-
김정원 교수, IEEE Photonics Society Distinguished Lecturer 선정
기계공학과 김정원 교수가 지난 11월 16일 IEEE Photonics Society의 2024년도 Distinguished Lecturer로 선정되었다.
IEEE Photonics Society는 매년 광학 및 광공학 분야에서 세계적인 연구 성과를 보이고 있는 연구자 5명 내외를 Distinguished Lecturer로 선정하여, 전세계를 순회하며 대학 및 연구기관들에서 초청강연을 하도록 후원하고 있다.
김정원 교수는 초저잡음, 초안정 광주파수빗(optical frequency comb) 광원을 개발하고 이를 이용한 새로운 타이밍 응용 분야들을 개척하고 있으며, 연구의 독창성과 우수성을 인정받아 Distinguished Lecturer로 선정되었다.
김 교수는 “It’s the perfect timing for optical frequency combs”이라는 주제의 강연을 통하여 초저잡음, 초안정 광주파수빗 광원들의 원리와 이를 이용하여 김 교수팀이 최근 선보인 반도체 칩에서의 클럭 분배, 펄스비행시간(TOF) 센서를 이용한 3차원 반도체 소자의 형상 이미징, 그리고 블랙홀 관측용 전파망원경에서의 초고주파 신호 생성과 같은 새로운 레이저 타이밍 응용 분야들을 소개할 예정이다.
2023.11.30
조회수 274
-
기계공학과 김정 교수팀, 국제 로봇/자동화 분야 세계적 권위의 저널 최우수논문상 수상
우리 대학 기계공학과 생체기계연구실(지도교수: 김정) 정화영, 풍 제유(Jirou Feng) 박사과정이 2022년 IEEE 국제 로봇/자동화 저널(RA-L, Robotics and Automation Letter) 최우수 논문상(Best paper award)을 수상했다고 2일 밝혔다.
최우수 논문상은 6월 1일 영국, 런던에서 주최된 국제 로봇자동화학회(ICRA2023, The 2023 International Conference on Robotics and Automation)에서 수여됐다. ICRA는 매년 개최되는 세계 최대 규모의 로봇 학회이며 RA-L은 최고 수준의 국제 로봇 학회들과 연계해 엄선된 논문을 출판하는 저널이다. 김정 교수 연구팀의 논문은 2022년 한해간 RA-L (Robotics and Automation Letter)에 출간된 1,100개 이상의 논문 중 편집자 위원회(Editorior board)에서 선정된 최우수 논문 5개 중 한 편으로 선정되어 상패와 함께 상금이 수여된다. (논문제목: 2.5D Laser-Cutting-Based Customized Fabrication of Long-Term Wearable Textile sEMG Sensor: From Design to Intention Recognition)
근전도 센서는 인간의 근육 활성도를 측정하는 수단으로 인간-기계 상호작용을 위한 착용형 시스템에 널리 사용되고 있다. 초기에는 근육 진단과 평가를 위해 의료계나 연구계서 국한된 환경에서만 사용돼왔으나 건강 모니터링이나 의수, 의족 등 더욱 일반적인 분야로 사용이 확장되고 있다.
이런 일상에서의 장시간 활용을 위해서는 사람이 착용하고 일상생활에 불편함이 없으면서도 일상에서의 움직임이나 변화가 신호에 영향을 주지 않는 센서의 개발이 필요하다. 기존의 상용 센서의 경우 단단한 소재로 제작되어 착용이 불편할 뿐 아니라 땀 발생에 취약한 성향을 보인다. 피부와 전극 사이에 전도성을 가진 땀 층이 생길 경우 전기적 단락이 발생할 수 있으며 물리적으로 센서가 미끄러질 가능성도 커져 결과적인 신호의 질에 큰 영향을 미친다. 또한 일반 사용자가 신호 수집이 필요한 정확한 위치를 파악하고 전극을 위치 시키는 것도 어렵다.
연구팀은 이러한 문제를 해결하고자 땀을 흡수하면서 착용자에게 불편함을 최소화한 천 기반의 대면적 센서를 효율적으로 그리고 착용자에 맞춤형으로 디자인하여 제작할 수 있는 방법에 대해 제시하고 센서 디자인부터 실제 사용하여 의도를 인식해내는 방법까지 전체적인 솔루션을 제공하였다. 기존에 천 전극 센서들이 많이 제시되어 왔지만 사용자 맞춤형, 대면적으로 제작하는 방법에 대한 제시에는 부족한 점이 많아 실제 활용 가능성이 불투명하였다. 하지만 본 연구에서는 컴퓨터 기반으로 디자인 된 패턴을 레이저 커팅을 통해 그대로 구현해낼 수 있는 2.5D 레이저 커팅 기반의 제작 방식을 소개하여 사용자 맞춤형으로 쉽게 디자인을 변경하고 제작해낼 수 있도록 하였다. 2.5D 레이저 커팅의 경우 레이저의 세기를 조절하여 레이저가 잘라내는 깊이를 다르게 함으로써 원하는 패턴 형성을 가능케 한다.
또한 전극 부분에 전도성 다공체를 활용함으로써, 전도성을 띠는 땀을 흡수하여 전해액으로 활용할 수 있도록 하여 땀이 발생하더라도 센서 성능 및 동작 분류 정확도에 변화가 거의 없도록 하였다. 그 결과 땀이 발생하는 운동 전후로도 유사한 신호 개형을 획득할 수 있었으며 땀의 여부와 관계없이 높은 동작 분류 정확도를 달성하였다.
연구진은 본 기술이 전극 크기와 개수에 상관없이 정밀하게 사용자 맞춤형으로 입는 형태의 센서를 제작할 수 있게 함으로써, 일상에서 사람의 의도 파악을 필요로 하는 응용 분야에 유용하게 활용될 것으로 기대했다. 예를 들면 의수, 의족의 경우 장시간 착용을 필요로 하는데 착용자에게 센서로 생기는 부담은 최소화하면서도 사람의 움직임과 가장 직접적인 연관이 있는 근육 신호 센서 사용을 통해 의수, 의족의 더욱 자연스러운 움직임을 가능케 해줄 수 있다.
김 교수는 “서비스 로봇을 위한 웨어러블 센서는 사람의 부착하는 부위의 형상에 맞게 가공하는 것이 산업화의 마지막 고비인데, 학생 연구원들이 좋은 아이디어를 내고 포기하지 않고 어려움을 극복하여 세계적으로 인정받는 좋은 결과를 냈다고 생각한다. 또한, 이번 상을 통해 자부심을 가지고, 더욱 큰 연구 결과를 얻을 수 있는 마중물이 되었으면 좋겠다.”라고 밝혔다.
