-
세계 최초 양자컴퓨팅으로 레고처럼 다공성 물질 설계
다성분 다공성 물질(Multivariate Porous Materials, MTV)은 일종의 ‘레고 블록 집합’과 같이 분자 수준에서 맞춤형 설계가 가능한 소재로, 원하는 구조를 자유롭게 구현할 수 있다. 이를 활용하면 에너지 저장·변환을 비롯해 다양한 응용이 가능해 환경 문제 해결과 차세대 에너지 기술 발전에 크게 기여할 수 있다. 우리 연구진은 여기에 양자컴퓨팅을 세계 최초로 도입해 복잡한 MTV 설계의 난제를 해결했으며, 이를 통해 차세대 촉매·분리막·에너지 저장 소재 개발의 혁신적 길을 열었다.
우리 대학 생명화학공학과 김지한 교수 연구팀이 양자컴퓨터를 활용해 수백만 가지 다성분 다공성 물질(이하 MTV)의 설계 공간을 효율적으로 탐색할 수 있는 새로운 프레임워크를 개발했다고 9일 밝혔다.
MTV 다공성 물질은 두 종류 이상의 유기 리간드(링커)와 금속 클러스터와 같은 빌딩 블록 물질 간의 결합을 통해 형성되는 구조로 에너지 및 환경 분야에서 큰 활용 가능성을 갖고 있다. 이는 다양한 구성 조합을 통해 새로운 구조를 설계 및 합성이 가능하고, 대표적으로는 가스 흡착, 혼합가스 분리, 센서, 촉매 등이 있다.
하지만, 구성 성분이 다양해질수록 가능한 조합의 수가 기하급수적으로 늘어나, 기존 방식인 고전 컴퓨터를 이용해 모든 구조를 하나하나 확인하는 방식으로는 복잡한 링커 조합의 MTV 구조의 설계 및 물성 예측이 불가능했다.
연구팀은 복잡한 다공성 구조를 ‘지도 위에 그려진 연결망(그래프)’처럼 표현한 뒤, 각 연결 지점과 블록 종류를 양자컴퓨터가 다룰 수 있는 큐비트로 바꿔 넣었다. 그리고 ‘어떤 블록을 어느 비율로 배치하면 가장 안정적인 구조가 될까?’라는 문제를 양자컴퓨터에게 풀도록 했다.
양자컴퓨터는 동시에 여러 가지 경우를 겹쳐서 계산할 수 있기 때문에, 마치 수백만 가지 레고 집을 한 번에 펼쳐놓고, 그중 가장 튼튼한 집을 빠르게 골라내는 것과 같은 효과를 냈다. 이 덕분에 기존 컴퓨터가 하나씩 다 계산해야 했던 막대한 경우의 수를 훨씬 적은 자원으로 탐색할 수 있다.
또한 연구팀은 실제 보고된 MTV 구조 4가지를 대상으로 실험했는데, 시뮬레이션 뿐만 아니라 IBM 양자컴퓨터에서도 동일한 결과가 나와 ‘실제로도 잘 작동한다”는 가능성을 보여줬다.
앞으로는 이 방법을 머신러닝과 결합해 단순한 구조 설계뿐 아니라 합성 가능성, 가스 흡착 성능, 전기화학적 특성까지 한 번에 고려하는 플랫폼으로 확장할 계획이다.
김지한 교수는 “이번 연구는 복잡한 다성분 다공성 소재 설계의 병목을 양자컴퓨팅으로 해결한 첫 사례”라며, “이번 성과는 탄소 포집·분리, 선택적 촉매 반응, 이온전도성 전해질 등 정밀 조성이 핵심인 분야에서 맞춤형 소재 설계 기술로 폭넓게 응용될 전망이며, 향후 더 복잡한 시스템에도 유연하게 확장될 수 있을 것”이라고 말했다.
이번 연구는 생명화학공학과 강신영·김영훈 박사과정이 공동 제1 저자로 참여했으며, 연구 결과는 국제 학술지 미국 화학회지(ACS Central Science) 8월 22일자 온라인판에 게재됐다.
※ 논문명: Quantum Computing Based Design of Multivariate Porous Materials
※ DOI https://doi.org/10.1021/acscentsci.5c00918
한편 이번 연구는 과학기술정보통신부 중견연구자지원사업과 이종소재지원사업의 지원을 받아 수행됐다.
2025.09.09
조회수 2231
-
차세대 전자코 칩 3D 프린팅 + AI 융합 생산 플랫폼 개발
우리 대학 기계공학과 김지태 교수, 박인규 교수 공동연구팀은 3차원 프린팅 기술과 인공지능(AI)을 융합해 98%에 달하는 가스 판별 정확도를 지닌 나노선 기반 전자코 마이크로 칩 개발에 성공했다.
금속산화물 반도체 나노선은 극미량의 가스를 검출할 수 있는 유망한 소재로 알려져 있다. 다양한 종류의 가스의 농도와 성분을 함께 읽어내기 위해서는 서로 다른 특성의 여러 나노선들을 하나의 마이크로 칩에 심어야 한다. 하지만 기존 제조 방식으로는 매우 어려웠다.
연구팀은 독자적으로 개발한 초정밀 나노 3차원 프린터를 활용해 24종류의 서로 다른 반도체 나노선을 매우 작은 하나의 마이크로 칩 위에 제작하였다. 고성능 전자코 모델 구현을 위해서는 다양한 센서를 동시에 활용하는 스케일업이 중요한데, 본 공정은 나노선에 금속과 금속산화물의 양을 원하는 대로 조성하고 정밀하게 제어함으로써, 수십 종의 서로 다른 소재를 손쉽게 제작할 수 있는 획기적인 기술이다.
가스에 반응하는 24개 나노선의 각기 다른 전기 신호 패턴을 조합해 이를 컨볼루션 신경망(Convolutional Neural Network, CNN)' AI 모델에 학습시켜 가스를 인식하고 분류하였다. 그 결과 메탄 (CH₄), 암모니아(NH₃), 에탄올(CH₃CH₂OH), 일산화탄소(CO), 황화수소(H₂S) 등 5가지 표적 가스 판별 정확도를 98% 까지 향상시켰다. 본 연구를 통해 개발된 3D 프린팅의 유연성과 AI의 지능이 결합된 새로운 제조 플랫폼은 환경 모니터링, 의료 진단, 산업 안전, 스마트홈 등 다양한 분야에서 맞춤형 고성능 가스 센서 시스템을 구현하는 데 핵심적인 기반 기술이 될 것으로 기대된다.
이번 연구 결과는 국제 권위 학술지 『Advanced Science』 (IF: 14.1) 8월 26일자 온라인판에 게재됐다. 이번 과학기술정보통신부 우수신진연구, 국가전략기술 소재개발사업, 나노 및 소재기술개발사업의 지원으로 수행됐다.
