-
유독물질 뺀 초고해상도 QLED 신기술 개발
디스플레이 패널에 쓰이는 차세대 발광소재로 양자점(Quantum dot)이 각광을 받고 있다. 특히, 카드뮴이나 납과 같은 유독성 물질을 포함하지 않는 친환경 인듐 포스파이드(InP) 양자점이 주목을 받고 있으나 현재 기술로는 초고해상도 구현이 어려워 양자점 LED(QLED) 디스플레이 및 안경형 증강현실/가상현실 기기 적용에 있어 한계를 지닌다.
우리 대학 신소재공학과 조힘찬 교수 연구팀이 친환경 InP 양자점의 우수한 광학적 특성을 유지하며 초고해상도 패턴을 제작하는 신기술을 개발했다고 26일 밝혔다.
현재, 국제 유해물질 제한지침 (RoHS, Restriction of Hazardous Substances) 규정을 만족하지 못하는 제품은 많은 나라에서 판매가 금지되므로, 최근 많은 디스플레이 기업은 환경친화적인 특성을 갖춘 InP 양자점을 디스플레이에서의 빛 방출 소재로 채택하여 TV 등 중대형 디스플레이에 적용하기 시작하였다.
그러나 InP 양자점은 외부 환경에 매우 민감한 성질을 가지고 있어 픽셀을 만드는 패터닝 공정 적용시 소재의 광학적 특성이 크게 저하되는 단점이 있어 우수한 광학적 및 전기적 특성이 동시에 요구되는 QLED 디스플레이나, 기존 TV 대비 수십배의 초고해상도를 필요로 하는 안경형 증강현실/가상현실 기기 적용에 어려움이 있었다.
조 교수 연구팀은 자외선을 받으면 산을 발생시키는 광산 발생기(photoacid generator)의 원리를 활용하여 초미세 양자점 패턴을 제작하였다. 양자점이 자외선을 받은 경우, 생성된 산에 의해 양자점 표면이 변화하면서 자외선을 받지 않은 부분 대비 용해도 차이가 생겨 패턴 형성이 가능해지는 원리이다.
연구팀은 패터닝시 손상된 InP 양자점의 발광 효율을 획기적으로 높일 수 있는 양자점 표면 치료법을 개발하였다. 양자점에는 양자점을 둘러싸고 있는 표면 리간드(ligand)들이 있는데, 이 리간드들에 의해 양자점의 발광 효율이 큰 영향을 받는다. 연구팀은 친환경 InP 양자점의 표면 리간드를 개질할 수 있는 맞춤형 후처리 공정을 개발하였고, 이를 통해 최종적으로 높은 발광 효율을 가지는 1 마이크로미터(μm)급 초미세 양자점 패턴을 구현할 수 있었다. 이는 기존의 디스플레이 (TV, 스마트폰, 모니터 등)에서 일반적으로 요구되는 픽셀 너비와 비교했을 때 수십 배 작은 패턴으로 증강현실/가상현실 기기 적용 가능성을 크게 높였다고 할 수 있다.
또한 연구팀은 정밀한 분석을 통해 개발된 광산 발생기 기반의 패터닝 기술의 반응 원리를 규명했고, 개발된 기술이 양자점 LED나 대면적 공정에 쉽게 적용될 수 있음을 증명하였다.
조힘찬 교수는 “이번에 개발한 친환경 InP 양자점 패터닝 기술은 높은 발광 효율과 초고해상도 패턴 제작을 동시에 가능하게 하여 차세대 양자점 LED 기반 디스플레이, 증강현실 기기, 이미지 센서 등 다양한 산업에 실제로 적용될 수 있을 것으로 기대하고 있다”라고 언급했다.
KAIST 신소재공학과 이재환 석사과정 학생이 제1 저자로, 미국 시카고 대학교의 Dmitri V. Talapin 교수가 공동교신저자로, KAIST 생명화학공학과 이도창 교수 연구팀이 공동저자로 참여한 이번 연구는 국제 학술지 `에이씨에스 에너지 레터스 (ACS Energy Letters)' 에 출판됐다. (논문명 : Direct Optical Lithography of Colloidal InP-Based Quantum Dots with Ligand Pair Treatment)
한편 이번 연구는 한국연구재단 및 삼성전자, 중소벤처기업부 그리고 KAIST의 지원을 받아 수행됐다.
2023.09.26
조회수 1387
-
초고효율 진청색 OLED 구현 기술 개발
우리 대학 전기및전자공학부 유승협 교수 연구팀이 경상국립대학교(총장 권순기) 화학과 김윤희 교수 연구팀과의 협력을 통해, 세계 최고 수준의 높은 효율을 갖는 진청색 유기발광다이오드(organic light-emitting diode, OLED) 소자를 구현하는 데 성공했다고 3일 밝혔다.
유승협 교수 연구실의 김형석 박사(現 규슈 대학 연수연구원), 경상국립대학교 천형진 박사(現 임페리얼 칼리지 런던 연수연구원), KAIST 이동균 박사과정(유승협 교수 연구실)이 공동 제1 저자로 수행한 이번 연구는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’2023년 5월 31일 자 온라인판에 게재됐다. (논문명: Toward highly efficient deep-blue OLEDs: Tailoring the multiresonance-induced TADF molecules for suppressed excimer formation and near-unity horizontal dipole ratio). (DOI: https://www.science.org/doi/10.1126/sciadv.adf1388)
OLED는 스마트폰, 태블릿과 같은 모바일 기기는 물론 프리미엄 TV나 모니터 등의 첨단디스플레이 기술로 활용되고 있는 발광소자로, 화질이 선명하고, 두께가 얇으며, 폴더블이나 롤러블 디스플레이 등에 핵심인 유연한 소자의 제작이 가능한 점 등 여러 고유한 장점을 갖고 있다. 이들 응용에서는 빛의 삼원색을 이루는 적·녹·청 광원의 충분한 효율과 수명을 확보하고 동시에 높은 색 순도의 삼원색을 확보하는 것이 매우 중요한데, 청색 OLED 소자에서 이 세 요건을 동시에 확보하는 기술은 대표적인 난제로 여겨지고 있다.
연구팀은 이에 고효율 진청색 OLED 소자 구현에 초점을 맞춰, 양자점 디스플레이 수준의 뛰어난 색 순도 구현이 가능한 차세대 발광체인 다중 공명 효과 기반 열 활성화 지연 형광체의 설계에 주목했다. 해당 효과를 이용한 붕소계 재료는 뛰어난 색 순도 구현의 장점을 갖고 있으나, 평평한 분자구조로 인해 분자 간 강한 상호작용이 생겨 낮은 농도에서만 진청색이 가능한 한계가 있어, OLED 소자의 충분한 효율 확보를 위해 발광 분자의 농도를 높이면 발광체 자체가 가진 색 순도 장점을 충분히 살리지 못하는 어려운 문제가 있다.
