-
전산학부 학사과정 여경민, 세계적 권위 AI 학술대회 ICLR 논문 발표
우리 대학 전산학부 여경민 학부과정 학생과 김재훈 박사과정 학생이 성민혁 교수(Visual AI Group) 지도를 받아 공동으로 개발한 새로운 이미지 생성 기술 ‘StochSync’가 세계 최고 수준의 인공지능(AI) 국제 학술대회 ‘ICLR 2025(International Conference on Learning Representations)’에서 채택돼 발표됐다.
ICLR은 딥러닝 및 인공지능 분야에서 가장 영향력 있는 학술대회 중 하나로, 전 세계 AI 연구자들이 최신 기술과 성과를 공유하는 대표 행사다. 특히 학부생이 제1저자로 주요 학회에 논문을 발표하는 것은 드문 사례로, 이번 성과는 KAIST의 우수한 연구 역량과 인재 양성 시스템을 다시 한번 입증했다.
StochSync는 사전 훈련된 AI 모델을 활용해 기존 평면 이미지를 넘어, 360도 파노라마나 3D 물체 표면의 텍스처처럼 복잡한 형태의 이미지를 별도의 추가 학습 없이도 간편하게 생성할 수 있는 기술이다. 기존에는 이러한 복잡한 이미지 생성을 위해 많은 훈련 데이터나 복잡한 전처리 과정이 필요했으나, StochSync는 이를 대폭 간소화하고 동시에 고품질 결과를 구현했다.
예를 들어 자동차 내부 디자인이나 가구 표면 텍스처 등을 실제 제작에 앞서 사실감 있게 시뮬레이션할 수 있어, 제품 설계 초기 단계에서 빠르고 효율적인 디자인 검토가 가능하다. 해당 기술은 VR, 게임, 산업 디자인 등 다양한 분야에 폭넓게 응용될 수 있다.
StochSync의 가장 큰 특징은 정교한 이미지 디테일과 시점 간 일관성을 동시에 확보할 수 있다는 점이다. 기존 이미지 생성 모델들은 고해상도 디테일과 여러 시점 간의 일관성을 동시에 만족시키기 어려웠으나, StochSync는 서로 다른 원리에 기반한 두 기법을 융합한 새로운 방법론을 제시함으로써 이 문제를 해결했다.
이번 연구의 제1저자인 여경민 학생은 2023년 겨울부터 KAIST Visual AI Group 인턴으로 연구에 참여해 왔으며, 김재훈 박사과정 학생과 협업해 실험 설계, 분석, 논문 작성 전반을 주도했다. 여 학생은 “연구 과정에서 여러 기술적 난관을 극복하며 AI 기술의 실제 활용 가능성을 확인할 수 있었다”며 “앞으로 다양한 산업 분야에 적용될 수 있기를 기대한다”고 소감을 밝혔다.
여경민 학생은 이번 ICLR 2025 발표 외에도 2024년 열린 국제 머신러닝 학술대회 NeurIPS 2024에서 논문 두 편의 공저자로 참여하고, 포스터 발표를 진행하는 등 학부생으로서는 드문 연구 성과를 이어가고 있다.
ICLR 2025 컨퍼런스는 지난 4월 싱가포르에서 개최되었으며, 여경민 학생은 포스터 및 워크숍 세션을 통해 세계 각국 연구자들과 활발한 학술 교류를 진행했고, 많은 호응을 얻었다.
전산학부 관계자는 “학부생이 세계 최고 수준의 학회에서 주요 성과를 발표한 것은 매우 고무적인 일”이라며 “앞으로도 세계를 선도하는 AI 인재 양성과 연구 역량 강화에 최선을 다할 것”이라고 밝혔다.
해당 논문과 프로젝트에 대한 자세한 정보는 아래 링크에서 확인할 수 있다.
논문 링크: https://arxiv.org/abs/2501.15445 프로젝트 웹사이트: https://stochsync.github.io
GitHub: https://github.com/KAIST-Visual-AI-Group/StochSync
2025.06.09
조회수 1023
-
논문 경험 없는 학부 1·2학년 4인 팀, ICLR 2025 금융 AI 워크숍에 논문 채택
학부 1, 2학년으로만 구성된 4인 학생 팀의 논문이 인공지능 분야 국제 학술대회인 ‘International Conference on Learning Representations (ICLR) 2025’의 ‘Advances in Financial AI Workshop’에 채택됐다.
