본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
Advanced+Functional+Materials
최신순
조회순
형태 변형 및 유지가 가능한 3차원 디스플레이 기술 개발
우리 대학 전기및전자공학부 정재웅 교수와 신소재공학과 강지형 교수 공동 연구팀이 단단한 평판 디스플레이를 비롯하여 유연/신축성 디스플레이를 모두 아우를 수 있는 새로운 유형의 3차원 디스플레이 폼팩터를 개발했다고 밝혔다. 디스플레이 폼팩터 혁신은 사용자들의 이동성 증대 및 기기 간의 기술 융합에 따라 다양한 웨어러블 모바일 기기, 차량 분야에 접목되며 중요하게 대두되고 있다. 현재 디스플레이 산업 분야에서는 단단한 평판 디스플레이를 넘어서 차세대 유연/신축성 디스플레이로 나아가고 있다. 하지만 기존 디스플레이 폼팩터는 기판 소재의 고정된 기계적 물성으로 인해 특정 사용 목적으로만 활용 가능한 문제점을 보인다. 단단한 평판 디스플레이의 경우, 딱딱한 특성으로 인해 거치용이나 손에 쥐고 사용하기에 적합하지만 기계적 유동성이 떨어져 웨어러블 기기로 사용하기 어렵다. 이와 반대로 유연/신축성 디스플레이의 경우, 우수한 유연성으로 웨어러블 용도로 주로 사용되지만 기기 조작 측면에서 화면을 터치하면 쉽게 형태가 변형되어 사용자에게 불편함을 줄 수 있다. 이에 연구팀은 이러한 문제를 극복하고자 자유롭게 형태 변형 및 유지가 가능한 형상기억 플랫폼을 통해 다양한 사용 목적과 환경에 적합한 차세대 디스플레이를 개발했다. 개발된 디스플레이는 기계적 물성변환이 가능한 가변성 플랫폼에 신축성 발광기판을 집적한 것이다. 연구팀이 개발한 가변성 플랫폼은 온도 변화에 의해 물성변환이 가능한 액체금속(특정 지어, 필즈 메탈(Field’s metal)) 미세방울과 그래핀 나노 입자를 포함한 고분자 복합소재로 전기적/열적 자극에 의해 다양한 3차원 구조를 구현할 수 있는 핵심적인 요소이다. 제작된 가변성 플랫폼은 약 23.9배의 큰 폭의 강성도 변화를 보인다. 이에 따라 가변성 플랫폼은 전기적/열적 자극을 통해 우수한 형상기억 특성을 보이며 3차원 변형에 대하여 약 94% 이상의 형태 유지 능력과 93% 이상의 형태 회복 능력을 가진다. 또한 그래핀 나노 입자를 통해 전기전도성을 향상 시켜 전기적 자극에 의해 균일한 발열과 30초 이내의 빠른 상변화를 통해 효율적인 형태 변형 및 유지가 가능하다. 연구팀은 개발된 가변성 플랫폼을 신축성 전기발광 디스플레이와 결합해 다양한 입체 구조 구현이 가능한 3차원 디스플레이를 개발하였다. 더불어 해당 디스플레이 기술이 형태 변형이 가능한 스마트 아트 디스플레이, 다목적 가변형 웨어러블 디스플레이, 시각-촉각형(Visio-tactile) 차량용 디스플레이로 활용 가능함을 입증하였다. 이는 기존 디스플레이 폼팩터가 구현할 수 없는 3차원 형태 실현을 통해 혁신적 폼팩터를 제시하였다는 점에서 의미가 크다. 정재웅 교수는 “개발된 디스플레이 기술은 새로운 폼팩터 유형을 제시하여 디스플레이의 활용성을 높일 것이며, 다양한 전자소자에도 응용 가능하여 차세대 다목적 전자기기 개발의 발판이 될 것이다.”라고 밝혔다. 본 연구 결과는 전기및전자공학부 오수빈 박사과정 학생이 제1 저자로 참여한 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈 (Advanced Functional Materials)' 6월 12일 字 내부 뒤 표지 논문(Inside back cover paper)으로 게재됐다. (논문명 : 3D Shape-Morphing Display Enabled by Electrothermally Responsive, Stiffness-Tunable Liquid Metal Platform with Stretchable Electroluminescent Device). 이번 연구는 LG 디스플레이(주) 및 한국연구재단의 중견연구자지원사업의 지원을 받아 수행됐다.