한편, 이번 연구는 정부(과학기술정보통신부)의 지원으로 한국 연구재단-휴먼플러스융합연구개발 챌린지 사업의 지원을 받아 수행됐다.
2023.06.02
조회수 1840
-
천 조분의 1초 까지 정확한 반도체칩용 클럭 개발
최근 반도체 칩의 성능이 급격하게 향상됨에 따라, 보다 정확한 타이밍으로 칩 내의 다양한 회로 블록들의 동작을 동기화(synchronization)시키는 클럭(clock) 신호를 공급하는 기술이 중요해지고 있다.
우리 대학 기계공학과 김정원 교수 연구팀이 레이저를 이용해 반도체 칩 내에서 초저잡음 클럭 신호를 생성하고 분배할 수 있는 기술을 개발했다고 9일 밝혔다.
기존에는 클럭 신호의 정확성이 통상적으로 피코초(1조 분의 1초) 수준이었으나 이번에 개발된 기술을 이용하면 기존의 방식보다 월등한 펨토초(femtosecond, 10-15초, 천 조 분의 1초) 수준의 정확한 타이밍을 가지는 클럭 신호를 칩 내에서 생성하고 분배할 수 있으며, 클럭 분산 과정에서 발생하는 칩 내에서의 발열 또한 획기적으로 줄일 수 있다.
기계공학과 현민지 박사과정 학생이 제1 저자로 참여하고 고려대학교 세종캠퍼스 정하연 교수팀과의 공동연구로 이루어진 이번 논문은 국제학술지 `네이처 커뮤니케이션즈(Nature Communications)' 4월 24일 字에 게재됐다. (논문명: Femtosecond-precision electronic clock distribution in CMOS chips by injecting frequency comb-extracted photocurrent pulses)
고성능의 반도체 칩 내에서 클럭 신호를 분배하기 위해서는 클럭 분배 네트워크(clock distribution network, CDN)에 많은 수의 클럭 드라이버(clock driver)들을 사용해야 하는데, 이로 인해 발열과 전력 소모가 커질 뿐 아니라 클럭 타이밍도 나빠지게 된다. 칩 내의 클럭 타이밍은 무작위적으로 빠르게 변화하는 지터(jitter)와 칩 내의 서로 다른 지점 간의 클럭 도달 시간 차이에 해당하는 스큐(skew)에 의하여 결정되는데, 클럭 드라이버들의 개수가 늘어남에 따라 지터와 스큐 모두 통상 수 피코초 이상으로 커지게 된다.
연구팀은 이 문제를 해결하기 위해 펨토초 이하의 지터를 가지는 광주파수빗(optical frequency comb) 레이저를 마스터 클럭으로 하는 새로운 방식의 클럭 분배 네트워크 기술을 선보였다. 이는 광주파수빗 레이저에서 발생하는 광 펄스들을 고속 광다이오드를 이용해 광전류 펄스(photocurrent pulse)로 변환한 후 반도체 칩 내의 금속 구조 형태로 된 클럭 분배 네트워크를 충전 및 방전하는 과정을 통해 구형파 형태의 클럭 신호를 생성하는 방식이다.
특히 이 기술을 사용하면 클럭 분배 네트워크의 클럭 드라이버들을 제거한 금속 구조만을 통해 칩 내에서 클럭을 분배할 수 있어, 타이밍 성능을 개선할 수 있을 뿐 아니라 칩 내 발열도 획기적으로 줄일 수 있다. 그 결과 지터와 스큐를 기존 대비 1/100 수준인 20펨토초 이하로 낮춘 뛰어난 타이밍 성능을 보일 수 있었으며, 칩내 클럭 분산 과정에서의 전력소모 및 발열 역시 기존 방식 대비 1/100 수준으로 낮출 수 있었다.
김정원 교수는 "현재 아날로그-디지털 변환기와 같은 고속 회로에 매우 낮은 지터의 샘플링 클럭 신호를 공급해 성능을 향상하는 연구를 진행 중ˮ이라고 밝히면서 "3차원 적층 칩과 같은 구조에서 발열을 줄일 수 있을 지에 대한 후속 연구도 계획 중ˮ이라고 밝혔다.
한편 이번 연구는 삼성미래기술육성센터의 지원을 받아 수행됐다.
2023.05.09
조회수 2411
-
반도체 소자 내의 복잡한 움직임을 관측할 수 있는 초고속 카메라 개발
우리 대학 김정원 교수 연구팀이 반도체 소자 내의 미세 구조와 동적 특성을 고해상도로 측정할 수 있는 초고속 카메라 기술을 개발하였다고 밝혔다.
기존에는 볼 수 없었던 반도체 소자 내에서의 빠르고 불규칙적인 복잡한 움직임을 이제 초고속 카메라로 관측할 수 있게 되었다.
기계공학과 나용진 박사가 제 1저자로 참여하고 기계공학과 유홍기, 이정철 교수팀 및 한국표준과학연구원(KRISS) 서준호, 강주식 박사팀이 참여한 공동연구팀의 이번 논문은 국제학술지 ‘빛: 과학과 응용(Light: Science & Applications)’ [IF=20.257] 2월 15일 字에 게재됐다. (논문명: Massively parallel electro-optic sampling of space-encoded optical pulses for ultrafast multi-dimensional imaging)
최근 마이크로 및 나노 소자들의 복잡도와 기능성이 급격하게 향상됨에 따라 이들 소자 내의 미세 구조와 동적인 움직임을 실시간으로 정확하게 측정해야 할 필요성이 급증하고 있다. 미세 구조 측정 측면에서는 다양한 3차원 집적회로와 소자들의 발전으로 더 큰 웨이퍼 영역에 대해 더 높은 분해능 및 측정속도를 가지는 계측 기술이 반도체 산업에서 중요해지고 있다. 한편 동적 특성의 측정은 마이크로 및 나노 소자 내에서의 물리현상들을 이해하고 다양한 응용 분야들로 발전시키는 데 중요하다. 특히 다양한 역학 현상의 관측을 위해서는 더 높은 해상도, 더 빠른 측정속도 및 더 큰 측정범위를 필요로 하지만 기존의 측정 기술들은 여러가지 한계들을 가지고 있었다.
