본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%97%B0%EC%84%B1%EB%82%98%EB%85%B8%EC%86%8C%EC%9E%AC%EC%97%B0%EA%B5%AC%EC%8B%A4
최신순
조회순
김희탁 김상욱 교수, 멤브레인 필요 없는 새로운 물 기반 전지 개발
우리 대학 생명화학공학과 김희탁 교수와 신소재공학과 김상욱 교수 공동 연구팀이 전기화학 소자의 핵심 부품인 멤브레인을 사용하지 않고도 에너지 효율 80% 이상을 유지하면서 1천 번 이상 구동되는 새로운 개념의 물 기반 아연-브롬 전지를 개발했다. 이번 연구를 통해 일본, 미국의 수입에 의존해 온 다공성 분리막이나 불소계 이온교환막을 사용하지 않는 기술로, 해당 기술에 대한 대외 의존도를 낮출 수 있을 것으로 기대된다. 이주혁 박사과정과 변예린 박사후연구원이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced materials)’12월 27일자 표지논문에 선정됐다.(논문명: High-Energy Efficiency Membraneless Flowless Zn-Br Battery: Utilizing the Electrochemical-Chemical growth of Polybromides) 최근 태양광, 풍력 등 신재생에너지의 불안정한 전력 공급을 해결하기 위해 전기 에너지를 미리 저장했다가 필요한 시간대에 사용할 수 있는 에너지저장장치(ESS)가 주목받고 있다. 현재는 리튬이온전지가 에너지저장장치용 이차전지로 사용되고 있으나 발화성 유기 전해액 및 리튬계 소재로 인한 발화의 위험성을 지니고 있다. 지난 2017년부터 올해 10월까지 총 21건의 에너지저장장치 화재사고가 발생했으며, 전체 에너지저장장치 시설 1천 490개 중 35%인 522개의 가동이 중단되기도 했다. 이러한 이유로 물을 전해질로 사용한 비 발화성 물 기반 이차전지 기술이 에너지저장장치용 차세대 이차전지로 주목받고 있다. 특히 다양한 물 기반 전지 기술 중 아연과 브롬을 활물질로 사용하는 아연-브롬 레독스 흐름 전지는 높은 구동 전압 및 높은 에너지 밀도를 가져 1970년대부터 지속해서 개발돼왔다. 그러나 아연-브롬 레독스 전지는 브롬이 아연과 반응해 전지 수명을 단축시키는 문제로 인해 상용화가 지연됐다. 이러한 반응을 억제하기 위해 펌프를 이용해 브롬이 함유된 전해질을 외부 탱크로 이송해 왔으나, 이는 펌프 구동을 위한 에너지 소모 및 브롬에 의한 외부 배관이 부식되는 문제를 동반한다. 브롬을 포획하는 전해질 첨가제 및 브롬의 이동을 차단할 수 있는 멤브레인에 대한 개발이 진행됐으나, 가격증가 및 출력 저하의 문제점이 발생했다. 김희탁 교수와 김상욱 교수 공동 연구팀은 일본, 미국에 의존하던 값비싼 멤브레인 소재와 어떠한 첨가제도 사용하지 않는 새로운 물 기반 아연-브롬 전지를 개발했다. 전해질 내의 이온과 외부 전기회로 사이의 전자를 주고받는 한정된 역할만 수행하던 전극의 기능에 멤브레인과 첨가제가 담당하던 브롬을 포획할 수 있는 기능을 추가했다. 질소가 삽입된 미세기공 구조를 전극 표면에 도입해 미세기공 내부에서 비극성 브롬을 극성 폴리브롬화물로 전환한 뒤, 질소 도핑 카본과 폴리브롬화물간 쌍극자-쌍극자 상호 작용을 통해 폴리브롬화물을 기공 내부에 고정했다. 이 기술은 멤브레인의 기능을 전극이 담당하므로 고가의 멤브레인이 필요 없으며, 브롬을 외부 탱크가 아닌 전극 내부에 저장함으로써 펌프 및 배관을 제거할 수 있어 가격 저감 및 에너지 효율을 증대했다. 연구팀이 개발한 다기능성 전극을 이용한 멤브레인을 사용하지 않는 물 기반의 아연-브롬 전지는 리튬-이온 전지보다 45배 저렴할 뿐 아니라, 에너지 효율 83% 이상을 보이며 1천 사이클 이상 운전이 가능하다. 김상욱 교수는 “차세대 물 기반 전지의 한계를 극복하기 위한 나노소재 기술을 이용한 새로운 해결책을 제시했다”라고 말했다. 김희탁 교수는 “이번 연구를 통해 기존보다 안전하고 경제적인 에너지저장장치의 개발이 가속화되기를 기대한다”라고 말했다. 이번 연구는 KAIST 나노융합연구소, 에너지클라우드 사업단, 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단의 지원을 받아 수행됐다. 그림 1. 브롬 활물질을 전극내부에서 폴리브롬화물로 전환하여 저장하는 다기능성 전극의 메커니즘의 모식도와 멤브레인을 장착하지 않고 구동되는 전지의 실제 모습 그림 2. 질소가 도핑된 미세기공이 코팅된 다기능성 전극의 제조 과정