2023.06.27
조회수 2085
최고 수준의 전기차 배터리 첨가제 기술 개발
1회 충전에 500km 이상 운행할 수 있는 전기자동차를 실현하기 위해서는 고용량, 고에너지밀도 이차전지 개발이 필수적이다. 이에 높은 가역용량을 가지는 니켈리치 양극과 흑연보다 10배가량 높은 용량을 발현하는 실리콘 음극 물질이 차세대 리튬이온전지의 소재로 주목받고 있다. 하지만 기존 전해질 첨가제 연구는 기존 물질들의 스크리닝 기법을 통하여 시행착오를 거쳐 개발되기 때문에 시간과 비용이 많이 소모되어 신규 전극 소재에 대응하기 어려운 한계점을 보였다. 우리 대학 생명화학공학과 최남순 연구팀이 고려대 곽상규 교수팀, UNIST 홍성유 교수팀, 현대자동차, 한국화학연구원과 공동연구를 통해, 고용량 실리콘 기반 음극과 니켈리치 양극으로 구성된 리튬이온 이차전지의 상온 및 고온 장수명화를 가능하게 하는 전해질 첨가제 기술을 개발했다고 19일 밝혔다. 연구팀이 개발한 전해질 첨가제는 실리콘 기반 음극과 니켈 리치 양극의 저온, 상온 및 고온에서의 가역성을 증대시켜 배터리 충방전 횟수 증가에 따른 급격한 용량 감소 문제를 해결할 수 있는 새로운 기술이다. 연구팀은 전해질 첨가제 설계 초기 단계부터 타겟으로 하는 양극과 음극에 적합한 작용기를 분자공학적 기법으로 조합하여 첨가제를 디자인하고 합성하는데 성공하였다. 디자인된 전해질 첨가제는 전자 수용 및 전자 공여 그룹의 전기화학적 반응에 의해 고용량 실리콘 기반 음극 및 니켈 리치 양극 표면에 고체전해질 계면막을 형성해 전지의 상온 및 고온 수명을 획기적으로 끌어올리는 데 성공했다. 개발 기술은 일반적인 실험실 수준이 아닌 기업에서 요구하는 수준의 높은 합재밀도를 가진 실리콘 기반 음극과 니켈 리치 양극을 사용하여 배터리의 저온, 상온 및 고온 장수명을 실현하였다는 점과 저비용으로 극대화된 효율을 낼 수 있는 전해질 첨가제 디자인의 방향성을 제시하였다는 점에서 그 의미가 크다. 이번 논문의 공동 제1 저자인 KAIST 생명화학공학과 문현규 연구원은 "개발된 전해질 첨가제는 내열성과 유연성이 우수한 전극 계면 층을 형성하여 전기차 구동 온도 45도에서 실리콘 기반 음극과 니켈 리치 양극으로 구성된 전지의 반복적인 300회 충방전 후에도 초기 용량의 72.5%를 발현가능했으며, 이는 기존에 사용되고 있는 첨가제인 비닐렌 카보네이트(VC), 플루오르에틸렌 카보네이트(FEC) 대비 각각 54%, 38% 향상된 수준이었다. 또한, 실리콘 음극 부피변화에 따른 전지 열화를 억제하여 희박 전해질 조건에서도 효과가 있었다ˮ 라고 말했다. 최남순 교수는 “이번 성과는 기존 상용 첨가제들(VC, FEC)의 한계를 극복할 수 있는 전해질 첨가제 기술로, 물질 구조 디자인, 합성 및 계산화학을 통해 연구시간 및 비용을 줄이고 타겟 양극 및 음극 특성에 적합한 첨가제를 정확하게 개발해 내는 새로운 방향을 제시했다”라고 연구의 의미를 강조했다. 뿐만 아니라 양산 수준의 전극 로딩 조건에서 저온에서부터 고온에 이르기까지 온도 내구성이 뛰어난 전극 계면 층을 형성하는 세계 최고 수준의 전해질 첨가제 기술로서 전기차 배터리 등에 활용이 기대된다고 밝혔다. 이번 연구에서 KAIST 최남순 교수와 문현규, 남희범(現 현대자동차 연구원) 연구원은 전해질 시스템 개발과 실험적 원리 규명을 담당하였다. UNIST 홍성유 교수와 김민평, 전민호(現 한국화학연구원 연구원) 연구원은 디자인된 첨가제를 쉽게 얻는 합성법을 개발하였다. 고려대학교 곽상규 교수와 이승민, 김형준 연구원은 계산화학 시뮬레이션을 통해 음극 및 양극에서의 전해질 첨가제의 계면 층 형성 과정을 이론적으로 규명하였다. 한편 이번 연구는 저명한 국제 학술지 `어드밴스트 펑셔널 머터리얼즈 (Advanced Functional Materials)'에 4월 4일 字로 온라인 공개됐다 (논문명 : Elastic Interfacial Layer Enabled the High-Temperature Performance of Lithium-Ion Batteries via Utilization of Synthetic Fluorosulfate Additive). 이번 연구 수행은 현대자동차의 지원을 받아 수행됐다.