이번에 채택된 논문 “Optimizing Retrieval Strategies for Financial Question Answering Documents in Retrieval-Augmented Generation Systems”은 김현준, 김세종, 송현서, 서현우 학생(모두 공동 1저자)이 함께 작성했으며, 김현준 학생이 교신저자를 겸했다. 특히 모든 팀원이 논문 작성 경험이 전혀 없는 학부 저학년 학생들로만 구성되어 그 의미가 더욱 크다.
이 연구는 대규모 언어 모델(LLM)이 금융 질의응답 시스템에서 활용될 때 필요한 정보를 더 정확하게 검색하고 활용하는 방법을 개선했다. 연구팀은 기존 검색 증강 생성(Retrieval-Augmented Generation, RAG) 시스템의 한계를 극복하기 위해 ‘사전 검색(pre-retrieval)’, ‘검색(retrieval)’, ‘사후 검색(post-retrieval)’ 3단계 접근법을 도입했다.
사전 검색 단계에서는 질의어와 문서 데이터를 효과적으로 전처리하는 기술을 개발했고, 검색 단계에서는 금융 도메인에 특화된 임베딩 모델을 미세 조정하여 검색 정확도를 높였다. 특히 의미 기반 검색과 키워드 기반 검색을 결합한 하이브리드 접근법을 통해 검색 성능을 크게 향상시켰다. 사후 검색 단계에서는 검색된 문서의 순위를 재조정하고 최적의 문서만을 선별하는 기술을 적용했다.
이 연구 결과는 7개의 금융 질의응답 데이터셋에서 평가되었으며, 기존 방법 대비 눈에 띄는 성능 향상을 보였다.
연구팀은 교내에서 진행된 “KB증권과 함께하는 제4회 UNIST – KAIST - POSTECH AI & 데이터사이언스 경진대회”에서 금상(상금 200만 원)을 수상한 프로젝트를 더욱 발전시켜 논문으로 완성했다.
김현준 학생은 “2024 가을학기 내내 팀원들과 밤부터 새벽까지 대회 작업을 했고, 수상 후에도 겨울 방학 동안 교양 분관 스터디룸에서 밤을 새가며 논문을 작성했다”라며 “전혀 경험이 없는 상태에서 시작했지만, 팀원들과 함께 끊임없이 토론하고 연구한 결과 국제 학술대회 워크숍에 논문이 채택되는 값진 성과를 얻을 수 있었다”라고 소감을 밝혔다.
이번 연구의 의의는 대규모 언어 모델이 금융 정보를 더 정확하게 처리할 수 있게 함으로써, 복잡한 금융 문서에서 필요한 정보를 빠르고 정확하게 찾아내는 데 기여한다는 점이다.
송현서 학생은 “투자자들이 기업 재무제표나 공시 자료를 분석할 때 더 정확한 정보를 얻을 수 있게 돕고, 금융 기관들의 의사결정 과정에서 중요한 도구로 활용될 수 있다.”라며 연구의 활용성을 강조했다.
김세종 학생은 “우리 연구가 실제 금융 환경에서 투자자들과 애널리스트들이 더 정확한 정보에 기반한 의사결정을 내리는 데 도움이 되길 바란다”라며 “학부생으로서 국제 학술대회에 논문을 발표하게 되어 매우 기쁘고, 앞으로도 계속해서 AI와 금융의 융합 연구에 매진하겠다”라고 말했다.
서현우 학생은 “학교의 지원으로 학회 참가비 및 여행 경비 부담을 덜었다”라며 학회 참가비 및 여행 경비를 지원해준 KAIST에 감사한 마음을 전했다.
관계자는 "학부 저학년 학생들이 국제 학술대회급 연구 성과를 낸 것은 매우 의미 있는 일"이라며 "앞으로도 KAIST는 학생들의 창의적인 연구와 도전을 적극 지원할 것"이라고 밝혔다.
<논문 정보>
- 논문 링크: https://arxiv.org/abs/2503.15191
- 프로젝트 웹사이트: https://github.com/seohyunwoo-0407/GAR
2025.04.01
조회수 3111
-
전산학부 홍승훈 교수 연구팀, ICLR 2023 학술대회 한국인 최초 최우수논문상 수상
우리 대학 전산학부 홍승훈 교수가 이끄는 연구팀이 지난 5월 1일부터 5월 5일에 열린 기계학습 분야의 최우수 국제학술대회인 ‘표현 학습 국제 학회 2023(International Conference on Learning Representation, 이하 ICLR 2023)’에서 최우수논문상 (Outstanding Paper Award)를 수상했다고 5일 밝혔다.