연구팀은 합성이 매우 까다로운 것으로 알려진 기존의 붕소계 재료에 비해 합성 과정을 단순화하면서 이성질체 합성을 최소화해 낮은 수율을 개선했을 뿐만 아니라, 분자 동역학 관점에서 분자 간 상호작용을 억제할 수 있는 분자구조를 성공적으로 규명하고, 이를 분자 설계를 통해 구현함으로써 색 순도와 효율이 저하되는 난제를 해결했다. 해당 연구가 그간 시행착오를 반복하며 경험적으로 이루어졌던 것과 달리, 연구팀은 종합적이고 분석적인 방법론을 정립, 최대 효율을 이끌어 낼 수 있는 구조를 이론적으로 예측했으며, 설계한 고효율 유기 발광 소재를 이용한 소자 구조에 접목해 35% 이상의 최대 외부 양자효율을 가진 진청색 OLED 구현에 성공했다. 이는 해당 파장에서의 진청색 OLED 단위 소자의 효율 중 세계 최고 수준의 결과다.
유승협 교수는 “고효율의 진청색 OLED 기술의 확보는 OLED 디스플레이를 궁극의 기술로 완성하는데 필수적인 과제 중 하나로서, 이번 연구는 난제 해결에 있어 소재-소자 그룹 간의 체계적인 융합 연구와 협업의 중요성을 잘 보여주는 사례”라고 말했다.
이번 연구는 산업통상자원부의 디스플레이 혁신공정 플랫폼 구축사업, 과기정통부의 미래소재디스커버리 사업, 중견연구자사업, 그리고 삼성미래기술육성사업의 지원을 받아 수행됐다.
2023.07.03
조회수 1626
-
맥신 나노기술로 세탁가능한 투명 플렉시블 OLED 개발
자동차 디스플레이, 바이오 헬스케어, 군사 및 패션 등 다양한 분야에서 많은 각광을 받고 있는 투명 플렉시블 디스플레이는 약간의 변형에도 쉽게 깨지는 성질을 가지고 있다. 이를 해결하고자 탄소 나노튜브, 그래핀, 은나노와이어, 전도성 고분자 등 많은 투명 플렉시블 전도성 소재에 관한 연구가 이뤄지고 있다.
우리 대학 전기및전자공학부 최경철 교수 연구팀이 나노종합기술원 이용희 박사팀과의 공동 연구를 통해 맥신 나노기술을 활용하여 물에 노출돼도 뒷배경을 보이며 빛을 발광하는 방수성 투명 플렉시블(유연) OLED 개발에 성공했다고 28일 밝혔다.
2차원 맥신(MXene) 소재는 높은 전기 전도도와 투과도를 보이고 용액공정을 통한 대규모 생산성 등의 매력적인 특성을 가진 전도성 소재임에도 불구하고 대기 중 수분이나 물에 의해 전기적 특성이 쉽게 열화되기 때문에 고수명의 전자장치로 활용되는데 한계가 있었고, 이로 인해 정보 표시가 가능한 매트릭스 형태로의 시스템화 단계까지 이루어지지 못한 상황이었다.
최경철 교수 연구팀은 수분이나 산소에 의해 산화되는 것을 방지하는 인캡슐레이션(encapsulation) 전략을 통해 환경적으로 견고한 고수명의 맥신 기반 OLED를 개발했다. 연구팀은 수분에 의한 맥신의 전기적 특성 열화 메커니즘을 분석하는 데 주목했고, 다음으로 인캡슐레이션 박막을 설계하는 데 주목했다. 연구팀은 수분을 차단하고 잔류응력 상쇄 기술을 도입하여 유연성을 주게 되어 최종적으로는 이중층 구조로 인캡슐레이션 박막을 설계했다. 더불어, 물속에서도 열화없이 세탁이 가능하도록 최상부에 수십 마이크로(μm) 두께의 얇은 플라스틱 필름을 부착하였다.
해당 연구를 통해, 연구팀은 햇빛 비추는 실외디스플레이 조건인 실외에서도 사람의 눈으로 밝기 인식이 가능한 정도로 1,000 cd/m2 이상의 휘도(밝기)를 내는 적색(R)/녹색(G)/청색(B)의 맥신 기반 OLED를 개발했다. 적색 맥신 기반 OLED의 경우, 2,000시간의 대기보관수명(70% 휘도유지), 1,500시간의 대기 구동수명(60% 휘도유지), 1.5mm 수준의 낮은 곡률 반경에서 1,000회 이상을 견디는 유연성을 확보할 수 있었다. 또한, 6시간 동안 물안에 넣어 놓아도 그 성능이 유지되었다(80% 휘도유지). 더불어, 패터닝(patterning) 기술을 활용해 맥신 기반 OLED를 수동 매트릭스(passive-matrix) 형태로 제작함으로써 글자나 모양 표시가 가능한 투명 디스플레이를 시연했다.
이번 연구를 주도한 최경철 교수 연구팀의 정소영 박사과정은 “맥신 OLED의 신뢰성 향상을 위해 이에 적합한 인캡슐레이션 구조 및 공정 설계에 집중했다”며 “맥신 OLED를 매트릭스 타입으로 제작해 간단한 문자나 모형을 표시함으로써 투명 디스플레이 분야에 맥신이 응용될 수 있는 기반을 마련했다”고 말했다.
최경철 교수는 “이번 연구가 맥신의 다양한 전자소자로의 응용에 가이드라인이 될 뿐 아니라 투명 플렉시블 디스플레이가 요구되는 차량용 디스플레이, 패션, 기능성 의류 등 다양한 응용 분야에 적용이 가능할 것으로 예상되며, 중국의 OLED 기술과의 격차를 벌리기 위해서는 이러한 새로운 OLED 융합 신기술이 계속 개발되어야 한다”고 밝혔다.