이번 연구는 기존의 한계를 극복한 새로운 초고속 카메라 기술을 개발하였다. 100펨토초(10조분이 1초) 정도의 매우 짧은 펄스폭을 가지는 빛 펄스를 1000개 이상의 다른 색을 가지는 펄스들로 쪼갠 후, 각기 다른 색을 가진 펄스들을 이용하여 서로 다른 공간적 위치에서의 높낮이를 정밀하게 측정할 수 있는 기술이다. 구현한 기술은 초당 2.6억개의 픽셀들에 대한 높낮이의 차이를 최고 330피코미터(30억분의 1미터) 수준까지 측정할 수 있을 정도로 빠르고 정밀하다. 연구팀은 이를 이용하여 복잡한 3차원 형상을 고속으로 정밀하고 정확하게 측정할 수 있는 초고속 카메라 기능을 선보였고, 기존의 측정 기술로는 관측하기 어렵던 복잡하고 비반복적인 고속의 동역학 현상들을 성공적으로 관측할 수 있었다.
이번에 개발한 초고속 카메라 기술의 고속 형상 이미징 속도와 높은 공간 분해능을 이용하면 반도체 공정이나 3D 프린팅 과정을 실시간으로 모니터링하며 공정을 제어할 수 있어 점점 고도화 및 집적화 되는 공정의 수율을 크게 향상시킬 수 있을 것으로 기대된다. 또한 다양한 진폭이 존재하면서 동시에 매우 빠른 순간 속도를 갖는 미세 구조의 움직임을 포착할 수 있음을 보여, 기존에 관찰하지 못했던 복잡한 비선형(nonlinear) 및 과도(transient)의 물리 현상들을 탐구하는 차세대 계측 기술로 발전할 수 있을 것으로 기대된다.
김정원 교수는 “이번 연구에서는 1차원적인 선 모양의 빛을 스캔해서 움직이는 방식으로 2차원 표면의 높낮이를 측정하였으나, 향후에는 2차원 표면의 높낮이를 스캔 없이 한번에 측정할 수 있는 방식으로 기술을 발전시킬 예정”이라고 밝혔다.
한편 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 중견후속연구, 선도연구센터, 기초연구실 및 중견연구 사업의 지원을 받아 수행됐다.
2023.03.02
조회수 2681
-
반도체 분야 세계적인 국제학술대회 디자인콘(DesignCon)에서 최우수논문상 수상자 4명 동시 배출
반도체 설계 분야에서 세계적으로 권위를 인정받고 있는 국제학술대회인 디자인콘(DesignCon)에서 최우수 논문상 수상자 4명을 우리 대학 한 연구실에서 동시 배출해 화제다.
전체 수상자 8명 중 절반인 4명을 배출한 것도 대단한 성과인데 인텔(Intel)·마이크론(Micron)·AMD·화웨이(Hwawei)와 같이 반도체 강국으로 꼽히는 미국·중국·일본의 글로벌 빅테크 기업 소속 엔지니어 및 연구원들과 당당히 경쟁해서 따낸 것이기에 이들의 수상이 더욱 의미가 크고 값지다는 평가다.
전 세계 기업과 대학 연구실 가운데 최초이면서도 유일하게 인공지능(AI) 스스로 최적의 설계를 구현하는 강화학습(RL)을 포함한 머신러닝(ML) 기술과 3D 이종반도체 패키징(3D Heterogeneous Packaging) 기술을 결합하여 슈퍼 컴퓨터·초대형 데이터센터의 고성능 서버 등에 핵심적으로 사용되는 HBM(고대역폭 메모리) 등 차세대 인공지능(AI) 반도체를 연구하는 전기및전자공학부 김정호 교수 연구실 테라 랩(Terabyte Interconncection and Package Laboratory) 소속 박사과정 학생들의 이야기다.
이들의 연구는 인공지능이 중심이 되는 디지털 전환과 동시에 이를 가능하게 하는 인공지능 반도체와 컴퓨터의 발전을 선도하고 있다. 더 나아가 설계 과정 전체를 인공지능으로 자동화하려는 미래 방향을 제시하고 있다.
전기및전자공학부 테라 랩 소속 김성국(사진·31세)·최성욱(사진·27세)·신태인(사진·26세)·김혜연(사진·26세) 박사과정 학생 4명이 국제학회인 디자인콘(DesignCon)이 선정한 2022년 최우수 논문상 수상자로 선정됐다고 16일 밝혔다. 시상식은 오는 31일 미국 실리콘밸리 산호세 산타클라라 컨벤션센터에서 열리는 `디자인콘 2023 국제학술대회'에서 열린다.
이들 대학원 학생 4명이 수상하는 최우수 논문상은 반도체 및 패키지 설계 분야에서 국제적으로 권위를 인정받고 있는 디자인콘이 인텔·마이크론·램버스·텍사스인스트루먼트(TI)·AMD·화웨이·IBM·앤시스(ANSYS) 등 글로벌 빅테크 기업의 연구원과 엔지니어, 그리고 세계 각 대학 대학(원)생을 대상으로 매년 7월 말 논문 초안을, 12월 말까지 전체 논문을 각각 모집하고 제출받아 심사를 거쳐 수여하는 학술대회 최고상이다.
이 때문에 발표되는 논문은 실무와 매우 밀접한 관련이 있고 곧바로 제품에 적용이 가능한 실용적인 기술에 관한 내용이 대부분이다.
2022년에는 총 8명의 수상자를 선정했는데 김정호 교수가 지도하는 KAIST 테라 랩에서만 수상자의 절반인 4명을 배출했다. 수상작 가운데 2편은 인공지능을 이용한 반도체 설계, 나머지 2편은 인공지능 컴퓨팅을 위한 반도체 구조 설계에 관한 논문이다.
우선 최우수 논문상 수상자 중 김성국 학생(31세)은 고성능 인공지능 가속기를 위한 고대역폭 메모리 기반 프로세싱-인-메모리(PIM) 아키텍처를 설계했다. 최성욱 학생(27세)은 강화학습 방법론을 활용해 고대역폭(HBM) 메모리를 위한 하이브리드 이퀄라이저를 설계해 주목을 받았다. 신태인 학생(26세)은 차세대 뉴로모픽 컴퓨팅 시스템의 신호 무결성 모델링과 설계 및 분석 방법론을 제안했다.
마지막으로 김혜연 학생은 반도체 설계 문제 중 디커플링 캐패시터 배치 문제를 조합 최적화 문제로 정의하고 오프라인 학습 방법인 모방 학습을 통해 자동 최적화했다. 김혜연 학생은 이번 수상 논문 이외에도 반도체 설계 문제에 지식 증류·데이터 증강·대칭성 학습 등 다양한 인공지능 기법을 적용, 한층 성능이 개선된 결과를 얻어 관련 산업계로부터 많은 주목을 받고 있다.
