본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EA%B9%80%EA%B8%B0%EC%9D%91
최신순
조회순
AI대학원 김기응 교수 연구팀, 인공지능 전력망 운영관리 국제대회 1위 달성
우리 대학 AI대학원 김기응 교수 연구팀(홍성훈, 윤든솔 석사과정, 이병준 박사과정)이 인공지능 기반 전력망 운영관리 기술을 겨루는 국제경진대회인 'L2RPN 챌린지(Learning to Run a Power Network Challenge 2020 WCCI)'에서 최종 1위를 차지했다. 이 대회는 기계학습 연구를 촉진하기 위한 각종 경진대회를 주관하는 비영리단체 ChaLearn, 유럽 최대 전력망을 운영관리하는 프랑스 전력공사의 자회사 RTE(Réseau de Transport d'Électricité)社 및 세계 최대 규모의 전력 회사 SGCC(State Grid of China)의 자회사인 GEIRI North America(Global Energy Interconnection Research Institute)에서 공동주최해, 세계 각국의 약 50팀이 약 40일간 (2020.05.20.~06.30) 온라인으로 참여해 성황리에 마감됐다. 단순한 전력망이 스마트 그리드를 넘어서 에너지 클라우드 및 네트워크로 진화하려면 신재생 에너지의 비율이 30% 이상이 돼야 하고, 신재생 에너지 비율이 높아지면 전력망 운영의 복잡도가 매우 증가한다. 실제로 독일의 경우 신재생 에너지 비율이 30%가 넘어가면서 전력사고가 3,000건 이상 증가할 정도로 심각하며, 미국의 ENRON 사태 직전에도 에너지 발전과 수요 사이의 수급 조절에 문제가 생기면서 잦은 정전 사태가 났던 사례도 있다. 전력망 운영에 인공지능 기술 도입은 아직 초기 단계이며, 현재 사용되고 있는 전력망은 관리자의 개입 없이 1시간 이상 운영되기 힘든 실정이다. 이에 프랑스의 RTE(Réseau de Transport d'Électricité) 社는 전력망 운영에 인공지능 기술을 접목하는 경진대회 'L2RPN'을 2019년 처음 개최했다. 2019년 대회는 IEEE-14라는 14개의 변전소를 포함하는 가상의 전력망에서 단순한 운영을 목표로 열렸다. 2020년 대회는 L2RPN 2020 WCCI 챌린지라는 이름으로 특정 국가 수도 규모의 복잡한 전력망을 72시간 동안 관리자의 개입 없이 스스로 안전하고 효율적으로 운영될 수 있는 인공지능 전력망 관리 에이전트를 개발하는 것을 목표로 열렸다. 시간에 따른 공급-수요의 변화, 시설 유지보수 및 재난에 따른 급작스러운 단전 등 다양한 시나리오에 대해 전력망 운영관리 능력의 평가가 이뤄졌다. 김 교수 연구팀은 이번 2020년 대회에서 전력망 구조를 효과적으로 반영할 수 있는 그래프 신경망 모델 기반의 강화학습 에이전트를 개발해 참가했다. 기존의 에이전트들은 소규모의 전력망에서만 적용 가능하다는 한계가 있었지만, 김 교수 연구팀은 국가 수도 규모의 복잡한 전력망에도 적용 가능한 에이전트를 개발했다. 연구팀이 개발한 인공지능 전력망 운영관리 에이전트는 주어진 모든 테스트 시나리오에 대해 안전하고 효율적으로 전력망을 운영해 최종 1위의 성적을 거뒀다. 우승팀에게는 상금으로 미국 실리콘밸리에 있는 GEIRI North America를 방문할 수 있는 여행경비와 학회참가 비용 3,000달러가 주어진다. 연구진은 앞으로도 기술을 고도화해 국가 규모의 전력망과 다양한 신재생 에너지원을 다룰 수 있도록 확장할 계획이다. 한편 이번 연구는 과기정통부 에너지 클라우드 기술개발 사업의 지원으로 설치된 개방형 에너지 클라우드 플랫폼 연구단과제로 수행됐다. (연구단장 KAIST 전산학부 문수복 교수) ※ 대회 결과 사이트 관련 링크: https://l2rpn.chalearn.org/competitions ※ 개방형 에너지 클라우드 플랫폼 연구단 사이트: https://www.oecp.kaist.ac.kr
2020.07.28
조회수 22949
김기응 교수 연구, 국제 AI 챗봇 챌린지 우승
우리 대학 AI대학원 김기응 교수 연구팀(이정관, 함동훈 석사과정, 장영수 박사과정)은 인공지능 대화 시스템 분야 대표적 국제 경진대회인 제8회 대화시스템기술챌린지(The Eighth Dialogue System Technology Challenge; DSTC8)의 다중 도메인 태스크 완수(Multi-Domain Task Completion) 부문에서 우승을 차지했다. 마이크로소프트 리서치, IBM 리서치, 아마존 알렉사 AI가 공동주최한 대화시스템기술챌린지는 2019년 6월 데이터셋 공개 이후 약 3개월에 걸쳐 진행됐다. 연구팀은 사람이 직접 평가하는 인적 평가에서 68.32%의 성공률로 1위를 차지했고, 언어 이해 점수와 응답 적절성 점수에서 큰 차이를 보였다(결과 안내 : https://convlab.github.io/ ). 이 대회에서는 호텔, 식당, 명소 등 다양한 주제가 등장할 수 있는 여행 정보 안내 상황에서 사용자와의 대화를 통해 ▲ 사용자 요구사항 이해 ▲ 데이터베이스에서 요청한 정보 검색 ▲ 예약 시스템과의 연동 등의 수 있는 목적지향 대화 챗봇(chat-bot)을 만드는 것을 목표로 한다. 이러한 업무를 위한 기존 대화 시스템은 사용자 발화 이해(Natural Language Understanding; NLU), 대화 상태 추적(Dialogue State Tracking; DST), 대화 정책 결정(Dialogue Policy), 시스템 발화 생성(Natural Language Generation; NLG)의 총 네 단계를 수행하는 특화된 모듈로 구성돼 독립적으로 개발하고 통합한다. 김 교수 연구팀은 언어생성 모델인 GPT-2를 기반으로 위의 네 단계를 모두 수행하는 하나의 심층 신경망 모델을 제안했다. 연구팀이 개발한 대화 시스템은 언어생성 모델의 강력한 성능을 활용하는 창의적인 훈련 기법을 선보임으로써 기존의 방법론에 비해 훈련 과정을 대폭 단순화했다. 김기응 교수는 “최근 딥러닝 언어모델들이 다양한 자연어처리 태스크에 활용되는 추세인데, 복잡한 목적지향 대화처리에도 간결한 훈련 방법을 통해 우월한 성능을 보일 수 있음을 공식적으로 인정받은 것에 의의가 있다”라며, “아직 해결해야 할 연구 이슈가 많지만, 이 연구를 출발점으로 삼은 새로운 개발방법론들이 많이 등장할 것으로 기대한다”라고 말했다. 이번 연구는 2020년도 AAAI 학술대회의 대화시스템기술챌린지 워크숍에서 발표될 예정이다. 이 연구 결과는 산업통상자원부의 산업기술혁신사업 지원의 실내용 음성대화 로봇을 위한 원거리 음성인식 기술 및 멀티 태스크 대화처리 기술 개발 과제 수행을 통해 이뤄졌다.
2020.01.31
조회수 8052
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1