ICLR 2023은 인공지능 분야의 가장 권위 있는 학회 중 하나로서, 구글 스칼라 h-5 인덱스 기준 기계학습 분야의 1위에 올라있으며, 모든 과학 분야의 출판물 중 9위를 기록하고 있다. 올해 최우수논문상은 전체 1,574편의 논문 중 상위 4편에 주어졌다.
홍 교수팀의 ICLR 최우수논문상 수상은 한국인으로서는 최초이며, 주요 기계학습 학회에서 국내 기관이 주축이 되어 진행한 연구로 최우수논문상을 수상한 최초의 사례이기도 하다.
전산학부 김동균 박사과정(제1 저자), 김진우 박사과정, 조성웅 석사과정과 마이크로소프트 리서치 아시아(Microsoft Research Asia)의 총 루오 박사(Chong Lou)로 구성된 홍승훈 교수 연구팀은 컴퓨터 비전 분야의 핵심 연구 주제인 ‘픽셀 레이블링 문제'를 획기적으로 적은 수의 데이터로 광범위하게 해결할 수 있는 범용적 방법론인 비주얼 토큰 매칭(Visual Token Matching) 기법을 제안해 최우수논문상을 받았다.
픽셀 레이블링은 물체 검출, 물체 분할, 자세 추정, 깊이 추정, 3차원 복원 등 컴퓨터 비전 분야의 거의 모든 핵심 문제를 광범위하게 아우르는 개념이다. 최근 10년간 신경망 기반의 기계학습 방법론이 적용되며 픽셀 레이블링의 다양한 세부 문제에서 괄목할만한 진전이 있었으나, 이러한 방법들은 수십만 개 이상의 방대한 학습 데이터를 요구하는 한계가 있었다.
홍승훈 교수 연구팀은 모든 종류의 픽셀 레이블링 문제에 대해 수십 개 이내의 적은 데이터로도 학습과 추론이 가능한 범용적인 퓨샷 학습 기법을 개발했고, 수많은 픽셀 레이블링 문제에서 기존 방법 대비 0.01% 이내의 데이터로도 비슷하거나 우수한 성능을 낼 수 있음을 입증했다.
홍 교수는 이번 연구를 통해 의료 영상과 같이 학습 데이터 수집이 병목이 되는 다양한 도메인에서 컴퓨터 비전 기술을 적용하는데 돌파구가 되기를 기대한다고 평가했다.
이번 연구를 주도한 김동균 박사과정은 적은 수의 데이터로 학습할 수 있는 범용적 기계학습 방법론을 계속 연구해 왔으며, 이번 연구의 이론적 토대가 되는 연구를 지난 ICLR에 출판한 바 있다. 김동균 박사과정은 이번 연구로 삼성 휴먼테크 논문대상에서 은상을 수상하기도 했다.
전산학부 홍승훈 교수는 "상을 받게 되어 영광이고, 이번 수상이 국내 기계학습 연구자들에게 자신감이 되어 한국에서 더 많은 도전적인 연구들이 나오는 데 도움이 된다면 기쁠 것 같다”라고 소감을 밝혔다.
2023.05.08
조회수 6708
-
뉴욕대 조경현 교수, AI 여성인재 양성 위해 강연료 전액 기부
기계학습과 자연어처리 분야의 세계적인 연구자인 미국 뉴욕대학교 조경현 교수(2009년 KAIST 학사 졸업)가 우리 대학 AI대학원에 미화 3,000달러를 기부했다.
이는, 지난 11월 4일(월) 개최된 ‘삼성 AI 포럼 2019’의 초청 연사로 받을 강연료 전액으로 자신이 프로그램위원장을 맡은 2020 ICLR(International Conference on Learning Representations) 학회에 AI대학원 소속 박사과정 여학생들이 참석할 수 있도록 여비로 사용해달라는 뜻과 함께 전달했다.
조 교수는 평소 인터뷰를 통해 ˝한국은 물론 미국에서도 이공계 분야 여성의 활약과 진출이 아직 부족하다는 문제의식을 지니고 있다˝고 밝혀왔다.
AI대학원 정송 대학원장은 ˝조경현 교수의 기부에 깊은 감사의 뜻을 표하며, 보다 많은 AI대학원 소속 여학생들이 2020년 ICLR 학회에 참여할 수 있도록 기부금 사용은 물론 학과 차원에서 적극적으로 지원할 계획˝이라고 밝혔다.
2019.11.13
조회수 9872