최경철 교수 연구팀의 정소영 박사과정이 제1 저자로 주도하고 과학기술정보통신부 한국연구재단의 선도연구센터 사업의 지원을 받아 수행된 이번 연구 결과는 나노 분야의 권위 있는 국제 학술지 `에이씨에스 나노(ACS nano, IF 18.0)'에 지난 4월 5일 字로 온라인 게재됐으며, 전면 표지 논문(Front Cover)으로 6월 13일 字로 게재됐다. (논문명: Highly Air-Stable, Flexible, and Water-Resistive 2D Titanium Carbide MXene-Based RGB Organic Light-Emitting Diode Displays for Transparent Free-Form Electronics)
2023.06.28
조회수 2051
-
발열 40% 낮춘 초고해상도 마이크로 LED 기술 구현
디지털화된 현대인 생활 속에는 웨어러블, 롤러블 디스플레이 등 다양한 형태의 미래 디스플레이가 요구되는데 특히 증강현실 및 가상현실을 위한 스마트 글라스 등 디바이스의 경우에 완벽하게 유저들을 몰입시키는데 요구되는 4K 이상의 해상도가 필요하다. 하지만 디바이스에 요구되는 작은 소비전력 및 제한된 면적에 많은 픽셀을 구현해야 하는 기술적 한계에 봉착하여 완벽하게 구현되지 못하고 있는 실정이다.
우리 대학 전기및전자공학부 김상현 교수 연구팀이 소자의 크기가 마이크로미터(μm, 백만분의 1미터) 정도의 크기를 갖는 마이크로 LED의 소형화될 때 소자 효율이 저하되는 현상을 재규명하고 이를 에피택시 구조 변경으로 근본적인 해결이 가능함을 제시했다고 22일 밝혔다.
에피택시 기술이란 마이크로 LED로 사용되고 있는 초순수 규소 (Silicon) 혹은 사파이어 (Sapphire) 기판을 매개체로 삼아 그 위에 발광체로 쓰이는 질화갈륨 결정체를 쌓아 올리는 공정을 말한다.
마이크로 LED는 OLED 대비 우수한 밝기, 명암비, 수명이라는 장점이 있어 활발히 연구되고 있으며, 삼성전자는 지난 2018년에 ‘The Wall’이라는 마이크로 LED를 탑재한 제품을 상용화했고, 애플은 2025년에 마이크로 LED를 탑재한 제품이 상용화될 것이라는 전망이 있다.
마이크로 LED를 제작하기 위해선 웨이퍼 위에 성장된 에피택시 구조를 식각 공정을 통해 원기둥 혹은 직육면체의 모양으로 깎아서 픽셀들을 형성하는데, 이 식각 과정에는 플라즈마 기반의 공정이 동반된다. 그러나, 이러한 플라즈마들은 픽셀 형성 과정에서 픽셀의 측면에 결함들을 발생시킨다. 따라서, 픽셀 사이즈가 작아지고 해상도가 높아질수록 픽셀의 표면적 대 부피의 비율이 상승해 공정 중 발생하는 소자 측면 결함이 마이크로 LED의 소자 효율을 더 크게 감소시킨다. 이에 따라, 측면 결함을 완화 혹은 제거하는 것에 많이 연구가 진행됐지만 이러한 방식은 에피택시 구조를 성장한 뒤 후공정으로 진행해야 하는 만큼 개선의 정도에 한계가 존재한다.
연구팀은 마이크로 LED 소자 동작 시 에피택시 구조에 따라 마이크로 LED의 측벽으로 이동하는 전류의 차이가 발생한다는 것을 규명했고, 이를 기반으로 측벽 결함에 민감하지 않는 구조를 설계하여 마이크로 LED 소자 소형화에 따른 효율 저하 문제를 해결하였다. 또한, 제시된 구조는 디스플레이 구동 시 발생하게 되는 열을 기존 대비 40% 정도 낮출 수 있어 초고해상도 마이크로 LED 디스플레이 상용화를 위한 연구로써 큰 의미를 갖는다.
우리 대학 전기및전자공학부 김상현 교수 연구팀의 백우진 박사과정이 제 1 저자로 주도하고 김상현 교수와 충북대학교 금대명 교수(KAIST 박사 후 연구원 재직 당시) 가 교신저자로 지도한 이번 연구는 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 3월 17일 字 출판됐다 (논문명: Ultra-Low-Current Driven InGaN Blue Micro Light-Emitting Diodes for Electrically Efficient and Self-Heating Relaxed Microdisplay).
김상현 교수는 “이번 기술 개발은 마이크로LED의 소형화의 걸림돌이었던 효율 저하의 원인을 규명하고 이를 에피택시 구조의 설계로 해결한 데에 큰 의미가 있고 앞으로 초고해상도 디스플레이에 활용될 것이 기대된다”라고 말했다.
한편 이번 연구는 삼성미래기술육성센터의 지원을 받아 수행됐다.
2023.03.22
조회수 3403
-
전기및전자공학부 서창호, 최경철 교수 2023 IEEE 석학회원 선임
우리 대학 전기및전자공학부 서창호 교수와 최경철 교수가 국제전기전자공학자협회(IEEE)의 2023년 석학회원(Fellow)으로 선임됐다고 9일 밝혔다.
전기및전자공학부에서는 1995년 김충기 명예교수가 석학회원으로 선임된 이후 20명의 교수가 석학회원으로 선임됐다. 2023년처럼 2명의 석학회원이 동시 선임된 것은 2008년 이주장 교수와 유회준 교수, 2009년 경종민 교수, 김종환 교수, 송익호 교수, 2016년 조규형 교수와 김정호 교수가 동시 선임된 이래 7년 만이다.
서창호 교수는 무한용량 통신기법과 최적의 분산 저장시스템 개발 공로를 인정받아 석학회원으로 선정됐다. 서 교수는 KAIST 전기및전자공학부에서 학사 및 석사과정을 이수하고, 미국 캘리포니아대학교 버클리(UC버클리)에서 박사과정을 밟으며 정보이론의 선구자 클로드 섀넌이 제기한 해당 분야의 난제를 해결한 연구 실적으로 화제가 됐다. 국제전기전자공학자학회(IEEE)를 비롯한 UC버클리 등에서 각종 논문상을 받은 그는 2011년 박사학위를 받고 메사추세츠 공과대학(MIT)에서 1년가량 박사후연구원을 지낸 뒤 2012년부터 모교인 KAIST로 돌아와 연구와 교육을 이어가고 있다. 2021년에는 IEEE 정보이론 소사이어티(Information Theory Society)에서 젊은 과학자상을 받는 등 활발한 대외활동을 하고 있다.