“Universal 3D-Printing of Suspended Metal Oxide Nanowire Arrays on MEMS for AI-Optimized Combinatorial Gas Fingerprinting”
DOI: https://doi.org/10.1002/advs.202511794
2025.09.02
조회수 1492
-
복잡한 변형 유전자 네트워크 제어해 정상 회복 성공
기존에는 세포의 한 가지 자극-반응에 따라 유전자 네트워크를 조절하는 방식의 제어 연구가 이루어졌으나, 최근에는 복잡한 유전자 네트워크를 정밀 분석해 제어 타겟을 찾는 연구가 제안되고 있다. 우리 연구진이 세포의 변형된 유전자 네트워크에 적용해 유전자 제어 타겟을 찾아 회복시키는 범용 기술 개발에 성공했다. 이번 연구 성과는 암 가역화와 같은 새로운 항암치료법 및 신약 개발, 정밀의료, 세포치료를 위한 리프로그래밍 등 폭넓게 활용될 것으로 기대된다.
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 대수적 접근법을 활용해 변형된 세포의 자극-반응 양상을 정상으로 회복시킬 수 있는 유전자 제어 타겟을 체계적으로 발굴하는 기술을 개발했다고 28일 밝혔다. 대수적 접근법은 유전자 네트워크를 수학 방정식으로 표현한 뒤 대수 계산을 통해 제어 타겟을 찾아내는 방식이다.
연구팀은 세포 속 유전자들이 서로 얽혀 조절하는 복잡한 관계를 하나의 ‘논리 회로도(불리언 네트워크, Boolean network)’로 표현했다. 이를 바탕으로 세포가 외부 자극에 어떻게 반응하는지를 ‘지형 지도(표현형 지형, phenotype landscape)’로 시각화했다.
그리고 ‘세미 텐서 곱(semi-tensor product)*’이라는 수학적 기법을 활용해 이 지도를 분석한 결과, 어떤 유전자를 조절하면 세포 전체 반응이 어떻게 달라질지 빠르고 정확하게 계산할 수 있는 방법을 만들어 낸 것이다.
*세미텐서곱: 모든 가능한 유전자 조합과 제어 효과를 하나의 대수적 공식으로 계산함
하지만 실제 세포의 반응을 결정하는 주요 유전자들은 수천 개 이상이어서 계산이 매우 복잡하다. 이를 해결하기 위해 연구팀은 ‘수치학적 근사(테일러 근사)’ 기법을 적용해 계산을 단순화했다. 쉽게 말해, 복잡한 문제를 풀기 쉽게 간단한 공식으로 바꾸어도 결과는 거의 똑같이 나오도록 만든 것이다.
이를 통해 연구팀은 세포가 어떤 안정 상태(=끌개, attractor)에 도달하는지를 계산하고, 특정 유전자를 제어했을 때 세포가 어떤 새로운 상태로 바뀌는지를 예측할 수 있게 됐다. 그 결과, 비정상적인 세포 반응을 정상 상태와 가장 유사한 상태로 되돌릴 수 있는 핵심 유전자 제어 타겟을 찾아낼 수 있었다.
조광현 교수팀은 개발한 제어 기술을 다양한 유전자 네트워크에 적용해 실제로 세포의 변형된 자극-반응 양상을 정상으로 회복시킬 수 있는 유전자 제어 타겟을 높은 정확도로 예측할 수 있음을 검증했다.
특히 방광암 세포 네트워크에 적용해, 변형된 반응을 정상으로 회복시킬 수 있는 유전자 제어 타겟들을 찾아냈으며, 또한 면역세포 분화 시 대규모 왜곡된 유전자 네트워크에서도 정상적인 자극-반응 양상을 회복시킬 수 있는 유전자 제어 타겟들을 찾아냈다. 이를 통해 기존에는 매우 오랜 시간의 컴퓨터 시뮬레이션만으로 근사적인 탐색만 가능했던 문제를 빠르고 체계적으로 해결할 수 있게 되었다.
조광현 교수는 “이번 연구는 세포 운명을 결정짓는 유전자 네트워크의 표현형 지형을 분석·제어하는 디지털 셀 트윈(Digital Cell Twin) 모델* 개발의 핵심 원천기술로 평가된다”며 “향후 암 가역화를 통한 새로운 항암치료법, 신약 개발, 정밀의료, 세포치료를 위한 리프로그래밍 등 생명과학·의학 전반에 폭넓게 응용될 수 있을 것으로 기대된다”고 말했다.
*디지털 셀 트윈 모델: 세포 내부에서 실제로 일어나는 복잡한 반응 과정을 디지털 모델로 옮겨와, 실제 실험 대신 가상으로 세포 반응을 시뮬레이션하는 기술
우리 대학 정인수 석사, 코빈 하퍼 박사과정 학생, 장성훈 박사과정 학생, 여현수 박사과정 학생이 참여한 이번 연구 결과는 미국 과학진흥협회(AAAS)에서 출간하는 국제저널 `사이언스 어드밴시스(Science Advances)' 8월 22일 字 온라인판 논문으로 출판됐다.
※ 논문명: Reverse Control of Biological Networks to Restore Phenotype Landscapes
※ DOI: https://www.science.org/doi/10.1126/sciadv.adw3995
한편 이번 연구는 과학기술정보통신부 한국연구재단의 중견연구사업과 기초연구실 사업 등의 지원을 통해 수행됐다.
2025.08.28
조회수 1950
-
암 표적 돌연변이에 최적의 약물 후보 자동 설계 AI 개발
기존 약물 개발 방식은 질병을 일으키는 원인이 되는 표적 단백질(예: 암세포 수용체)을 정하고, 그 단백질에 잘 달라붙어 작용을 막을 분자(약물 후보)를 찾는 방식으로 수많은 후보 분자 대상으로 진행하다 보니 시간·비용이 많이 들고 성공 가능성도 낮았다. 우리 대학 연구진이 표적 단백질 정보만 있으면, 사전 정보(분자)가 없어도 딱 맞는 약물 후보를 설계해 주는 AI를 개발해서 신약 개발의 새로운 가능성을 열었다.
우리 대학 화학과 김우연 교수 연구팀이 결합하는 약물 후보 분자의 사전 정보 없이 단백질의 구조만으로, 그에 꼭 맞는 약물 후보 분자와 그 결합 방식(비공유 결합성 상호작용)까지 함께 설계 및 최적화까지 할 수 있는 인공지능 모델 ‘BInD’를 개발했다고 10일 밝혔다.
이 기술의 핵심은 ‘동시 설계’다. 기존 AI 모델들은 분자만 만들거나, 만들어진 분자와 단백질의 결합 여부만 따로 평가했다. 반면, 이번에 개발된 모델은 분자와 단백질 사이의 결합 방식까지 함께 고려해 한 번에 설계한다.
