 분야별로는 ▲화학생명 분야에 이재우 교수(CCS 및 저장 플랜트), 김희탁 교수(수소전지 기술), 김신현 교수(멀티 타겟 질병진단용 바이오 센서 시스템), 임성갑 교수 (차세대 디스플레이 소재, 공정, 장비 기술) 교수가 선정됐다. ▲기계 분야는 최한림 교수(지능형 무인기 협업 기술), ▲재료 자원 분야는 류호진 교수(발전, 항공용 초내열 소재), 박병국 교수(차세대 메모리 반도체 기술), ▲전기전자 정보 분야는 남윤기 교수(뇌과학응용기술)가 선정됐다.
2017.12.21
조회수 18017
김희탁, 김신현 교수, 물과 기름에 젖지 않는 대면적 표면 개발
〈 최재호 박사과정, 김희탁 교수, 김신현 교수 〉 우리 대학 생명화학공학과 김희탁, 김신현 교수 공동 연구팀이 물과 기름 등에 젖지 않는 저렴한 대면적 표면을 개발했다. 이 기술은 아조고분자의 광유체화 현상을 이용해 초발수성, 초발유성(Super-omniphobic: 물과 기름 등에 젖지 않는 특성) 막을 개발한 것으로 얼룩 및 부식 방지막 개발 등에 다양하게 응용될 것으로 기대된다. 최재호 박사과정이 1저자로 참여한 이번 연구 결과는 나노기술분야 국제학술지 ‘에이씨에스 나노(ACS Nano)’ 8월호에 게재됐다. 이중요각구조체는 버섯 모양의 구조체를 가진 표면을 뜻한다. 이를 통해 물과 기름처럼 표면에너지가 낮은 액체에 대해 젖지 않는 초발수성, 초발유성(Super-omniphobic)을 갖는다. 하지만 이중요각구조체는 매우 정교한 구조이기 때문에 기존 제작 방식은 여러 단계의 복잡한 공정을 거쳐 야 한다는 단점과 더불어 유연하지 않고 비싼 실리콘 물질 정도만을 제작할 수 있다는 한계가 있었다. 연구팀은 다른 방식으로 이중요각구조체를 제작하기 위해 아조고분자의 독특한 광학적 특성인 국부적 광유체화 현상에 주목했다. 광유체화 현상은 아조고분자가 빛을 받으면 마치 액체처럼 유체화가 되는 현상을 말한다. 이 유체화는 빛을 흡수하는 아조고분자 표면의 얇은 층에서만 부분적으로 일어난다. 연구팀은 이 광유체화 현상을 아조고분자 원기둥 구조에서 일어나게 해 원기둥 윗부분 표면만 선택적으로 흘러내리는 방식으로 버섯 모양의 이중요각구조체를 형성했다. 연구팀이 제작한 구조체의 표면은 매우 낮은 표면에너지를 갖는 액체, 즉 핵산과 같이 표면에 금방 스며들려는 특성을 갖는 액체에도 뛰어난 초발수성, 초발유성을 갖는다. 이 특성은 표면 물질이 고분자 기반이기 때문에 구부러진 상태에서도 유지될 수 있다. 또한 연구팀의 구조체 제작은 아조고분자 원기둥 구조의 틀을 잡고 빛을 조사하는 정도의 간단한 과정만 거치기 때문에 경제적, 실용적으로 큰 장점이 있다. 김희탁 교수는 “이번 연구에서 제안한 새로운 이중요각구조 제작방식을 통해 뛰어난 초발수성, 초발유성 특성을 갖는 표면을 쉽게 제작할 수 있을 것이다”며 “임의의 굴곡을 갖는 표면의 초발수, 초발유성 특성을 부여할 수 있어 생물오손방지 튜브, 얼룩부식 방지 표면 등 다양하게 응용 가능할 것이다”고 말했다. 김신현 교수는 “이번 연구에서 설계한 이중요각구조는 피부로 호흡하며 땅 속에 서식하는 곤충인 톡토기(springtail)의 피부 구조를 모방한 것으로 인간은 자연으로부터 배우고 공학적으로 창조한다는 사실을 다시 한 번 깨달았다”고 말했다. 이번 연구는 KAIST의 엔드 런(End-Run) 프로그램의 지원을 받아 수행됐다. 그림1. 버섯모양의 구조제작 모식도 그림2. 버섯모양 구조의 SEM 이미지 그림3. 다양한 액체들에 대해 superomniphobic 특성을 나타냄을 보여주는 이미지
2017.09.06
조회수 13516
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2