최경철 교수는 디스플레이 분야의 최고 권위자로 플렉시블 및 웨어러블 디스플레이 분야에 대한 연구업적을 인정받아 석학회원으로 선정됐다. 최경철 교수는 서울대학교 전기공학과에서 학사/석사 및 박사학위를 마쳤고, 미국의 창업 회사 및 국내 대기업 등에서 디스플레이 소자 개발을 했으며, 2005년 KAIST 전기 및 전자공학부 교수로 부임해, 입는 OLED 디스플레이 및 플렉시블 OLED 소자에 관한 연구와 이들을 응용한 바이오메디칼 연구를 진행해, 상처 치료용 OLED 패치 기술과 옷 OELD로 소아 황달을 치료하는 기술을 개발한 바 있다. 최경철 교수는 2018년 머렉(Merck) 상, 2022년에는 유니버설 디스플레이 코퍼레이션(UDC) 혁신상(Innovative Award)을 수상했다.
IEEE는 세계 최고 권위의 전기, 전자, 컴퓨터, 통신 분야 학회다. 160여 개국에서 40만 명에 이르는 회원을 보유하고 있다. 이중 석학회원(Fellow)은 탁월한 개인 연구업적, 기술 성취 실적, 전문 분야 총괄 경력 등 7개의 평가 기준 심사를 거쳐 회원의 최상위 0.1% 내에서 선정한다.
서창호 교수는 정보이론 뿐 아니라 인공지능(AI) 분야에서도 활발한 연구를 하고 있다. 현재 신뢰할 수 있는 인공지능(Trustworthy AI) 개발에 주력 중인데, 최근에는 편향성이 있는 데이터로도 공정한 판단을 내리는 인공지능을 개발해 구글 연구상(Google Research Award)을 수상한 바 있다. 구글과는 AI 교육과정 공동개발의 일환으로 수업 교재를 개발해, 이를 텍스트북(convex optimization for machine learning)으로 발간했다. 향후 신뢰할 수 있는 AI 이외 유전체 정보를 활용한 질병예측 AI 연구에 매진할 예정이며, 교육 분야에서는 학생들을 위한 교과서 외에 일반인들을 위한 AI 서적을 쓸 계획이다.
최경철 교수는 향후 상처 치료용 OLED 패치의 제품 생산을 위해 설립한 KAIST 연구소기업과 공동으로, 상용화 기술 개발을 수행할 예정이며, 웨어러블 OLED 광 치료 기술을 치매 치료 및 우울증 치료 등의 연구도 적용하는 연구를 수행할 예정이다.
2022.12.09
조회수 3071
-
입을 수 있는 OLED로 소아 황달 치료기술 개발
우리 대학 전기및전자공학부 최경철 교수 연구팀이 을지대학교 병원(김승연 교수, 임춘화 교수), 가천대학교(전용민 교수), 선문대학교(권정현 교수)와의 공동 연구를 통해 실제 직물 기반의 웨어러블 청색 OLED를 개발하고, 황달 질환을 앓는 신생아의 혈청에서 청색 OLED 광원에 의한 *빌리루빈 감소로 인한 황달 치료 효과를 확인했다고 22일 밝혔다.
☞ 빌리루빈: 혈액에서 산소를 공급해주는 적혈구가 수명을 다해 분해된 결과물로, 보통 간에 의해 해독되고 담즙으로 배설된다. 혈장 내 빌리루빈의 농도가 올라가면 피부와 눈의 흰자위가 누런색을 띠는 황달 증상이 나타난다. 신생아는 수명이 짧은 적혈구를 갖고 있으나 간 대사가 미숙해 빌리루빈을 많이 생산한다.
최경철 교수 연구실의 최승엽 박사, 가천대학교 의공학과 전용민 교수, 선문대학교 권정현 교수가 공동 제1 저자로 참여한 이번 연구는 첨단 과학기술 분야의 국제 저명 학술지인 `어드밴스드 사이언스(Advanced Science)'에 지난 10월 30일 게재되었고, 속 표지 논문으로 선정됐다.
신생아의 황달 치료는 광선 요법, 약물 투여, 교환 수혈 등 다양한 방법으로 시행된다. 이 중 광선 요법은 체내에 축적된 빌리루빈을 빛에 노출해 변형시켜 체외로 방출하는 안전하고 효과적인 치료 방법이다. 대부분의 신생아 황달은 광선 요법으로 치료할 수 있어 가장 널리 활용되고 있다.
병원에서는 신생아의 혈액 내 빌리루빈 농도가 치료 범위를 초과하면 신생아를 신생아 집중치료실(NICU)에 입원시켜 인큐베이터의 스탠드에 장착된 청색 LED의 빛으로 치료한다. 이 방법은 신생아 황달 증상을 완화하는 데 매우 효과적이지만 신생아를 부모로부터 격리하고 치료하는 동안 모유 수유 중단, 청색광에 의한 망막 손상 방지를 위해 신생아의 눈은 반드시 눈가리개로 완전히 가려야 하는 등의 문제와 더불어 기존에는 LED 기반 설치형 플랫폼이 사용돼 웨어러블 치료 적용에 한계가 있었다.
최경철 교수 연구팀은 황달 치료에 효과적인 470nm(나노미터) 파장의 고출력 고신뢰성의 청색 OLED를 사람이 착용 가능한 직물 위에 구현했으며, 직물과 같은 높은 유연성을 유지하는 옷 OLED 소아 황달 치료 플랫폼을 개발했다. 직물 기반의 청색 OLED는 4V 미만의 저전압에서도 황달치료에 충분한 출력(> 20 μW/cm2/nm)을 확보했을 뿐만 아니라 100시간 이상의 구동 수명, 35℃ 미만의 낮은 구동 온도, 물세탁 신뢰성, 2mm(밀리미터) 수준의 낮은 곡률 반경에서 1,000회 이상을 견디는 유연성 등의 신뢰성을 확보할 수 있었다.
이번 연구에서 470nm 파장을 갖는 청색 OLED를 신생아의 혈청에 조사했을 시, 3시간 이내에 황달 치료가 완료됐다고 판단되는 빌리루빈 수치(12 mg/dL)에 도달했으며, 기존 병원에서 활용되는 LED 황달 상용 치료기기 대비 균일하면서도 효과적인 황달 치료 성능을 연구팀은 확인했다.
공동 제1 저자인 최승엽 박사, 전용민 교수(가천대), 권정현 교수(선문대)는 "이번 연구를 통해 실제 신생아가 착용해 황달 치료가 가능한 성능 및 신뢰성을 갖는 섬유 기반의 청색 OLED 개발에 성공했다ˮ며 "설치형 LED 치료기기의 단점을 보완하며 더욱 균일한 효과를 기대할 수 있는 웨어러블 황달 치료 기술이 상용화될 수 있는 기반을 마련했다ˮ고 말했다.