실제로 단백질과 결합할 때 중요한 요소를 미리 반영하기 때문에, 효과적이고 안정적인 분자를 만들 확률이 훨씬 높다. 이러한 생성 과정은 단백질의 표적 부위에 맞춰 원자들의 종류와 위치, 공유결합과 상호작용을 하나의 생성 과정에서 동시에 만들어내는 과정을 시각적으로 보여준다.
또한, 이 모델은 신약 설계 시 반드시 고려해야 할 여러 요소(예를 들어 분자의 안정성, 물성, 구조의 자연스러움 등)을 동시에 만족시키도록 설계됐다. 기존에는 한두 가지 목표에 집중해 다른 조건을 희생하는 경우가 많았지만, 이번 모델은 다양한 조건을 균형 있게 반영해 실용성을 크게 높였다.
연구팀은 이 AI가 무작위 상태에서 점점 더 정교한 구조를 그려나가는 방식인 ‘확산 모델’을 기반으로 작동한다고 설명했다. 확산 모델은 2024 노벨 화학상을 받은 ‘알파폴드3’의 단백질-약물 구조 생성에서 활용돼 높은 효율성이 입증된 바 있다.
이번 연구에서는 원자가 공간상 어디에 있어야 하는지 좌표를 찍어주는 알파폴드3와 달리 ‘결합 길이’나 ‘단백질-분자 간 거리’처럼 실제 화학 법칙에 맞는 기준들을 알려주는 지식 기반 가이드를 넣어, 생성된 구조가 더 현실적인 결과를 내도록 도왔다.
뿐만 아니라, 연구팀은 한 번 만든 결과 중에서 뛰어난 결합 패턴을 찾아 다시 활용하는 최적화 전략도 적용했다. 이를 통해 추가 학습 없이도 더 뛰어난 약물 후보를 만들어낼 수 있었으며, 특히 암 관련 표적 단백질(EGFR)의 돌연변이에 선택적으로 작용하는 분자도 생성하는 데 성공했다.
또한, 이번 연구는 본 연구팀이 앞서 발표한 단백질에 어떤 분자가 어떻게 결합하는지에 대한 조건을 입력해야만 했던 기존 AI를 한 단계 더 발전시켰다는 점에서도 의미가 깊다.
화학과 김우연 교수는 “이번에 개발한 AI는 표적 단백질에 잘 결합하는 핵심 요소를 스스로 학습하고 이해해, 사전 정보 없이도 상호작용 하는 최적의 약물 후보인 분자를 설계할 수 있다는 점에서 신약 개발의 패러다임을 크게 바꿀 수 있을 것이다”라고 말했다.
이어 “이번 기술은 화학적 상호작용 원리에 기반해 더 현실적이고 신뢰할 수 있는 분자 구조를 생성할 수 있어, 더 빠르고 정밀한 신약 개발을 가능하게 할 것으로 기대한다”라고 강조했다.
우리 대학 화학과 이중원, 정원호 박사과정 학생이 공동 제1 저자로 참여한 이번 연구 결과는 국제학술지 ‘어드밴스드 사이언스(Advanced Science)’(IF=14.1)에 지난 7월 11일 자에 게재됐다.
※ 논문명: BInD: Bond and Interaction-Generating Diffusion Model for Multi-Objective Structure-Based Drug Design
※ DOI: 10.1002/advs.202502702
한편 이번 연구는 한국연구재단과 보건복지부의 지원으로 수행됐다.
2025.08.10
조회수 3176
-
‘슝’ 스스로 움직이는 생명체 세포로봇 개발
현재 전 세계적으로 마이크로 및 나노급의 작은 입자 기반의 비생명체 자가 추진 로봇 기술은 활발하게 연구되고 있는 반면에, 세포와 같은 생명체 구성 요소를 직접 활용한 세포로봇 연구는 아직 초기 단계에 머물러 있다. 우리 연구진이 세포 기반 시스템의 자율적으로 이동하는 세포로봇을 개발하는데 성공했다. 향후 정밀 약물 전달이나 차세대 세포 기반 치료법의 원천기술로 활용될 수 있을 것으로 기대된다.
우리 대학 화학과 최인성 교수 연구팀이 외부 동력 장치나 복잡한 기계 구조 없이, 생체 부산물인 ‘요소(urea)’*를 연료로 사용하는 자가 추진 세포로봇을 개발했다고 30일 밝혔다.
*요소(urea): 사람을 포함한 대부분의 동물 체내에서 단백질을 분해하면서 생기는 노폐물로 생명체 안에서는 단백질 대사 과정에서 암모니아를 독성이 낮은 형태로 전환하여 배출하는 중요한 역할을 함
연구팀이 구현한 세포로봇은 방향성을 갖고 스스로 이동할 수 있으며, 원하는 물질을 운반하거나 주변 환경 제어 기능을 탑재할 수 있는 다기능성 플랫폼으로 설계됐다.
연구팀은 쉽고 안정적으로 얻을 수 있는 생명체이면서 부산물로 생성된 에탄올 활용 가능성이 있고, 인공적인 복잡한 외부 장치 없이 생명체 스스로 만들어내는 물질을 활용할 수 있는 ‘효모’에 주목했다.
제빵과 막걸리 발효에 사용되는 효모(이스트, yeast)는 포도당을 분해해 에너지를 얻는 대사 과정에서 알코올(에탄올)을 부산물로 생성하는데, 연구팀은 이때 생성된 에탄올을 활용해 효모 표면에 생체친화적인 방식으로 나노 껍질을 형성할 수 있는 원천기술을 개발했다.
이를 위해, 알코올산화효소(AOx)와 겨자무과산화효소(HRP)로 구성된 효소 시스템을 도입했다. 이 효소 시스템은 효모의 포도당 분해 반응과 연계된 연쇄적 효소 반응을 유도하며, 그 결과로 멜라닌 계열의 나노껍질이 효모 표면에 형성된다.
특히, 이번에 개발된 화학적 방법론은 효모가 성장하고 분열하는 동안에도 나노껍질 형성이 지속적으로 일어나도록 설계돼 있어서, 세포의 형태 변화에 따라 비대칭적인 세포-껍질 구조가 자연스럽게 생성된다.
예를 들어, 분열 중인 세포 전체를 감싸는 껍질이 형성되기도 하지만, 모세포 부분에는 껍질이 생성되고 딸세포 부분에는 형성되지 않는 구조도 만들어진다.
연구팀은 세포를 감싸는 나노껍질에 우레아제(urease)*를 부착하고 세포로봇의 움직임을 관찰했다. 우레아제는 요소를 분해하는 촉매 역할을 하며 세포로봇이 스스로 움직일 수 있도록 구동력을 만들어내는 핵심 역할을 수행하며 비대칭 구조를 가진 세포로봇이 보다 명확한 방향성을 갖고 자가 추진하는 현상을 확인했다.