특히 김혜연 학생의 연구는 기존 인공지능을 적용한 연구에서 한 발 더 나가 반도체 설계 문제의 특징을 고려한 학습 방법과 신경 구조를 직접 설계한 연구로 평가받아 2022년 초 열린 인공지능 분야 최대학회인 뉴립스(NeurIPS) 워크숍에서 발표된 적이 있다.
우리 대학 테라 랩은 2022년 4명의 수상자 외에 지난 2021년에도 김민수 박사과정 학생이 최우수 논문상을 수상했다. 불과 2년 사이에 디자인콘이 주관하는 학술대회의 꽃인 최우수 논문상 수상자를 모두 5명을 배출했는데 5편의 수상자 논문 중 3편이 인공지능을 활용한 반도체 설계에 관한 논문이다.
반도체 설계는 고성능·저전력을 목적으로 미세한 3차원 패키지에 다양한 기능을 갖춘 수많은 부품을 최적화해 배치할 뿐만 아니라 검증을 위해서는 복잡한 시뮬레이션이 필요하기 때문에 매우 어려운 분야로 꼽힌다.
김정호 교수가 이끄는 테라 랩에는 올 1월 현재 석사과정 10명, 박사과정 13명 등 모두 23명의 학생이 반도체 전·후공정에 들어가는 다양한 패키지와 인터커넥션 설계를 강화·모방 학습과 같은 인공지능(AI) 머신러닝(ML)을 활용해 최적화하는 연구를 수행 중이다.
김정호 교수는 "테라 랩은 전 세계 산·학·연구기관 중 유일하게 그간의 연구성과를 기반으로 독창적으로 개발한 반도체 설계 자동화 기술인 5I(CI, PI, TI, EMI, AI) 융합 솔루션을 갖추고 있다ˮ면서 "2030년 이후에는 이종 칩(Chip)을 하나의 패키지로 통합하는 `3D 이종 집적화(Heterogeneous Integration) 패키징' 기술이 대세로 자리를 잡을 것ˮ이라고 전망했다. 김 교수는 이어 "디지털 대전환(DX) 시대를 맞아 반도체의 역할이 갈수록 중요해지는 만큼 차세대 반도체 개발에 필요한 맞춤형 인재 양성을 위해 더욱 노력하겠다ˮ고 소감을 밝혔다.
2023.01.16
조회수 3594
-
김정원 교수, 미국 광학회 석학회원으로 선출
우리 대학 기계공학과 김정원 교수가 지난 11월 8일 미국광학회(Optica, 舊 Optical Society of America, OSA)의 석학회원(Fellow)으로 선출됐다.
미국광학회는 1916년 창설돼 현재 180여 개국 22,000명 이상의 회원을 보유한 광학 분야에서 세계 최대 규모와 권위를 가진 학회다.
김 교수는 `초저잡음 광주파수빗 광원들과 이를 활용한 대규모 타이밍 동기화 및 초고속 펄스비행센서'를 포함한 새로운 응용 분야들을 개척한 공로(for pioneering contributions to ultralow-noise optical frequency combs and their applications including large-scale timing synchronization and ultrafast time-of-flight sensors)를 인정받아 석학회원으로 선출됐다.
김 교수는 2009년 9월 우리 대학에 부임한 이래 매우 낮은 잡음을 가지는 광주파수빗 광원들을 연구해왔다. 2011년 100 아토초(1경 분의 1초)보다 작은 타이밍 지터를 가지는 광섬유 레이저를 세계 최초로 개발한 것을 비롯해 다양한 광섬유 및 마이크로공진기 기반 광원들의 잡음 현상을 연구해왔으며, 2016년 미국광학회에서 발간하는 `어드밴시스 인 옵틱스 앤 포토닉스(Advances in Optics and Photonics)' 誌에 게재한 초저잡음 광섬유 광주파수빗에 관한 초청논문은 2020년 웹 오브 사이언스(Web of Science)의 물리(physics) 분야 상위 1% 피인용 논문(Highly Cited Paper)으로 선정되기도 했다. 최근에는 이러한 초저잡음 광원들의 공학 응용에 집중해 초고속 초고분해능 펄스비행시간 센서(Nature Photonics 2020), 광주파수 안정화(Science Advances 2020), 초저잡음 전류펄스 생성(Nature Communications 2020), 초안정 마이크로파 생성(Nature Communications 2022) 등 다양한 연구성과를 내고 있다.
김 교수는 현재 미국광학회에서 발간하는 `옵틱스 레터스(Optics Letters)' 誌의 편집위원, 레이저 분야 최대 학회인 `레이저 및 전자광학 국제학술회의(Conference on Lasers and Electro-Optics, CLEO)'의 광계측 분과 프로그램 위원, 한국광학회 학술이사 등으로도 활동 중이다.
김정원 교수는 "그동안 같이 연구한 뛰어난 대학원생들과 훌륭한 동료 연구자들께 감사드린다ˮ라며 "앞으로도 광학 분야 발전을 위한 연구와 봉사분야에서 더욱 열심히 활동하겠다ˮ라고 소감을 밝혔다.
2022.11.25
조회수 2962
-
사람처럼 느끼고 상처 치유가 가능한 로봇 피부 기술 개발
우리 대학 기계공학과 김정 교수 연구팀이 메사추세츠 공과대학(MIT), 슈투트가르트 대학교(Univ. of Stuttgart)의 연구자들과 공동연구를 통해 `넓은 면적에 대해 다양한 외부 촉각 자극을 인지할 수 있으며, 칼로 베어져도 다시 기능을 회복할 수 있는 로봇 피부 기술'을 개발했다고 9일 밝혔다.
기계공학과 박경서 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 로보틱스(Science Robotics)'에 6월 9일 출판됐다. (논문명: A biomimetic elastomeric robot skin using electrical impedance and acoustic tomography for tactile sensing)
사람의 가장 큰 장기인 피부는 내부를 충격에서 보호함과 동시에 주위로부터의 물리적인 자극을 전달하는 통로다. 피부를 이용한 정보 전달(혹은 촉감)은 표면 인식, 조작, 쓰다듬기, 꼬집기, 포옹, 몸싸움 등으로 종류가 다양하며, 피부가 덮은 모든 부분에서 느낄 수 있기에 풍부한 비언어적 감정 표현과 교류를 가능하게 한다. 그래서 촉각은 `한 인간이 세계를 탐구하는 첫 번째 수단'이라고도 한다.