최경철 교수는 "OLED 분야는 우리나라가 최고 기술을 보유하고 있지만, 중국의 기술 추격이 예사롭지 않은 이 시점에, OLED의 다양한 응용 기술을 개발하는 것이 중국과의 OLED 기술격차를 더 벌릴 수 있고, OLED 응용 중, 직물 위 OLED 기반 웨어러블 의료 기술개발로 바이오 헬스케어 시대에 맞는 OLED 응용의 새로운 시장을 개척해, 우리나라의 OLED 기술이 계속 선두를 유지하기를 바란다ˮ라고 말했다.
이번 연구는 과학기술정보통신부 한국연구재단의 선도연구센터 사업의 지원으로 수행됐다.
2022.11.22
조회수 3423
-
면 발광 마이크로 LED 패치 개발로 피부 미백에 획기적 효과
우리 대학 신소재공학과 이건재 교수팀과 세브란스 오상호 교수팀이 멜라닌 생성 억제를 위한 *면 발광 마이크로 LED 피부 패치를 개발했다고 10일 밝혔다.
☞ 면 발광 마이크로 LED 피부 패치: 인간의 머리카락의 ~1/100 의 두께를 가지는 매우 작은 LED 칩을 사용하여 제작한 인체에 부착 가능한 광치료 패치다. 기존의 점 발광의 특성을 가지는 LED와 달리, 구형 실리카 입자를 이용한 빛의 산란을 통해 면 발광의 특성을 갖는다.
멜라닌은 피부 내 존재하는 갈색 또는 흑색 색소로, 자외선 혹은 스트레스와 같은 외부 요인에 의해 비정상적으로 합성될 경우, 기미, 주근깨, 검버섯 등의 질환 형태로 나타나기 때문에 정상적으로 치료할 필요가 있다.
최근 피부질환 치료 및 미용을 위한 LED 기기들이 지속적으로 출시되고 있지만, 치료 효과에 있어서는 여전히 논란이 있다. 이는 LED가 피부에 밀착될 수 없어, 거리에 따른 광 손실 및 발열 문제로 인하여 역효과를 낼 수 있기 때문이다. 유의미한 피부 미용 효과를 얻기 위해서는 LED 광원을 피부에 밀착하여 조사함으로써, 균일한 빛을 피부 진피 내까지 효과적으로 전달해야 한다.
이에, 이건재 교수팀은 천여 개의 마이크로 LED를 4×4 cm2의 플라스틱 기판 위에서 구현하고, 빛의 확산을 위한 실리카 입자를 코팅함으로써 피부에 밀착하여 붙일 수 있는 면 발광 마이크로 LED 패치를 제작했다. 100 마이크로미터(μm) 크기의 마이크로 LED는 매우 작아 유연성을 가지며, 수직으로 배열된 전극은 LED의 발열을 줄여, 인간 피부 위에서 열적 손상 없이 장시간 구동 가능하다.
연구팀은 인간 피부 세포와 쥐의 등 피부에 면 발광 마이크로 LED 패치를 밀착시키고 조사하여 멜라닌 생성 억제 효능을 확인하였으며, 기존 상용 LED 대비, 피부 조직에 미치는 독성이 적을 뿐만 아니라, 효과적이고 일관된 경향으로 멜라닌 생성량을 감소시키는 데 성공했다. 또한, 피부 조직 분석을 통하여 멜라닌 생성에 관여하는 MITF (microphthalmia-associated transcription factor), Melan-A, 티로시나아제를 포함하는 단백질 및 효소 발현의 억제가 확인되었다.
이건재 교수는 "이번에 개발한 무기물 기반 면 발광 마이크로 LED 패치는 광 효율, 신뢰성, 수명 등이 우수하며, 기존 광 치료 기기와 달리 부작용은 줄이고 치료 효과를 극대화하여 코스메틱 분야에 큰 영향을 줄 것”이라고 말했다. 면 발광 마이크로 LED 패치는 현재 이 교수가 교원 창업한 ㈜프로닉스에 기술이전되어, 양산 장비를 갖추고 내년 3월 제품 출시를 앞두고 있다.
이번 연구는 웨어러블플랫폼 소재기술센터, 휴먼플러스 융합연구개발사업의 지원을 받아 수행됐으며, 국제 학술지 `어드밴스드 헬스케어 메터리얼즈(Advanced Healthcare Materials)'에 11월 게재됐다.
2022.11.10
조회수 3189
-
무한대 화소 수준의 초고해상도 AR/VR 디스플레이 기술 개발
우리 대학 전기및전자공학부 김상현 교수 연구팀이 *모놀리식 3차원 집적의 장점을 활용한 1,600PPI*에 상응하는 마이크로LED 디스플레이를 구현하는 데 성공했다고 29일 밝혔다. 1,600 PPI는 초고해상도 증강현실(AR)/가상현실(VR) 디스플레이에 적용 가능한 해상도로써 2020년 출시된 오큘러스(Oculus) 社(現 메타(Meta))의 메타 퀘스트 2(Meta quest 2, 442 PPI)의 3.6배에 해당하는 디스플레이 해상도다.
☞ 모놀리식 3차원 집적: 하부 소자 공정 후, 상부의 박막층을 형성하고 상부 소자 공정을 순차적으로 진행함으로써 상하부 소자 간의 정렬도를 극대화할 수 있는 기술로 궁극적 3차원 집적 기술로 불린다.
☞ PPI: Pixel per Inch. 디스플레이에서 1인치에 포함되는 픽셀의 갯수
전기및전자공학부 박주혁 박사과정과 금대명 박사가 제1 저자로 주도하고 백우진 박사과정과 대만의 제스퍼 디스플레이(Jasper Display)의 존슨 쉬(Johnson Shieh) 박사와 협업으로 진행한 이번 연구는 반도체 올림픽이라 불리는 하와이 호놀롤루에서 열린 `VLSI 기술 & 회로 심포지엄 (2022 IEEE Symposium on VLSI Technology & Circuits)'에서 지난 6월 16일에 발표됐다. (논문명 : Monolithic 3D sequential integration realizing 1600-PPI red micro-LED display on Si CMOS driver IC)
VLSI 기술 심포지엄은 국제전자소자학회(International Electron Device Meetings, IEDM)와 더불어 대학 논문의 채택 비율이 25%가 되지 않는 저명한 반도체 소자 분야 최고 권위 학회다.