*우레아제(urease): 요소를 분해해 암모니아와 이산화탄소를 만드는 효소
이번에 개발된 세포로봇은 세포 주위에 존재하는 물질만으로 자가 추진이 가능하고, 자석이나 레이저 등 복잡한 외부 제어 장치에 의존하지 않아 구동 메커니즘이 훨씬 간단하고 생체친화적이다. 또한, 나노껍질에 다양한 효소를 화학적으로 접합할 수 있어, 다양한 생체 물질을 연료로 활용하는 세포로봇의 확장 개발도 가능하다.
이번 연구의 제1 저자인 화학과 김나영 박사과정은 “자가 추진 세포로봇은 스스로 환경을 감지하고 반응하며 움직이는 능력을 지닌 새로운 개념의 플랫폼으로, 향후 암세포 표적 치료나 정밀 약물전달시스템 등에서 중요한 역할을 할 수 있을 것”이라고 말했다.
이번 연구는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’에 지난 6월 25일 오후 2시(미국 동부시각) 온라인판에 게재됐다.
※ 논문명 : Autonomous Chemo-Metabolic Construction of Anisotropic Cell-in-Shell Nanobiohybrids in Enzyme-Powered Cell Microrobots; 국문 번역 : 효소 구동 세포 마이크로로봇 구축에서의 자율적인 화학-대사 반응을 통해 형성된 비등방성 세포내껍질 나노바이오하이브리드
※ DOI: https://doi.org/10.1126/sciadv.adu5451
한편, 이번 연구는 한국연구재단 기초연구사업 중견연구과제(제목: 세포대사 연계형 단일세포나노피포화)의 지원을 받아 수행됐다.
2025.06.30
조회수 4775
-
가벼운 숨결·압력·소리까지 감지, 맞춤형 촉각 센서 개발
로봇이 물체를 잡을 때나, 의료기기가 몸의 맥박을 감지할 때 촉각 센서는 손끝처럼 ‘눌림’을 느끼는 기술이다. 기존 센서들은 반응이 느리거나 여러 번 쓰면 정확도가 떨어지는 단점이 있었는데, 한국 연구진이 가벼운 숨결, 압력, 소리까지 정확하고 빠르게 감지할 수 있어, 일상적인 움직임부터 의료용 진단까지 폭넓게 사용할 수 있는 센서를 개발하는데 성공했다.
우리 대학 기계공학과 박인규 교수 연구팀이 국가과학기술연구회(NST, 이사장 김영식) 산하 한국전자통신연구원(ETRI, 원장 방승찬)과의 공동연구를 통해 기존 촉각 센서 기술의 구조적 한계를 극복한 혁신적 기술을 개발했다고 23일 밝혔다.
이번 공동연구의 핵심은 ‘열성형 기반 3차원 전자 구조(Thermoformed 3D Electronics, T3DE)’를 적용해 유연성과 정밀성, 반복 내구성을 동시에 확보한 맞춤형 촉각 센서를 구현한 것이다.
특히, 소프트 엘라스토머(고무, 실리콘 등 쭉 늘렸다가 놓으면 다시 원래 모양으로 돌아오는 재료) 기반 센서가 갖는 느린 응답속도, 높은 히스테리시스*, 크립(오랫동안 힘을 가했을 때 재료가 천천히 변형되는 현상) 오차 등 구조적 문제를 극복하면서도 다양한 환경에서 정밀하게 작동하는 플랫폼으로 주목받고 있다.
* 히스테리시스(Hysteresis): 한 번 받았던 힘이나 변화가 기억처럼 남아서, 똑같은 자극을 주더라도 항상 같은 결과가 나오지 않는 현상
T3DE 센서는 2차원 필름 위에 정밀하게 전극을 형성한 후, 열과 압력을 가해 3차원 구조로 성형하는 과정을 통해 제작된다. 특히 센서 상부의 전극과 지지 다리 구조는 목적에 따라 기계적 물성을 조절할 수 있도록 설계되어 있으며, 지지 다리의 두께, 길이, 개수 등 미세한 구조 매개변수를 조정함으로써 센서의 영률(Young’s modulus)*을 10Pa에서 1MPa까지 폭넓게 설정할 수 있다. 이 수치는 피부, 근육, 힘줄 등의 생체조직과 유사한 수준으로, 실제 생체 인터페이스용 센서로도 유용하다.
* 영률(Young’s modulus): 재료의 강성을 나타내는 지표로, 이번 연구에서는 다양한 생체조직과 일치하는 수준까지 조절 가능함
이번에 개발된 T3DE 센서는 공기를 유전체로 활용해 전력 소비를 줄이는 동시에, 민감도, 응답속도, 온도 안정성, 반복 정밀도 측면에서도 우수한 성능을 보였다.
실험 결과, 해당 센서는 △민감도 5,884 kPa⁻¹ △응답속도 0.1ms(1,000분의 1초보다 짧은 시간) △히스테리시스 0.5% 이하 △5,000회 반복 측정에서도 정밀도 99.9% 이상을 유지하는 내구성을 입증했다.
연구팀은 이 센서를 활용해 고해상도 40×70 배열하여, 총 2,800개의 센서를 촘촘히 구성, 운동 중 발바닥의 압력 분포를 실시간 시각화하고, 손목 맥박 측정을 통한 혈관 건강 상태 평가 가능성도 확인했다. 또한, 상용 음향 센서 수준의 소리 감지 실험에서도 성공적인 결과를 얻었다. 즉, 이 센서는 발바닥 압력, 맥박, 소리까지 매우 정확하고 빠르게 측정할 수 있어서 운동, 건강, 소리 감지 등 다양한 분야에 활용될 수 있다.
T3DE 기술은 증강현실(AR) 기반 외과 수술 훈련 시스템에도 적용됐다. 각 센서 요소마다 서로 다른 영률을 부여해 실제 생체조직과 유사한 강성을 구현했으며, 수술 절개 시 가해지는 압력 강도에 따라 시각·촉각 피드백을 동시에 제공하고, 너무 깊이 베거나, 위험한 부위를 건드리면 실시간 위험 경고 기능까지 갖춘 시스템이 구현되었다. 이는 의료 교육의 몰입도와 정확성을 획기적으로 향상할 수 있는 기술로 평가된다.
우리 대학 박인규 교수는 “이 센서는 설계 단계에서부터 정밀하게 조절할 수 있어 다양한 환경에서도 안정적으로 작동한다”며, “일상생활은 물론 의료, 재활, 가상현실 등 다양한 분야에서 쓸 수 있을 것”이라고 밝혔다.