그러나, 로봇 분야의 비약적인 발전에도 불구하고 로봇 대부분은 딱딱한 소재의 외피를 가지며, 인간과의 물리적 교류를 터치스크린과 같은 특정한 부위로 제한하고 있다. 그 이유는 현재의 로봇 촉각 기술로는 `인간의 피부처럼 부드러운 물성과 복잡한 3차원 형상을 가지고, 동시에 섬세한 촉각 정보를 수용하는 것이 가능한 로봇 피부'를 개발하지 못하기 때문이다. 또한, 사람의 피부는 날카로운 물체에 베여 절상 혹은 열상이 발생하더라도 신축성과 기능을 회복하는 이른바 치유 기능을 하고 있으며, 이는 현대 기술로 재현하는 것이 매우 어렵다. 따라서, 사람과 로봇의 다양한 수준의 물리적 접촉을 중재하기 위해 부드러운 물성을 가지면서 다양한 3차원 형상을 덮을 수 있는 대면적 촉각 로봇 피부 기술이 필요하다.
김정 교수 연구팀은 이러한 로봇 피부를 만들기 위해 생체모사 다층구조와 단층촬영법을 활용했다. 이 기술들은 인간 피부의 구조와 촉각수용기의 특징과 구성 방식을 모사해, 적은 수의 측정 요소만으로도 넓은 3차원 표면 영역에서 정적 압력(약 0~15Hz) 및 동적 진동 (약 15~500Hz)을 실시간으로 감지 및 국지화하는 것을 가능케 했다. 기존의 터치스크린 기술은 해상도를 높일수록 필요한 측정점의 수가 증가하는 데 비해, 이번 기술은 넓은 수용영역을 갖는 측정 요소들을 겹치게 배치해 수십 개의 측정 요소만으로도 넓은 측정 영역을 달성할 수 있다.
연구팀은 측정된 촉감 신호를 인공지능 신경망으로 처리함으로써, 촉각 자극의 종류(누르기, 두드리기, 쓰다듬기 등)를 분류하는 것도 가능함을 선보였다. 더 나아가, 개발된 로봇 피부는 부드러운 소재(하이드로젤, 실리콘)로 만들어져 충격 흡수가 가능하고, 날카로운 물체에 의해 깊게 찢어지거나 베여도 피부의 구조와 기능을 손쉽게 회복하는 것이 가능했다.
연구진은 본 기술이 넓은 부위에 정교한 촉각 감각뿐만 아니라 사람의 피부와 유사한 물성과 질감도 부여할 수 있으므로, 서비스 로봇과 같이 사람과의 다양한 접촉과 상호작용이 필요한 응용 분야에 유용하게 활용될 것으로 기대했다. 예를 들면 점점 대중화되는 식당 서빙 로봇이나 인간형 로봇에 적용할 수 있다. 더 나아가, 로봇 피부를 의수/의족의 피부로 사용한다면 실제 사람의 손/다리와 똑같은 외형과 촉감 감각을 절단 환자들에게 제공할 수도 있다. 또한 인간형 로봇이 사람과 똑같은 기능과 외형의 피부를 가지고, 상처가 나더라도 피부의 기능을 복구하는 치유 능력을 갖게 할 수도 있다.
기계공학과 김정 교수는 "이번 연구를 통해 인간과 로봇이 같은 공간에 공존하기 위한 필수 기술인 대면적 로봇 촉각 피부를 개발했을 뿐만 아니라 현재 기술보다 월등한 사람의 피부감각 혹은 촉각의 성능에 비견할 만한 기술을 구현한 데 큰 의의가 있다ˮ라고 밝혔다.
한편, 이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐으며,ᅠKAIST 기계공학과 양민진, 조준휘 박사과정과 메사추세츠 공과대학(MIT)의 육현우 박사, 슈투트가르트 대학교(Univ. of Stuttgart)의 이효상 교수가 공동연구자로 참여했다.
동영상 1: 로봇 피부 촉각 시연 (https://youtu.be/3T8dX32fo6U)
동영상 2: 로봇 피부 촉감 인식 시연 (https://youtu.be/CViv1oLo_Ec)
동영상 3: 로봇 피부 절개 및 복구 시연 (https://youtu.be/vsllVFM9yS4)
동영상 4: 로봇피부의 미용의수에의 적용 (https://youtu.be/qR1msF0FDTA)
2022.06.09
조회수 6603
-
광학 칩과 광섬유로 초안정 마이크로파 발생 기술 개발
우리 대학 기계공학과 김정원 교수와 물리학과 이한석 교수 공동연구팀이 광학 칩과 광섬유를 이용해 손바닥만 한 작은 장치로부터 2조분의 1(5×10-13) 수준의 주파수 안정도를 가지는 초안정 마이크로파를 발생하는 기술을 개발했다고 26일 밝혔다.
이 새로운 기술을 이용하면 기존의 마이크로파 발생 기술들보다 월등하게 우수한 위상잡음과 주파수 안정도의 마이크로파를 핸드폰 크기 면적의 작은 장치로부터 생성할 수 있어, 향후 5G/6G 통신, 전파망원경을 이용한 천체 관측, 군용 레이더, 휴대용 양자 센서 및 초고속 신호 분석 기술 등의 다양한 분야에서 획기적인 성능 향상이 가능하다.
우리 대학 기계공학과 권도현 박사(現 한국표준과학연구원)와 나노과학기술대학원 정동인 박사가 공동 제1 저자로 참여한 공동연구팀의 이번 논문은 국제학술지 `네이처 커뮤니케이션즈(Nature Communications)' 1월 19일 字에 게재됐다. (논문명: Ultrastable microwave and soliton-pulse generation from fibre-photonic-stabilized microcombs)
최근 초소형 마이크로공진기(microresonator)를 이용해 광 펄스를 생성하는 마이크로콤(micro-comb) 기술이 급격하게 발전하고 있다. 마이크로콤은 광 펄스가 나오는 속도를 수십 기가헤르츠(GHz, 1초에 10억 번 진동)에서 테라헤르츠(THz, 1초에 1조 번 진동)까지 높일 수 있어 고주파 마이크로파(microwave)나 밀리미터파(millimeter-wave) 생성이 쉽고 시스템의 소형화가 가능해 다양한 정보통신기술 시스템의 대역폭 향상과 성능 개선에 핵심적인 역할을 할 것으로 기대되고 있다.
마이크로콤은 이론적으로 펨토초(femtosecond, 10-15초=1,000조분의 1초) 수준의 펄스 간 시간 오차를 가지지만, 소형 소자의 특성상 주변 환경에 의해 쉽게 변해 장시간 그 성능을 유지하는 데에 어려움이 있었다. 이를 해결하기 위해 마이크로콤을 기계적으로 안정한 장치에 주파수 잠금해 안정도를 향상할 수 있으나, 지금까지는 이러한 안정화 장치가 매우 복잡하고 진동에 민감하며 부피가 커서 초소형 마이크로콤이 가지는 장점을 살릴 수 없고 실험실 밖 응용에 활용할 수 없었던 문제가 있었다.