최근 디스플레이 분야는 각종 TV, 모니터 및 모바일 기기뿐만 아니라 스마트 워치, 스마트 글라스 등의 웨어러블 디바이스까지 그 응용처가 크게 확장됐다. 이처럼 디스플레이의 활용이 점차 다양화되고 고도화됨에 따라 요구되는 픽셀의 크기가 점점 작아지고 있는데, 특히 증강현실(AR)/가상현실(VR) 스마트 글라스 등과 같이 사람의 눈과 매우 가까운 거리를 유지하는 디스플레이의 경우 *픽셀화가 없는 완벽한 이미지의 구현을 위해서는 4K 이상의 고해상도가 요구된다.
☞ 픽셀화(Pixelation): 컴퓨터 그래픽에서 비트맵을 구성하는 작은 단색 정사각형 디스플레이 요소인 개별 픽셀이 보이는 현상.
앞서 언급한 초고해상도 디스플레이를 구현하기 위한 차세대 디스플레이 소자로서 무기물 기반의 인듐갈륨나이트라이드/갈륨나이트라이드(InGaN/GaN), 혹은 알루미늄 갈륨 인듐 인화물/갈륨 인듐 인화물(AlGaInP/GaInP)로 대표되는 3-5(III-V)족 화합물 반도체를 활용한 마이크로 LED 소자가 핵심 소재 및 부품으로써 주목받고 있다. 마이크로 LED는 현재 TV, 모바일 기기에 많이 사용되고 있는 OLED, LCD 디스플레이에 비해 높은 휘도와 명암비, 긴 픽셀 수명 등의 장점이 있어 차세대 디스플레이 소자로서 장점이 뚜렷하다.
☞ III-V 화합물 반도체: 주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체로 전하 수송 특성 및 광 특성이 매우 우수한 소재.
하지만 무기물 기반 마이크로 LED를 활용해 디스플레이를 제작하기 위해서는 적색, 청색, 녹색의 각 색상의 픽셀을 각각의 기판에서 분리해 디스플레이 패널로 옮기는 패키징 작업이 필수적이다.
기존에 사용돼온 픽앤플레이스(Pick-and-place) 방법은 각각의 픽셀을 일일이 기계적으로 옮겨서 디스플레이 패널에 결합하는 방법으로 픽셀의 크기가 수십 마이크로미터 미만 수준으로 작아지게 되면 기계적인 정렬 정밀도가 저하되고 전사 수율이 감소해 초고해상도 디스플레이에는 적용이 어려울 것이라는 평가를 받고 있다.
연구팀은 이러한 문제의 해결을 위해 디스플레이 구동용 규소 상보적 금속산화물 반도체(이하 Si CMOS) 회로 기판 위에 적색 발광용 LED를 모놀리식 3차원 집적하는 방식을 적용했다. 위 방식은 Si CMOS 회로 위에 마이크로 LED 필름층을 먼저 웨이퍼 본딩을 통해 전사한 뒤, 포토리소그래피 공정으로 픽셀을 구현하는 방법으로, 기계적 픽셀 전사 공정이 제외된다. 이후 연구팀은 Si CMOS 회로상에서 상단에서 하단 방향으로(Top-down) 연속적인 반도체 공정 과정을 통해 고해상도 디스플레이 데모에 성공했다.
이 과정에서 연구팀은 조명용으로 활용돼왔던 무기물 기반 LED 반도체가 아닌 디스플레이용 LED 반도체층을 설계해 발광을 위한 활성층의 두께를 기존의 1/3로 감소시켜, 픽셀 형성에 필요한 식각 공정의 난도를 크게 낮추어 이번 연구성과를 얻어냈다.
또한, 연구팀은 하부 디스플레이 구동 회로의 성능 저하 방지를 위해 350oC 이하에서 상부 III-V 소자를 집적하는 웨이퍼 본딩 등의 초저온 공정을 활용해 상부 소자 집적 후에도 하부 드라이버 IC(Driver IC)의 성능을 그대로 유지할 수 있었다.
이번 연구 결과는 적색 마이크로 LED를 3차원 적층 방식으로 집적해 세계적인 수준의 해상도인 1,600 PPI 구현에 성공한 연구로서 연구에서 활용된 모놀리식 3차원 집적에 관한 연구 결과는 차세대 초고해상도 디스플레이 구현을 위한 좋은 가이드가 될 것으로 예상된다.
김상현 교수는 "향후 유사 공정을 확대 적용해 적색, 녹색, 청색이 모두 포함된 풀 컬러 디스플레이 제작도 가능할 것으로 생각한다ˮ라고 말했다.
한편 이번 연구는 삼성 미래기술육성센터의 지원을 받아 수행했다.
2022.07.29
조회수 4475
-
실 한오라기에 흰색의 빛을 내는 OLED 섬유 기술 최초 구현
우리 대학 전기및전자공학부 최경철 교수 연구팀이 머리카락보다 얇은 실 위에 흰색의 빛을 발산하는 섬유 OLED (유기발광다이오드) 개발에 성공했다고 20일 밝혔다.
전자 섬유는 기술을 입는다는 개념으로 웨어러블 디바이스의 궁극적인 폼팩터(form-factor, 제품의 물리적 외형을 뜻하는 말)로서 국내·외적으로 활발히 연구되고 있다. 특히나 전자 섬유 디스플레이 분야는 기능성 의류뿐만 아니라 패션, 의료, 안전, 차량 디자인 등 다양한 응용 가능성에 많은 주목을 받고 있다.
최경철 교수 연구팀은 원천기술인 딥 코팅 공정을 개발해 지금까지 형광 OLED, 구동 가능한 고효율 인광 RGB OLED 등 디스플레이 필수 요소 기술들을 머리카락보다 얇은 전자 섬유 형태로 성공적으로 구현해왔다. 하지만, 풀 컬러 디스플레이, 조명 기술 등을 구현하기 위한 필수 요소 기술인 흰색 OLED는 그 구조적 복잡성과 접근법의 부재로 기술 개발에 어려움이 있었다. 일반적으로, 흰색 OLED는 삼원색 OLED의 단일 적층 구조에 2~3배 달하는 다중 적층 구조(tandem structure)를 갖는다. 따라서, 용매 직교성, 곡률 의존성 등을 고려할 때 다중 적층 구조를 섬유 위에 구현하기엔 어려움이 있었다. 더욱이, 다중 적층 구조의 얇은 전하 생성층(CGL)은 섬유의 곡률에는 취약한 구조로 섬유에는 적합하지 않은 구조였다.