본 연구는 ETRI 최중락 박사, KAIST 한찬규 석사, 이돈호 박사과정이 공동 제1저자로 참여했으며, 박인규 교수가 전체 연구를 총괄했다. 연구 결과는 세계적 권위의 학술지 ‘사이언스 어드밴시스(Science Advances)’ 2025년 5월호에 게재됐으며, 해당 논문은 사이언스 어드밴시스 공식 SNS 채널(Facebook, Twitter)을 통해 전 세계에 소개되기도 했다.
※ 논문명: Thermoforming 2D films into 3D electronics for high-performance, customizable tactile sensing
※ DOI: 10.1126/sciadv.adv0057
이번 연구는 산업통상자원부, 한국연구재단, 한국산업기술평가관리원의 지원을 받아 수행됐다.
2025.06.23
조회수 3710
-
이제 고해상도 분광기가 스마트폰에 쏙 들어간다
색은 빛의 파장이 인간의 눈에 인식되는 방식으로, 단순한 미적 요소를 넘어 물질의 성분이나 상태 같은 중요한 과학적 정보를 담고 있다. 분광기는 빛을 파장별로 분해해 물성을 분석하는 광학 장비로, 재료 분석, 화학 성분 검출, 생명과학 연구 등 다양한 과학 및 산업 분야에서 폭넓게 사용되고 있다. 기존의 고분해능 분광기는 크고 복잡해 일상 전반에 사용이 어려웠으나, 우리 연구진이 개발한 초소형 고해상도 분광기 덕분에 앞으로는 스마트폰이나 웨어러블 기기 속에서도 빛의 색 정보를 활용할 수 있을 전망이다.
우리 대학 바이오및뇌공학과 장무석 교수 연구팀이 이중층 무질서 메타표면*을 이용한 복원 기반 분광기 기술을 개발하는 데 성공했다고 13일 밝혔다.
*이중충 메타표면: 두 겹의 무질서한 나노 구조층을 통해 빛을 복잡하게 산란시켜, 파장별로 고유하고 예측 가능한 스페클 패턴을 만들어내는 혁신적 광학 소자
기존의 고분해능 분광기는 수십 센티미터 수준으로 폼 팩터가 크고, 정확도를 유지하기 위한 복잡한 교정 과정이 필요하다. 이는 근본적으로 무지개가 색을 분리하듯 빛의 파장을 빛의 진행 방향으로 분리하는 전통적인 분산 부품의 작동 원리에서 기인한다. 이 때문에, 빛의 색 정보가 일상 전반에 유용하게 활용될 수 있음에도 분광 기술은 실험실이나 산업 제조 현장 수준으로 그 활용성이 제한되고 있다.
연구팀은 빛의 색 정보를 빛의 진행 방향으로 일대일 대응시키는 회절격자나 프리즘을 사용하는 기존의 분광 패러다임에서 벗어나 설계된 무질서 구조를 광학 부품으로 활용하는 방식을 고안했다. 이때, ‘복잡한 무작위적 패턴(스페클*)’을 정확하게 구현하기 위해 수십-수백 나노미터 크기의 구조체를 활용해 빛의 전파 과정을 자유롭게 조절할 수 있는 메타표면을 활용하였다.
* 스페클: 여러 파면의 빛이 간섭해 만들어지는 불규칙한 밝기의 광 패턴
구체적으로, 이중층 무질서 메타표면을 구현해 파장 특이적인 방식으로 스페클 패턴을 생성하고, 카메라로 측정된 무작위 패턴을 보고 그 빛의 정밀한 색 정보(파장)를 복원 해내는 방식을 개발했다.
그 결과, 단 한 장의 영상 촬영만으로 손톱보다 작은(1cm 미만) 장치에서 1 나노미터(nm) 수준의 고해상도로 가시광-적외선 (440~1,300nm) 범대역의 빛을 정확하게 측정하는 신개념 분광기 기술을 개발하는 데 성공했다.
이번 연구에 제1 저자로 참여한 이동구 연구원은 “이번 기술은 상용 이미지 센서에 직접 통합된 방식으로 구현돼, 앞으로는 모바일 기기에 내장된 형태로 일상에서도 빛의 파장 정보를 손쉽게 취득하고 이용할 수 있을 것으로 기대된다”라고 밝혔다.
장무석 교수는 “R(빨강), G(초록), B(파랑) 3가지 색 성분으로만 구분해서 인식되는 기존 RGB 삼색 기반 머신 비전 분야에서 한계를 뛰어넘는 기술로 활용 분야도 다양하다”며, “음식 성분 분석, 농작물 상태 진단, 피부 건강 측정, 환경 오염 감지, 바이오·의료 진단 등 실험실 수준의 기술을 일상 수준의 머신 비전 기술로 지평을 넓힌 기술로 다양한 활용 연구가 기대된다” 라고 말했다.
이어 “또한, 파장과 공간 정보를 고해상도로 동시에 기록하는 초분광 영상이나, 여러 파장의 빛들을 정밀하게 원하는 형태로 제어하는 3D 광집속 기술, 아주 짧은 시간 동안 일어나는 현상을 포착하는 초고속 이미징 기술 등 다양한 첨단 광학 기술로 확장도 가능하다”라고 밝혔다.
해당 연구 결과는 KAIST 바이오및뇌공학과 이동구 박사과정, 송국호 박사과정이 공동 제1 저자, 장무석 교수가 교신저자로 참여했으며 국제 학술지 `사이언스 어드밴시스 (Science Advances)' 2025년 5월 28일 온라인판에 게재됐다.
※논문명 : Reconstructive spectrometer using double-layer disordered metasurfaces
※DOI: 10.1126/sciadv.adv2376
이번 연구는 삼성미래기술육성사업과 과학기술정보통신부 한국연구재단이 주관하는 우수신진연구자사업, 선도연구센터지원사업(ERC), 바이오·의료기술개발사업 사업의 지원을 받아 수행됐다.
2025.06.13
조회수 3936
-
백금 없이도 되는 고성능 수전해 성공..수소경제 성큼
수소는 탄소를 배출하지 않는 청정 에너지원으로 주목받고 있다. 이 가운데 물을 전기로 분해하는 수전해(water electrolysis) 기술은 친환경 수소 생산 방식으로 주목받으며, 특히 양이온 교환막 수전해(PEMWE)는 고순도 수소를 고압으로 생산할 수 있어 차세대 수소 생산 기술로 평가받는다. 그러나 기존 PEMWE 기술은 고가의 귀금속 촉매와 코팅재에 대한 의존도가 높아, 상용화에 한계를 안고 있었다. 우리 연구진이 이러한 기술적·경제적 병목을 해결할 새로운 해법을 제시했다.
우리 대학 생명화학공학과 김희탁 교수 연구팀이 한국에너지기술연구원(원장 이창근) 두기수 박사와의 공동연구를 통해, 고가의 백금(Pt) 코팅 없이도 고성능을 구현할 수 있는 차세대 수전해 기술을 개발했다고 11일 밝혔다.