연구팀은 이 문제를 해결하기 위해 광섬유를 이용해 마이크로콤의 주파수를 안정화하는 기술을 개발했다. 1km 길이의 광섬유는 열 기계적(thermomechanical) 잡음 한계에 의한 이론적인 길이 안정도가 1,000조분의 1 수준으로 매우 우수하면서도, 부피가 작고 매우 가벼우면서 가격도 저렴한 장점이 있다. 연구팀은 이러한 광섬유 기반의 안정화 장치를 108 mm × 73 mm × 54 mm 크기로 구현할 수 있었다.
그 결과 생성된 22-기가헤르츠(GHz) 마이크로파의 시간 오차를 상용 고성능 신호 발생기보다 6배 이상 향상된 10펨토초 수준으로 낮출 수 있었으며, 주파수 안정도는 2조분의 1(5×10-13) 수준까지 낮출 수 있었다.
이 기술은 매우 우수한 위상잡음과 주파수 안정도의 마이크로파와 광 펄스를 동시에 생성할 수 있어, 다양한 최첨단 과학기술 분야들에서 활용할 수 있다. 대표적인 예로서 전파망원경 기반의 초장기선 간섭계(very long baseline interferometer, VLBI)의 경우 보다 높은 주파수와 낮은 잡음을 가지는 마이크로파와 광 펄스를 사용하면 측정 분해능과 관측 정밀도를 획기적으로 향상시킬 수 있어 기존에는 관측할 수 없었던 블랙홀의 사건의 지평선(event horizon)과 같은 새로운 천체 현상들을 탐사할 수 있을 것으로 기대된다.
우리 대학 기계공학과 김정원 교수는 "이번에 개발된 초안정 기술을 통신, 레이더, 데이터 변환기와 전파망원경 등 다양한 분야들에 적용하기 위한 후속 연구들을 진행 중ˮ이라고 밝혔으며, 물리학과 이한석 교수는 "향후 성능을 더욱 끌어올리고자, 실리콘 칩 상에 구현된 핵심 소자인 마이크로공진기의 광학적 특성을 개선하는 연구를 수행 중ˮ이라고 밝혔다.
한편 이번 연구는 정보통신기획평가원 양자센서핵심원천사업과 한국연구재단 중견연구사업의 지원을 받아 수행됐다.
2022.01.26
조회수 6520
-
초고속 전자카메라의 성능을 한층 더 높여
우리 대학 기계공학과 김정원 교수 연구팀이 한국원자력연구원 초고속 방사선 연구실과의 공동 연구를 통해 극초단 전자 펄스의 타이밍을 10펨토초(100조분의 1초) 안정도로 측정하고 제어하는 기술을 개발, 이를 적용해 초고속 전자카메라(전자회절장치)의 성능을 한층 더 높이는 데 성공했다고 5일 밝혔다.
이 새로운 타이밍 안정화 기술을 이용하면 초고속 전자 회절(ultrafast electron diffraction, UED) 기법의 분석 능력을 크게 개선해 그래핀 등의 2차원 물질과 같은 첨단 물질들의 새로운 성질들을 규명할 수 있는 핵심 기술이 될 것으로 기대된다.
신준호 박사(現 원자력(연))가 제1 저자로서 우리 대학 박사과정 중 수행한 연구 결과를 발표한 이번 성과는 국제학술지 `레이저 앤드 포토닉스 리뷰즈(Laser & Photonics Reviews; IF=10.655)'의 2021년 2월호 표지논문(front cover)으로 2월 11일 字 게재됐다. (논문명: Sub-10-fs timing for ultrafast electron diffraction with THz-driven streak camera)
극초단 전자 펄스를 기반으로 한 회절 분석 기법(UED)은 전자 펄스의 짧은 펄스폭(수십 펨토초)과 광속에 가까운 속도(99.2%)를 활용해 태양광 소자, 차세대 전기·전자 소재 개발 등 미래 첨단 산업 분야를 위한 연구에 활용되고 있다.
한국원자력연구원은 이미 세계에서 가장 성능이 우수한 전자카메라를 보유하고 있으며, 이 기술 개발을 통해 기존 전자 회절 기법의 분해능 개선뿐만 아니라 이전에는 불가능했던 원자 내의 전자 동역학 관측에도 도전하게 됐다.
기존의 전자 펄스의 타이밍 안정화 기술들은 전자를 생성하는 고주파 마이크로파 신호와 레이저를 개별적으로 안정화했으나, 전자 펄스 자체의 타이밍을 장시간 안정화하지는 못하는 한계점이 있었다.
연구팀은 이러한 한계들을 극복하기 위해 테라헤르츠파 스트리킹(streaking) 기술로 전자 펄스의 타이밍을 측정하고 제어하는 시스템을 구현했다.
이러한 테라헤르츠파 스트리킹 기술의 선결 조건으로 먼저 전자 펄스를 발생시키는 데 필요한 레이저와 마이크로파 신호들의 정밀한 측정과 제어가 이뤄져야 하며, 연구팀은 이를 위해 레이저와 마이크로파 간의 정밀 동기화 시스템, 광 펄스의 모니터링 시스템, 자석 기반 전자 펄스 압축 시스템 등 다양한 레이저-마이크로파-전자빔 안정화 장치들을 하나씩 구현하고 최적화했다.
최종적으로 측정한 전자 펄스와 테라헤르츠파 사이의 시간 차이는 모터를 활용해 제어하고 보정했으며, 그 결과 세계 최초로 전자 펄스의 타이밍을 5.5펨토초 수준으로 4,600초 동안 안정화할 수 있었다. 이는 기존의 세계 최고 성능보다 4배 이상 향상된 시간 안정도다.
김정원 교수는 "지속적으로 이루어지고 있는 전자 펄스의 타이밍 안정도 개선과 초고속 전자카메라의 성능 향상이 다양한 태양광 소재 개발이나 전자구름 관측 등 차세대 기초 및 산업 연구 수요를 맞출 수 있을 것ˮ이라고 전망했다.
한편 이번 연구는 한국원자력연구원 주요사업과 한국연구재단 중견연구지원사업의 지원을 받아 수행됐다.