연구팀은 다중 적층 구조의 문제점들을 해결하고자 섬유 구조에 적합한 딥 코팅 가능한 흰색 단일 발광층 설계에 주목했다. 흰색 단일 발광층은 삼원색 발광 재료와 전하 균형을 위한 다수의 전하 수송체들로 구성돼, 시뮬레이션 및 최적화 과정을 통해 설계됐으며, 이와 함께 딥 코팅 공정이 가능하도록 재료적으로도 설계됐다. 이를 통해 흰색 OLED를 섬유에 최초로 구현했으며, 야외시인성 확보가 가능한 최고 700cd/m2(칸델라/제곱미터) 수준의 휘도, 10cd/A(칸델라/암페어) 수준의 높은 전기 광학적 성능을 보였다. 아울러, 개발된 흰색 OLED 전자 섬유는 그 구조상의 최적화된 에너지 전달 과정 덕분에 구동 환경에 따른 흰색 발광의 색 변화 의존성을 줄여 안정적인 흰색 발광을 보일 수 있었다.
최경철 교수 연구팀은 그동안 섬유 디스플레이 분야에서 부재했던 디스플레이 필수 요소 기술인 흰색 OLED를 실 한오라기에 성공적으로 구현하여 고품질 섬유 디스플레이를 포함한 패션, 기능성 의류, 차량 디자인 등 다양한 응용 분야에 적용이 가능할 것으로 기대한다고 밝혔다.
이번 연구를 주도한 최경철 교수 연구팀의 황용하 박사과정은 "흰색 OLED 전자 섬유 구현을 위해 섬유에 적합한 흰색 OLED 구조 및 설계에 집중했다ˮ며 "그동안 전자 섬유 디스플레이 분야에서 부재했던 필수 요소 기술을 개발해 더욱 완성도 높은 고품질 전자 섬유 디스플레이를 구현할 수 있을 것이라 기대된다ˮ고 말했다.
최경철 교수 연구팀의 황용하 박사과정이 제1 저자로 주도하고 산업통상자원부 전자부품산업핵심기술개발사업의 지원을 받아 수행된 이번 연구 결과는 나노 분야의 권위 있는 국제 학술지 `어드밴스드 사이언스(Advanced Science, IF 16.8)'에 지난 1월 24일 字로 온라인 게재됐으며, 4월 14일 字로 전면 내부 표지 논문(Inside Front Cover)으로 게재됐다. (논문명: High-Performance and Reliable White Organic Light-Emitting Fibers for Truly Wearable Textile Displays)
2022.04.21
조회수 4828
-
디스플레이용 퀀텀닷 패턴 형태에 상관없이 커피링을 완벽 제어하는 기술 개발
우리 대학 기계공학과 김형수 교수팀이 디스플레이 소자의 핵심 물질인 퀀텀닷의 마름 자국을 패턴의 형태에 상관없이 원형부터 다각형까지 완벽하게 균일 패터닝 할 수 있는 기술을 구현했다고 2일 밝혔다.
기계공학과 편정수 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 사이언스(Advanced Science)'에 지난 2월 7일 字 온라인 출판됐다. (논문명: Self-Induced Solutal Marangoni Flows Realize Coffee-Ring-Less Quantum Dot Microarrays with Extensive Geometric Tunability and Scalability, https://doi.org/10.1002/advs.202104519)
최근 퀀텀닷은 차세대 핵심 디스플레이용 소재로 각광받고 있다. 이를 잉크젯 프린팅 기술을 이용해 패터닝(형태화)하려는 노력을 크게 하고 있지만, 양산성이나 해상도의 제한적 문제 그리고 공정 과정 중에 발생하는 커피링 현상으로 효율이 크게 떨어지는 이슈가 큰 문제로 지적되고 있다.
커피링 자국은 용매 방울이 고체 표면 위에서 마르면서 물방울 표면의 상대적 불균일 증발률 때문에 발생하게 된다. 김 교수는 커피링을 제어하는 연구를 수년간 해오면서 얻은 노하우를 바탕으로 최근 획기적으로 커피링을 소멸시키는 기술을 발표한 바 있다. (DOI: https://doi.org/10.1039/D0SM01872D)
커피링 자국 이외에도 디스플레이의 해상도를 높이기 위해 다양한 모양의 패턴들이 제안되고 있으나, 일반적으로 다각형의 경우 커피링의 정도가 원형의 경우보다 더욱 심해지는 경향을 띤다. 이번 연구에서는 퀀텀닷 패턴의 기하학적 형태에 무관하게 커피링을 완전히 소멸시킬 수 있는 기술을 소개하고 있다. 연구팀은 퀀텀닷이 녹아 있는 용매의 성분을 적절히 조율하고 이 액적을 복잡한 물리-화학적 공정 없이 단순 증발 과정을 거쳐 100 마이크로미터(㎛) (1만 분의 1m) 수준의 커피링이 전혀 없는 균일 패턴을 구현하는 데 성공했다.
연구팀 관계자는 "QLED용 퀀텀닷 패턴은 주변의 공정 요인에 민감하게 변화할 수 있는데, 잉크젯 기반의 토출식 프린팅 기술에 집단 액적의 증발을 통한 자발적으로 발생하는 상호 마랑고니 작용 효과들을 이용해 소재의 손상을 방지하고 패턴의 균일도를 확보했다ˮ고 밝혔다. 실험적 기술 개발뿐 아니라 이론 모델을 바탕으로 마랑고니 발생 원리와 마랑고니 혼합 유동의 세기 조절에 대한 근본적 설명과 제어 변수들을 제공하고 있다.
김형수 교수는 "이번 연구 결과를 실제 디스플레이 양산을 위한 잉크젯 프린팅 공정에 활용하면 적녹청 퀀텀닷 패턴을 물리-화학적 복잡한 공정 없이 높은 효율의 차세대 QLED 디스플레이 구현에 적용 가능할 것ˮ이라고 말했다. 한편 이번 커피링을 없애는 기술을 이용해 "인쇄전자에 사용되는 값비싼 소재들로 확대하면 효과적으로 대면적 프린팅할 수 있고 패터닝 공정도 간소화돼 경제성을 높이는 데 기여할 것이다ˮ고 말했다.
한편 이번 연구는 한국연구재단의 지원을 받아 개인 기초 중견연구(NRF-2021R1A2C2007835)의 지원을 받아 수행됐고, 우리 대학 신소재공학과 정연식 교수 연구팀과의 협업을 통해 수행됐다.