연구팀은 수전해 전극에서 고활성 촉매로 주목받는 ‘이리듐 산화물(IrOx)’이 제 성능을 발휘하지 못하는 주된 원인에 집중하였다. 그 이유는 전자 전달이 비효율적으로 일어나기 때문이고 그 해결책으로 단순한 촉매 입자 크기 조절만으로도 성능을 극대화할 수 있음을 세계 최초로 입증했다.
이번 연구에서 이리듐 산화물 촉매가 백금 코팅 없이도 우수한 성능을 내지 못하는 이유가 수전해 전극에서 본래부터 함께 사용되는 핵심 구성 요소인 촉매–이온전도체(이하 이오노머)–Ti(티타늄) 기판 사이에서 발생하는 ‘전자 이동 저항’때문이라는 것을 밝혀냈다.
특히, 촉매–이오노머–티타늄 기판 사이에서 전자 통로가 차단되는 ‘핀치 오프(pinch-off)’ 현상이 전도성 저하의 핵심 원인임을 규명했다. 이오노머는 전자 절연체에 가까운 특성을 갖고 있어, 촉매 입자 주위를 감쌀 경우 전자 흐름을 방해한다. 특히 이오노머가 티타늄 기판과 맞닿은 경우 티타늄 기판의 표면산화층에 전자 장벽이 형성되어 저항을 더욱 높이는 것으로 나타났다.
이에 연구팀은 다양한 입자 크기의 촉매를 제작·비교하고, 단일 셀 평가 및 다중 물리 시뮬레이션을 통해 이리듐 산화물 입자의 크기를 20 나노미터(nm) 이상 크기의 촉매 입자를 사용할 경우, 이오노머 혼합 영역이 줄어들어 전자 통로가 확보되고 전도성이 회복된다는 사실을 세계 최초로 실험적으로 입증했다.
또한, 정밀한 계면 구조 설계를 통해 반응성을 확보하면서도 전자 이동을 동시에 보장하는 계면 구조 최적화에 성공했다. 이를 통해 기존에 불가피하다고 여겨졌던 촉매 활성도와 전도도 사이의 상충 관계를 정밀한 계면 설계로 극복할 수 있음을 보여주었다.
이번 성과는 고성능 촉매 소재 개발은 물론, 향후 귀금속 사용량을 획기적으로 줄이면서도 고효율을 달성할 수 있는 양이온 교환막 수전해 시스템 상용화에 중요한 이정표가 될 것으로 기대된다.
김희탁 교수는 “이번 연구는 고성능 수전해 기술의 병목현상이었던 계면 전도성 문제를 해소할 수 있는 새로운 인터페이스 설계 전략을 제시한 것”이라며, “백금 등 고가 소재 없이도 고성능을 확보할 수 있어, 수소 경제 실현에 한 걸음 더 가까워진 계기가 될 것”이라고 밝혔다.
우리 대학 생명화학공학과 박지수 박사과정 학생이 제1 저자로 참여한 본 연구 성과는 에너지 및 환경 분야 최고 권위 국제 학술지인 ‘에너지 및 환경과학(Energy & Environmental Science, IF: 32.4, 2025년)’에 6월 7일 자로 게재됐으며 그 혁신성과 파급력을 인정받았다. (논문 제목: On the interface electron transport problem of highly active IrOx catalysts, DOI: 10.1039/D4EE05816J)
한편, 이번 연구는 산업통상자원부 신재생에너지핵심기술개발사업의 지원을 받아 수행됐다.
2025.06.11
조회수 4928
-
해킹 피해도 젠더따라 다르다..SNS분석으로 디지털 격차 경고
수백만 개의 계정이 해킹되어 사이버 범죄를 조장하고 있음에도 불구하고, 기존 해킹 관련 연구는 기술적 측면에만 집중돼 있었다. 이에 우리 연구진은 SNS 빅데이터에 인공지능 분석법을 적용해 해킹 피해에 대한 남녀 간 행동 패턴 차이를 규명했으며, 이를 바탕으로 해킹 피해 완화 정책과 맞춤형 보안 대응 역량 강화 프로그램의 개발이 시급하다는 점을 제시했다.
우리 대학 과학기술정책대학원 최문정 교수 연구팀이 젠더에 따라 디지털 해킹 피해 경험 및 대응 방식이 다르다는 사실을 규명했다고 8일 밝혔다.
이번 연구는 ‘디지털 격차’중에서도 ‘제3레벨 디지털 격차(The Third-Level Digital Divide)’의 관점에서, 젠더에 따른 해킹 피해 경험의 차이를 분석했다. ‘제3레벨 디지털 격차’는 유사한 디지털 접근성과 사용 능력을 갖춘 사용자들 사이에서 나타나는 디지털 활용 결과의 사회적 불균형을 의미한다.
연구팀은 소셜미디어(SNS) 트위터(現 X) 데이터를 기반으로 13,000건 이상의 해킹 관련 게시글을 인공지능으로 분석한 결과, 여성은 디지털 서비스 전반에서, 남성은 특히 게임 관련 서비스에서 해킹 피해 경험을 더 많이 공유하는 경향이 있음을 밝혀냈다.
특히, 해킹 피해 이후의 대응 방식에서도 젠더 차이가 뚜렷하게 나타났다. 남성은 해킹 출처를 추적하거나 계정을 복구하는 등의 방식으로 대응하는 반면, 여성은 문제를 신고하거나 도움을 요청하는 등 사회적 지원을 활용하는 경향을 보였다.
허은진(Ern Chern Khor) 박사과정생은 “디지털 격차를 논의할 때 단순히 인터넷 접근성이나 모바일 기기 사용 능력에만 초점을 맞추는 경향이 있다. 그러나 본 연구는 디지털 접근성과 역량이 유사함에도 불구하고 디지털 경험의 사회적 영향이 다르게 나타나는 ‘제3레벨의 디지털 격차’에 주목했다는 점에서 연구의 의미가 있다”고 밝혔다.
최문정 교수는 “디지털 시대에 100세 인생을 살아가는 누구나 디지털 보안 문제를 겪을 수 있다. 하지만, 해킹 피해가 실제로 발생하기 전까지는 어떻게 대응해야 할지 알기 어렵다. 사고 대응 매뉴얼과 같이 인구 사회학적 특성에 따른 행동 패턴을 반영한 맞춤형 보안 교육 및 지원이 효과적일 것”이라고 강조했다.
이번 연구는 과학기술정책대학원 박사과정 허은진(Ern Chern Khor)이 제1 저자로 참여한 연구로 정보통신정책과 디지털 미디어 분야의 세계적 학술지인 ‘소셜 사이언스 컴퓨터 리뷰(Social Science Computer Review)’에 4월 29일 자 온라인으로 출간됐다.