2021.03.09
조회수 87801
-
김정호 교수, 『공학의 미래』 출간
우리 대학 전기및전자공학부 김정호 교수가 디지털 변혁(Digital Transformation)과 코로나19가 촉발한 기술 변곡점에 직면해 있는 지금이야말로 한국이 4차 산업혁명 시대의 '퍼스트무버'로 치고 나갈 최적기라는 비전을 담은 신작(新作) 『공학의 미래-(부제) 문명의 대격변, 한국 공학이 새롭게 그리는 빅픽처』를 최근 출간했다.
진정한 디지털 기술 독립을 이루기 위한 한국 공학의 역할은 물론 우리 사회가 짚어야 할 문제들을 논의하고 인공지능 · 빅데이터 · 클라우드 · 반도체 기술의 개발 방향과 함께 그 토대가 되는 인재 육성 방안 등을 해결책으로 제시하고 있다.
김 교수는 이 책을 통해 오늘날 대한민국은 지금 엄청난 사회적·문화적·기술적인 문명의 교체 위기에 직면해 있다고 정의했다. 특히, 급속히 발전하는 '디지털 공학'을 중심으로 코로나19가 가속화 한 일상의 황폐화는 물론 실업·빈곤·교육 및 디지털 격차·고령화 문제에 이르기까지 총체적 위기를 극복하는 데 앞장서야 한다고 강조한다.
이를 뒷받침하기 위해 향후 혁신적인 발전 방향과 절호의 기회를 제공하게 될 디지털 공학의 기초인 수학의 원리와 4차 산업혁명 속에서 급속하게 발전하고 있는 인공지능·빅데이터·컴퓨터·반도체의 기본 원리를 이해하기 쉽게 설명했다. 김 교수는 이와 함께 코로나19 이후 앞으로 전개될 4차 산업혁명의 미래를 제시하고 이를 선도해나갈 미래의 인재상과 함께 대한민국의 발전 전략까지 이 책에 담았다.
또한, 오늘날과 같은 변화무쌍한 시대에는 '창조성'과 '원천성'이 생존에 필요한 중요한 요소가 돼야 한다고 꼽았다. 지금까지 우리 공학은 방향이 아닌 속도에 초점을 맞춘 '빠른 추격자' 성장 모델에 안주하고 익숙해져 있지만 이제부터라도 정해진 이론과 방정식이라는 규칙을 넘어 존재하는 세상을 과감히 두드리고 도전해야 한다고 강조한다.
김 교수는 이런 도전의 동반자가 인공지능·빅데이터·클라우드·반도체 기술이 될 것이라고 예측했다. 더 나아가 내일의 내가 오늘의 내가 아니듯이, 내일의 공학이 오늘의 공학이 될 수 없다고 강조하는 김 교수는 "공학은 원래 그렇게 하는 거야ˮ라는 말로는 애플·구글·아마존·MS·테슬라와 같은 빅테크 기업들의 혁신과 변신을 설명할 수 없다고 역설했다.
그는 이어 "창조성은 단단한 편견을 넘어 열린 마음에서 나온다ˮ고 말하면서 "디지털 공학이 인간을 닮은 모습을 할 때 진짜 혁신이 시작된다ˮ고 강조한다.
김 교수는 이와 함께 인공지능·빅데이터·클라우딩·반도체를 중심으로 하는 4차 산업혁명은 고정관념에 젖어 있는 우리 공학에는 위기인 동시에 새로운 활력을 제공하는 기회가 될 것이라고 주장한다.
대한민국 공학이 단순 개선을 위한 기술 개발에 몰두할 수밖에 없는 구조를 유지한다면 위기는 지속되겠지만, 이제 인간의 욕망이 향하는 방향을 제대로 간파해 '디지털 융합 기술'을 추구할 때 살아있는 공학이 되어 인류를 위해 기능할 것이라는 예견이다. 이를 위해서는 자연과 대화할 수 있는 수학, 인간의 마음을 읽는 인문학, 영역을 넘어 소통하는 융합의 기술이 필수라고 김 교수는 말한다.
뿐만 아니라, 한국 공학이 이제부터라도 뿌리 깊은 '공학적 도그마'에서 벗어나 융합적이면서도 실용적인 태도를 지녀야 한다고 제안한다. 다양한 학문 분야의 진정한 융합을 통해서만 창조적이고 원천적인 연구 개발이 가능하다는 주장이다.
지금까지는 연구 주제의 목표를 상당 부분 SCI 논문 등재로 설정한 경우가 많았기 때문에 연구 결과가 소규모 실험에 머물러 의미 있는 성과를 성취해내기 어려운 것은 물론이며 실제 기업에서 활용할 수 있는 연구인지를 성찰해 볼 필요가 있다고 김 교수는 지적한다.
일례로 미국에서는 상품 가치가 가장 높은 연구 주제는 실리콘 밸리 자체 기업 인력으로 개발하고 군사·우주 분야처럼 보안이 필요한 연구는 미국 시민권을 가진 연구자가 진행한다. 개량이 필요한 연구 주제는 해외 유학생을 활용하는 경향이 강한데 이러한 배경 때문에 미국 이공계 대학원이 중국·인도·한국 등 아시아계 학생들로 채워지는 사실을 털어놓는다. 또 그런 유학생들이 고국에 돌아와 교수가 되었을 때 그 연구를 이어받은 제자가 진행하는 연구 주제가 실제로 우리 삶에 독창적이면서, 상업화가 가능하고, 유의미한 영향을 주는 연구인지 살펴봐야 한다는 게 김 교수의 주장이다.
이밖에 김 교수는 이 책에서 미국 유학 시절 겪었던 일, 무선 배터리 충전 개발에 얽힌 일화, 인공지능과 반도체 개발 과정에서 느꼈던 감정들, 수학의 아름다움과 유용성, 디지털 공학과 인간의 관계, 그리고 무엇보다 KAIST에서 후학을 길러내며 느꼈던 인재 육성에 관한 소회 등 현장감 넘치고 흥미진진한 이야기를 담았다. 그가 들려주는 사례 하나하나는 디지털 미래를 개척하는 한국 공학계는 물론 모두가 귀담아들을 만한 소중한 자산이다.
한편, 김정호 교수가 펴낸 신간 『공학의 미래』는 인터넷에서는 지난 20일부터, 대형서점을 통해서는 21일부터 구입할 수 있다.
2021.01.25
조회수 63518
-
반도체 다층 소자의 개별 층 두께를 옹스트롬 정확도로 비파괴 검사하는 기술 개발
우리 대학 기계공학과 김정원 교수 연구팀이 삼차원 낸드플래시 메모리(이하 3D-NAND)의 비파괴적인 검사를 위해 광학 측정법과 머신러닝을 사용한 다층 두께 측정기술을 개발했다. 이 기술은 200층 이상의 초고밀도 3D-NAND 소자 공정 과정에서 전수검사 방법으로 사용돼 공정의 효율을 극대화할 수 있을 것으로 기대된다.