2022.03.02
조회수 5523
-
페로브스카이트 LED 소재의 발광 효율 극대화 메커니즘 규명
우리 대학 화학과 김형준 교수 연구팀이 한밭대학교 홍기하 교수 연구팀과 공동 연구를 통해 페로브스카이트 LED 나노 소재에서 일어나는 발광 효율의 향상 원인을 이론적으로 규명하는 데 성공했다고 12일 밝혔다.
할로겐 페로브스카이트 화합물은 태양 빛을 이용해 높은 효율로 전기를 생산할 수 있어 차세대 태양전지에 사용 가능한 소재로 주목받고 있는 물질이다. 한편, LED는 태양전지와는 반대로 전기를 이용해서 빛을 방출하는 장치로서 디스플레이에 널리 사용되고 있다. 놀랍게도 페로브스카이트는 빛을 전기로 변환시키는 효율뿐 아니라 전기를 빛으로 변환시키는 발광 효율 또한 높은 것으로 알려져 차세대 LED 소재로서도 각광받고 있다.
본래 `페로브스카이트'는 러시아 과학자 페로브스키의 이름을 딴 광물 결정 구조의 이름이다. 연구팀은 이러한 페로브스카이트 결정 구조가 내부의 뒤틀림 정도에 따라 다양한 상(phase)을 가질 수 있음에 주목했다. LED 소재로 널리 사용되는 CsPbBr3라는 페로브스카이트 소재는 결정 구조 내부에 뒤틀림이 존재하는데, 이를 작은 나노 구조로 만들게 되면 이러한 뒤틀림이 최소화된 상이 형성된다. 연구팀은 비단열 양자 동역학 시뮬레이션을 이용해 이러한 결정 구조의 뒤틀림 제어가 발광 효율을 높이기 위한 주요 소재 성질 제어 전략임을 밝혔다.
연구진은 "이번 연구를 통해 페로브스카이트의 소재 결정 구조적 특성과 빛을 발생하는 광 동역학적 특성 사이의 복잡한 상관관계를 규명할 수 있었다ˮ고 말했으며 "추후 이러한 이론 기초 연구를 더욱 확장해 페로브스카이트 결정상 제어를 통한 발광 효율 극대화 전략을 도출해내어 페로브스카이트 기반의 고효율 LED 개발에 기여할 수 있을 것ˮ이라고 말했다.
우리 대학 하윤후 박사과정 학생이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `미국화학회지 (Journal of the American Chemical Society)' 에 지난해 12월 27일 字 온라인 게재됐다. (논문명: Enhanced Light Emission through Symmetry Engineering of Halide Perovskites).
한편 이번 연구는 한국연구재단(NRF)의 중견연구사업과 선도연구센터 지원 사업, 나노소재기술개발사업으로 진행됐다.
2022.01.12
조회수 5563
-
디스플레이 구동 가능한 OLED 전자 섬유 개발
우리 대학 전기및전자공학부 최경철 교수 연구팀이 정보 출력이 가능한 유기발광다이오드(OLED) 전자 섬유를 개발했다고 12일 밝혔다.
전자 섬유는 실제 입을 수 있는 형태의 소자로서 기존 2차원 평면 소자와는 다르게 인체의 다양한 움직임에 순응하고 뛰어난 착용성과 휴대성을 제공할 수 있는 섬유의 1차원 구조 덕분에 차세대 폼 팩터(form-factor)로 주목받고 있다. 특히나 빛을 방출하는 전자 섬유는 패션, 기능성 의류, 의료, 안전, 차량 디자인 등 다양한 응용 잠재력에 많은 주목을 받고 있다.
하지만 지금까지의 발광 전자 섬유 연구는 디스플레이로 활용되기엔 부족한 전기광학적 성능을 보여 왔거나 단순히 소자 단위로만 연구가 진행 또는 종횡비가 긴 2차원 평면 단위에서 연구가 이루어져 응용 기술 개발에 어려움이 있었다.
최경철 교수 연구팀은 OLED 전자 섬유 디스플레이 구현을 위해 높은 전기광학적 성능 구현과 함께 주소 지정 체계 구축에 주목했다. 연구팀은 먼저 300 마이크로미터(µm) 직경의 원통형 섬유 구조에 적합한 RGB 인광 OLED 소자 구조를 설계했고 연구팀이 보유한 원천기술인 딥 코팅 공정을 활용해 평면 OLED 소자에 버금가는 수준의 OLED 전자 섬유를 개발했다.
특히 고효율을 얻을 수 있는 인광 OLED를 섬유에 성공적으로 구현해 최고 1만 cd/m2(칸델라/제곱미터) 수준의 휘도, 60 cd/A(칸델라/암페어) 수준의 높은 전류 효율을 보였다. (이는 기존 기술 대비 약 5배 이상의 전류 효율에 해당하는 수치다.)
연구팀은 아울러 OLED 전자 섬유를 기반으로 안정적인 디스플레이 구동을 위해, OLED 전자 섬유 위에 접촉 영역을 설계해 직조된 주소 지정 체계를 구축했다. 그리고 문자와 같은 정보를 디스플레이 해 실제 입을 수 있는 기능성을 확인했다.
최 교수 연구팀 관계자는 이 전자 섬유가 디스플레이라는 표시 장치 관점에서 반드시 요구되는 밝은 밝기와 낮은 전력 소모를 위한 높은 전류 효율, 낮은 구동 전압, 그리고 주소 지정성을 갖췄다고 밝혔다.
이번 연구를 주도한 최 교수 연구팀의 황용하 박사과정은 "섬유 기반 디스플레이 구현을 위해 필수적으로 요구되는 요소 기술들을 구현하는 데 집중했다ˮ며 "전자 섬유가 가진 뛰어난 착용성과 휴대성을 제공함과 동시에 디스플레이 기능성을 구현해 패션, 기능성 의류 등 다양한 응용 분야에 적할 수 있을 것이라 기대된다ˮ고 말했다.
최경철 교수 연구팀의 황용하 박사과정이 제1 저자로 주도한 이번 연구 결과는 나노 분야의 권위 있는 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials)' (피인용지수(IF) 16.836) 2월 4일 字로 온라인 게재됐으며, 5월 3일 字로 전면 표지 논문(Front Cover)으로 게재됐다. (논문명: Bright-Multicolor, Highly Efficient, and Addressable Phosphorescent Organic Light-Emitting Fibers: Toward Wearable Textile Information Displays)
한편, 이번 연구는 산업통상자원부 전자부품산업핵심기술개발사업과 LG디스플레이의 지원을 받아 수행됐다.
2021.05.12
조회수 45030