※논문명: 트위터 데이터를 활용한 해킹 피해 경험의 젠더 격차 연구: 제3레벨 디지털 격차를 중심으로 (Exploring Gender Disparities in Experiences of Being Hacked Using Twitter Data: A Focus on the Third-Level Digital Divide)
※DOI: 10.1177/08944393251334974
이번 연구는 한국연구재단 개인기초연구 과학기술-인문사회융합 중견연구사업 지원을 받아 수행됐다.
2025.06.09
조회수 5630
-
온도에 반응해 말랑·딱딱 변하는 전자잉크 나왔다
스마트폰 같은 딱딱한 전자기기는 안정적인 성능을 제공하지만 착용시 불편함을 주는 반면, 얇고 유연한 웨어러블 기기는 착용감은 뛰어나지만 부드러운 특성 때문에 정밀한 조작에 한계가 있다. 국내 연구진이 온도에 따라 딱딱함과 부드러움을 자유자재로 전환할 수 있는‘액체금속 전자잉크’를 개발해, 가변강성을 갖춘 전자기기의 새로운 패러다임을 열고 있다.
우리 대학 전기및전자공학부 정재웅 교수 연구팀이 서울대 박성준 교수 연구팀, 우리 대학 신소재공학과 스티브 박 교수 연구팀과 공동연구를 통해, 상온에서 마이크로 스케일(머리카락보다 얇은 구조)의 미세 선폭 회로 인쇄가 가능하고 온도에 따라 딱딱함과 부드러움을 자유자재로 조절할 수 있는 액체금속 전자잉크를 개발했다고 4일 밝혔다.
연구팀이 개발한 전자잉크는 정밀한 인쇄가 가능한 물성과 우수한 전기전도성을 동시에 갖추고 있으며, 딱딱함과 부드러움을 자유자재로 조절할 수 있는 전자소자를 상온에서 정밀 제작할 수 있는 획기적인 기술이다.
이 전자잉크는 상용 인쇄회로 기판(PCB) 수준의 복잡한 고해상도 다층 회로 인쇄가 가능하며, 완성된 전자기기는 온도에 반응해 딱딱한 형태를 유연하게 변화시킬 수 있다.
연구팀은 기존 전자기기의 고정된 형태의 한계를 극복하기 위해 체온 근처(29.8 ℃)에서 녹는 액체금속 갈륨에 주목했다. 갈륨은 고체 상태에서는 매우 단단하지만 녹으면 부드러운 액체가 돼 큰 폭의 강성 변화가 가능하다. 하지만 기존 갈륨은 물방울처럼 뭉치려는 성질(높은 표면장력)과 액체 상태에서의 불안정성 때문에 정밀한 회로 제작이 어려웠고, 제조 과정에서 원치 않는 상변화가 일어나는 문제가 있었다.
이러한 갈륨의 한계를 극복하기 위해 산성도(pH) 제어 기반 액체금속 전자 잉크 프린팅 기술을 개발했다.
먼저, 마이크로 크기의 갈륨 입자를 디메틸 설폭사이드(Dimethyl Sulfoxide, 이하 DMSO)라는 중성 용매에 친수성 폴리우레탄 고분자와 함께 섞어 전자 잉크를 제작했다. 이때 DMSO 용매의 중성 상태 덕분에 갈륨 입자들이 고분자 매트릭스에 골고루 분산된 안정적인 고점성 잉크가 형성되며, 이를 통해 상온에서 고해상도 회로 인쇄가 가능해진다.
그리고 인쇄 후에는 가열 과정에서 DMSO 용매가 분해되면서 산성 물질을 생성하고, 이 산성 환경에서 갈륨 입자들 표면의 산화막이 제거돼 입자들이 물리적으로 연결되면서 전기가 통하고 강성을 조절할 수 있는 회로가 형성된다.
연구팀은 이러한 2단계 공정을 통해 상온에서는 안정적인 인쇄가 가능하면서도 완성 후에는 우수한 전기전도성과 가변강성 특성을 갖는 전자소자를 구현할 수 있었다.
개발된 전자잉크는 머리카락 굵기의 절반 (약 50μm)인 미세 선폭으로 정밀한 회로를 인쇄할 수 있으며, 우수한 전기전도도(2.27×10⁶ S/m)와 함께 1,465배나 되는 강성 조절 비율을 제공한다. 이는 플라스틱처럼 딱딱한 상태에서 고무처럼 말랑한 상태까지 자유자재로 변할 수 있음을 뜻한다.
또한 스크린 프린팅, 딥 코팅 등 기존 인쇄 방법들과 호환돼 고해상 대면적 회로 제작은 물론 복잡한 3차원 형태의 다양한 전자기기 제작을 가능하게 한다.
연구팀은 이 기술을 활용해 평상시에는 딱딱한 휴대용 전자기기로 사용하다가 몸에 착용하면 부드러운 웨어러블 헬스케어 기기로 변환되는 가변형 다목적 기기를 개발했다. 뿐만 아니라, 수술 시에는 딱딱한 상태로 정밀한 조작과 뇌 삽입이 가능하지만 뇌 조직 내에서는 부드럽게 변해 조직 내 염증반응을 최소화하는 뇌 탐침을 구현함으로써 이식용 소자로서의 활용 가능성도 입증했다.
정재웅 교수는 “전자 잉크 용매의 산성도 조절을 통해 갈륨 입자들을 전기·기계적 연결하는 독창적 기술로 액체금속 프린팅의 고질적인 문제를 해결하고 상온에서 초정밀 고해상 회로 제작을 가능하게 한 것이 이번 연구의 핵심”이라며 “하나의 기기가 상황에 따라 딱딱한 상태와 부드러운 상태로 자유자재로 변환될 수 있어 다목적 전자기기, 의료 기술, 로봇 분야 등에서 다양한 응용이 가능할 것”이라고 말했다.
전기및전자공학부 이시목 박사과정 학생과 부산대 이건희 교수가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’에 5월 30일 字에 게재됐다.
(논문명 : Phase-Change Metal Ink with pH-Controlled Chemical Sintering for Versatile and Scalable Fabrication of Variable Stiffness Electronics, DOI/10.1126/sciadv.adv4921)
한편 이번 연구는 과학기술정보통신부에서 추진하는 한국연구재단 중견연구지원사업, 기초연구실지원사업, 보스턴-코리아 공동연구 프로젝트, BK21 FOUR 사업의 지원을 받아 수행됐다.
2025.06.04
조회수 4206
-
‘라이보’ 캣처럼 민첩하게 벽도 달린다..산악·험지 수색도 거뜬
우리 대학이 개발한 사족보행 로봇 ‘라이보(Raibo)’가 이제 계단, 틈, 벽, 잔해 등 불연속적이고 복잡한 지형에서도 고속으로 이동할 수 있게 됐다. 수직 벽을 달리고, 1.3m 폭의 간격을 뛰어넘으며, 징검다리 위를 시속 약 14.4Km로 질주하고, 30°경사·계단·징검다리가 혼합된 지형에서도 빠르고 민첩하게 움직이는 성능을 입증했다. 머지않아 라이보는 재난 현장 탐색이나 산악 수색 등 실질적인 임무 수행에 본격적으로 투입될 것으로 기대된다.