3D-NAND 메모리는 수백층의 메모리 셀이 적층되어 있는 메모리 반도체로, 기존의 평면형 플래시 메모리와 비교하여 저장용량과 에너지 효율이 매우 우수하여 개인용 USB부터 서버 시스템까지 다양하게 사용되고 있다.
기존에는 수직으로 적층된 반도체 셀들의 두께를 측정하기 위하여 전자현미경을 사용하였다. 하지만 전자현미경을 사용한 방법은 샘플의 단면을 이미징하기 위하여 샘플을 절단해야 하고 비용도 많이 들기 때문에, 전수검사로서는 적합하지 않은 문제가 있었다.
연구팀은 반도체 다층 구조가 초고속 광학 시스템에 자주 사용되는 유전체 거울의 구조와 유사하다는 점에 착안하여, 유전체 거울의 분석에 활용되는 광학 스펙트럼 측정법을 반도체 다층 구조에도 적용했다.
연구팀은 엘립소미터(ellipsometer)와 스펙트로포토미터(spectrophotometer)를 이용한 반도체 다층 샘플의 스펙트럼 측정과 머신러닝 알고리즘을 활용하여 200층이 넘는 반도체 물질의 각 층 두께를 1.6 옹스트롬 (1Å = 1미터의 100억 분의 1)의 평균제곱근오차로 예측할 수 있는 방법을 개발했다. 이 기술은 삼차원 반도체 소자의 검수 공정, 적층 공정, 그리고 식각 공정의 정확도를 크게 향상시킬 수 있을 것으로 기대된다.
연구팀은 또한 시뮬레이션 스펙트럼 데이터를 생성해 개별 층의 두께 불량을 검출할 수 있는 머신러닝 학습법도 개발했다. 그 결과 반도체 물질 적층 시 목표로 설정한 두께보다 약 50Å만큼 얇게 제작된 샘플들을 정상 범주의 샘플들로부터 성공적으로 분리할 수 있었다. 연구팀이 개발한 불량샘플 검출법은 시뮬레이션 데이터를 활용하기 때문에 큰 비용이 들지 않으며, 공정의 초기에 발견될 수 있는 불량 샘플들을 효과적으로 검출할 수 있을 것으로 기대된다.
최근 글로벌 IT 기업들의 서버 시스템에 대한 수요가 늘어나고 높은 저장용량을 가진 스마트 기기들이 개발됨에 따라, 초고밀도, 초고효율을 갖는 3D-NAND 메모리가 반도체 시장에서 각광받고 있다. 이번 연구 결과는 다양한 삼차원 반도체 소자들의 비파괴적인 검수를 위해 활용될 수 있다.
김 교수는 “비파괴적인 광학 측정법과 머신러닝을 결합한 방법은 다양한 반도체 검수 공정에도 적용할 수 있다”고 밝히며, “다양한 반도체 소자들의 형상이나 공정 조건 모니터링에도 광학측정법과 머신러닝을 결합한 접근방식을 활용할 것”이라고 말했다.
기계공학과 곽현수 박사과정 학생이 제1저자로 참여하고 삼성전자 메모리 계측기술팀과의 산학협력연구로 수행된 이번 연구는 국제학술지 ‘라이트: 어드밴스드 매뉴팩처링(Light: Advanced Manufacturing)’ 창간호에 1월 12일 게재됐다. (논문명: Non-destructive thickness characterisation of 3D multilayer semiconductor devices using optical spectral measurements and machine learning)
이번 연구는 삼성전자 산학연구과제의 지원을 받아 수행됐다.
2021.01.13
조회수 60996
-
김정원 교수, 이달의 과학기술인상 10월 수상자 선정
우리 대학 기계공학과 김정원 교수가 이달의 과학기술인상 10월 수상자에 선정됐다.
과학기술정보통신부와 한국연구재단은 김정원 교수가 초고속, 고분해능, 다기능성 센서기술을 개발하여 기초정밀 공학의 지평을 넓힌 공로를 높이 평가했다고 선정 배경을 설명했다.
'이달의 과학기술인상'은 우수한 연구개발 성과로 과학기술 발전에 공헌한 연구개발자를 매월 1명씩 선정해 과기정통부 장관상과 상금 1천만 원을 수여하는 상이다. 세종대왕이 길이와 부피의 측정체계를 확립한 10월 26일을 기념하는 ‘계량측정의 날’을 맞아 김정원 교수가 이달의 수상자로 선정됐다.
레이저를 이용한 초정밀 거리 측정기술은 비접촉, 비파괴 등의 장점을 앞세워 중력파 검출부터 산업용 센서까지 다양한 분야에서 활약해 왔다. 하지만 대표적인 레이저 측정기술 중 하나인 펄스비행시간(time-of-flight, TOF) 기술은 긴 거리 측정은 가능하지만 분해능이 떨어지며, 레이저 간섭계 기술은 분해능은 우수하지만 측정 범위가 마이크로미터에 불과하다. 또한 두 기술 모두 측정 속도가 느리며, 거리·분해능·시간 중 한 가지 성능을 향상하면 나머지 성능이 저하되는 한계가 있었다.
김 교수는 레이저에서 발생한 빛 펄스와 광다이오드로 생성한 전류 펄스사이의 시간 차가 100 아토초(10-16초, 1경분의 1초) 이하로 작다는 사실을 발견하고, 전광샘플링하는 방법으로 한 번에 여러 지점을 동시 측정할 수 있는 독창적인 초고속·초정밀·다기능 TOF센서를 개발했다. 측정속도 100메가헤르츠(1초에1억번 진동), 분해능 180피코미터(55억분의 1미터), 동적범위 150데시벨의 성능으로 기존 TOF와 간섭계 기술의 한계를 동시에 극복했다는 평이다. 연구결과는 네이처 포토닉스(Nature Photonics) 2020년 2월 10일자에 게재됐다.
김정원 교수는 "함께 열정적으로 연구한 대학원생들과 연구에 전념할 수 있는 환경을 만들어준 학교에 감사드린다"라며 "향후 마이크로 소자 내에서의 역학현상 탐구나 첨단제조를 위한 초정밀 형상측정 등 새롭고 다양한 기계·제조 분야에서 활용이 기대된다"라고 수상 소감을 밝혔다.
2020.10.08
조회수 21736