2020.01.08
조회수 16547
김희탁 교수, 바나듐레독스 흐름전지용 전해액 신공정 개발
〈 김희탁 교수, 허지윤 박사과정, KIER 이신근 박사〉 우리 대학 생명화학공학과/나노융합연구소 차세대배터리센터 김희탁 교수와 한국에너지기술연구원(원장 곽병성) 에너지소재연구실 이신근 박사 공동연구팀이 생산 비용을 40% 줄인 바나듐 레독스 흐름전지용 고순도 전해액 생산 공정 개발에 성공했다. 허지윤 박사과정이 1 저자로 참여한 이번 연구 결과는 국제학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’ 9월 27일 자 온라인판에 게재됐고, 우수성을 인정받아 에디터 하이라이트(Editor’s Highlight)로 선정됐다. (논문명: Catalytic production of impurity-free V3.5+ electrolyte for vanadium redox flow batteries) 최근 리튬이온전지 기반 대용량 에너지 저장장치의 발화사고가 빈번하게 발생하면서 수계 전해질을 이용하는 비 발화성 바나듐 레독스 흐름전지에 대한 관심이 커지고 있다. 바나듐 레독스 흐름전지는 안전성뿐 아니라 내구성 및 대용량화의 장점이 있어 대용량 에너지 저장장치로의 응용이 기대되고 있으나, 리튬이온전지 대비 높은 가격으로 인해 시장 확대가 지연되고 있다. 바나듐 레독스 흐름전지의 부품 소재 중 바나듐 전해액은 전지의 용량, 수명과 성능을 결정하는 핵심 소재이며 전체 전지 가격의 50% 이상을 차지하고 있어, 바나듐 전해액의 저가격화는 바나듐 레독스 흐름전지 시장 확대의 핵심이라 할 수 있다. 상업적으로 이용되는 바나듐 전해액은 3.5 가의 산화수를 가지며, 이는 5가의 바나듐옥사이드(V2O5) 전구체를 전기분해를 이용해 환원시켜 제조된다. 그러나 전기분해 방식은 고가의 전기분해 장치가 필요하고 에너지 소비가 크며 전기분해 중 생성되는 높은 산화수의 전해액의 재처리가 필요하다. 이에 전기분해 방식을 벗어나 화학적으로 바나듐을 환원시키는 공정이 전 세계적으로 연구됐지만, 환원제의 잔류물에 의한 전해액 오염으로 인해 상업화에 성공한 사례가 없었다. 김 교수와 이 박사 공동연구팀은 유기 연료전지의 촉매 기술을 응용해 잔류물이 남지 않는 환원제인 포름산의 활성을 증대시켜 바나듐을 3.5가로 환원시키는 기술을 개발했다. 연구팀은 이 기술을 이용해 시간당 2리터(L)급 촉매 반응기를 개발했고 연속 공정을 통한 고순도의 3.5가 바나듐 전해액 생산에 성공했다. 이번 촉매반응을 이용한 제조공정은 전기분해 방식 대비 효율적인 공정 구조를 가져 생산 공정 비용을 40% 줄일 수 있다. 또한, 촉매 반응기를 통해 생산된 전해액은 기존 전기분해 방식으로 만들어지는 전해액과 동등한 성능을 보여 그 품질이 검증됐다. 나노융합연구소 차세대배터리센터장 김희탁 교수는 “촉매를 이용한 화학적 전해액 제조기술은 원천성을 가지고 있어, 비 발화성 대용량 에너지 저장장치 분야의 국가 경쟁력을 높일 수 있다”라고 말했다. 한국에너지기술연구원 에너지소재연구실 이신근 박사는 “한국에너지기술연구원에서 개발된 촉매 반응기를 통해 기술의 산업화가 촉진될 것으로 기대한다”라고 말했다. 이번 연구는 산업통상자원부 한국에너지기술평가원 ESS기술개발 사업의 지원을 받아 KAIST, 에너지기술연구원, 연세대학교, ㈜이에스가 참여한 컨소시엄을 통해 개발됐다. □ 그림 설명 그림1. 촉매반응을 통한 3.5가 바나듐 전해액의 생산 및 기존 전기분해를 이용한 3.5가 전해액 생산 비교 그림2. 연구에서 개발된 촉매반응기 및 이를 이용한 전해액 연속 제조
2019.10.28
조회수 13543
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1