우리 대학 기계공학과 황보제민 교수 연구팀이 벽, 계단, 징검다리 등 불연속적이고 복잡한 지형에서도 시속 14.4km(4m/s)의 고속 보행이 가능한 사족 보행 로봇 내비게이션 프레임워크를 개발했다고 3일 밝혔다.
연구팀은 복잡하고 불연속적인 지형에서 로봇이 빠르고 안전하게 목표 지점까지 도달할 수 있도록 하는 사족 보행 내비게이션 시스템을 개발했다.
이를 위해 문제를 두 단계로 분해해 접근했는데, 첫째는 발 디딤 위치(foothold)를 계획하는 플래너(planner), 둘째는 계획된 발 디딤 위치를 정확히 따라가는 트래커(tracker)를 개발하는 것이다.
먼저, 플래너 모듈은 신경망 기반 휴리스틱을 활용한 샘플링 기반 최적화 방식을 통해 물리적으로 가능한 발 디딤 위치(foothold)를 빠르게 탐색하고, 시뮬레이션 롤아웃을 통해 최적 경로를 검증한다.
기존 방식들이 발 디딤 위치 외에도 접촉 시점, 로봇 자세 등의 다양한 요소를 함께 고려한 반면, 본 연구에서는 발 디딤 위치만을 탐색 공간으로 설정함으로써 계산 복잡도를 크게 낮췄다. 또한 고양이의 보행 방식에서 착안하여, 뒷발이 앞발이 밟았던 곳을 디디는 구조를 도입해 계산 복잡도를 다시 한번 크게 낮출 수 있었다.
두 번째, 트래커 모듈은 계획된 위치에 정확히 발을 디딜 수 있도록 학습되며, 트래킹 학습은 적절한 난이도의 환경에서 경쟁적으로 이루어진 생성 모델을 통해 진행된다.
트래커는 로봇이 계획된 위치에 정확하게 발을 디딜 수 있도록 강화학습을 통해 학습되며, 이 과정에서 ‘맵 생성기(map generator)’라는 생성 모델이 목표 분포를 제공한다.
이 생성 모델과 트래커는 동시에 경쟁적으로 학습돼, 트래커가 점진적으로 어려운 난이도에 적응할 수 있도록 설계됐다. 이후 학습된 트래커의 특성과 성능을 반영할 수 있도록, 트래커가 실행 가능한 디딤 위치 계획을 생성하는 샘플링 기반 플래너를 설계했다.
이 계층적 구조는 기존 기법 대비 계획 속도와 안정도 모두에서 우수한 성능을 보였으며, 실험을 통해 다양한 장애물과 불연속 지형에서의 고속 보행 능력과 처음 보는 지형에 대해서도 범용적으로 적용 가능함을 입증하였다.
황보제민 교수는 "기존에 상당히 큰 계산량을 요구하던 불연속 지형에서의 고속 네비게이션 문제를 오직 발자국의 위치를 어떻게 선정하는가의 간단한 관점으로 접근하였고, 고양이의 발디딤에서 착안하여 앞발이 디딘 곳을 뒷발이 딛도록 해 계산량을 획기적으로 줄일 수 있었다”며“보행 로봇이 극복할 수 있는 불연속 지형의 범위를 획기적으로 넓히고, 이를 고속으로 주행할 수 있도록 하여, 로봇이 재난현장 탐색이나 산악 수색 등 실제적 임무를 수행하는 데에 이바지할 수 있을 것으로 기대된다”고 말했다.
이번 연구 성과는 국제 학술지 사이언스 로보틱스(Science Robotics) 2025년 5월호에 게재됐다.
(논문명 : High- speed control and navigation for quadrupedal robots on complex and discrete terrain, https://www.science.org/doi/10.1126/scirobotics.ads6192)
유튜브링크 : https://youtu.be/EZbM594T3c4?si=kfxLF2XnVUvYVIyk https://youtu.be/EZbM594T3c4?si=jbp-IzHURIfWI8y2
2025.06.04
조회수 5591
-
피부에 부착할 수 있는 촉감 전달 패치 개발
기계공학과 경기욱 교수 연구팀이 피부에 부착하여 다양한 촉감을 전달할 수 있는 초경량의 얇고 유연한 인공근육기반 촉감 전달 패치를 개발했다. 최근 가상현실(virtual reality, VR)과 증강현실(augmented reality, AR)의 기술이 각광받으면서, 더욱 현실감을 증대시키기 위해서 시각과 청각뿐만 아니라 촉각을 전달하는 기술이 중요한 역할을 하고 있다. 또한 사용자가 로봇을 원격조종하여 세밀한 작업을 하기 위해서는, 세밀한 촉감 전달이 필요하다. 그러나 단순한 진동이나 압력을 넘어서, 세밀하고 다양한 촉감을 전달할 수 있는 기술은 여전히 큰 도전이다.
개발된 촉감 구동기는 지름 6 mm, 두께 1.1 mm로 매우 작고 얇은 구조임에도 불구하고, 압력에서부터 고주파 진동까지 다양한 촉감을 전달할 수 있다. 또한 개발된 구동기는 32 mg 의 매우 가벼운 무게에도 불구하고 25 g의 추를 빠르게 밀어 올릴 수 있을 정도로 높은 출력밀도를 갖고 있다.
연구팀은 이 구동기를 손가락 끝 좁은 크기에 다수 배열하여 개별적으로 제어함으로써 다양한 촉감을 생성할 수 있는 햅틱 패치를 개발했다. 개발된 촉감 전달 패치는 얇고 유연하여 피부에 쉽게 부착되며, 가상 환경 속 물체의 3차원 형상과 표면질감을 정교하게 구현할 수 있다. 이 기술은 가상/증강 현실에서의 새로운 상호작용 방식을 제시하며, 차세대 촉감 전달 장치로서뿐만 아니라 초소형 로봇 등 다양한 분야에서도 활용될 것으로 기대된다.
본 연구는 졸업생 윤정환 박사의 박사학위 논문 연구로, 연구 결과는 지난 3월 국제학술지 ‘사이언스 어드벤시스(Science Advances)’ Vol.11(12)에 게재됐다. (논문명: Skin-attached haptic patch for versatile and augmented tactile interaction) 본 연구는 ETRI, UCLA와 공동으로 수행되었으며, 국가과학기술연구회(CRC23021-000) 및 한국전자통신연구원(24YB1700)의 지원을 받았다.
2025.03.28
조회수 5511