2023.04.19
조회수 2832
획기적 음의 정전용량 플래시 메모리 최초 개발
우리 대학 전기및전자공학부 전상훈 교수 연구팀이 `음의 정전용량 효과(Negative Capacitance Effect, 이하 NC 효과)*'를 활용해 기존 플래시 메모리의 물리적 성능 한계를 뛰어넘는 음의 정전용량 플래시 메모리 (NC-Flash Memory)를 세계 최초로 개발했다고 18일 밝혔다. *음의 정전용량 효과: 음의 정전용량 현상은 인가되는 전압이 증가하면 전하량이 감소함을 의미한다. 음의 정전용량 특성을 가지는 유전체 사용시, 트랜지스터에 인가되는 전압을 내부적으로 증폭하여 상대적으로 낮은 동작전압을 사용할 수 있어, 파워소모를 줄일 수 있다. 전기및전자공학부 김태호 박사과정과 김기욱 박사과정이 공동 제1 저자로 수행한 이번 연구는 저명 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials)' 2022년 12월호에 출판됐다. (논문명 : The Opportunity of Negative Capacitance Behavior in Flash Memory for High-Density and Energy-Efficient In-Memory Computing Applications) 이 국제학술지는 독일 와일리 출판사(Wiley-VCH)에서 발행하는 피어리뷰 과학 저널이다. (Impact Factor : 19.924) 현대 전자 소자에서 축전기(Capacitor)는 매우 중요한 구성 요소의 하나로, 전자 소자가 소형화되고 수직 방향으로 적층 되면서 축전기에 저장되는 전하량(Charge, Q)이 감소하는 문제가 생기므로 높은 정전용량(Capacitance, C)을 가진 유전체 물질이 필수적으로 요구되고 있다. 여기에 일반적인 축전기와 다르게 정전용량이 음의 값을 갖는(Negative Capacitance) 축전기를 활용한다면 다층의 축전기의 전체 정전용량을 오히려 더 증가시킬 수 있고, 차세대 소자에 적합한 높은 정전용량 소자 개발 난제를 해결할 수 있을 것이라는 가설이 제안되었다. 최근 메모리 공급업체들은 데이터의 폭발적 증가와 더 높은 용량의 솔리드 스테이트 드라이브(SSD) 및 더 빠른 액세스 시간에 대한 요구로 인해 기술 경쟁을 치열하게 하고 있다. 스토리지의 핵심 기술인 3D 낸드 플래시는 지속적으로 더 높은 층을 적층할 수 있는 기술을 요구하고 있고, 2028년에는 1,000단 이상의 메모리 적층이 필요할 것으로 예상되고 있다. 한편, 강유전체* 물질에서 보이는 `음의 정전용량 효과(NC 효과)'은 전자 소자에 인가된 외부 전압을 내부적으로 증폭해 전력 소모를 줄이는 특성이 있어, 전자 소자의 물리적 성능 한계를 극복할 수 있다는 가능성이 제시됐다. 최근 페로브스카이트 강유전체에서 NC 효과를 실험적으로 관찰했으나, 페로브스카이트 강유전체의 소형화 한계 및 CMOS 공정과의 부적합성으로 인해 NC 효과를 활용한 전자 소자의 구현에 대해 상당한 회의론을 불러일으켰다. *강유전체: 전기적으로는 절연체이지만 자연상태에서 외부 전기장이 없어도 전기 편극을 지닐 수 있는 특이한 물리적 성질을 가진 물질 전상훈 교수 연구팀은 기존 플래시 메모리의 물리적 성능 한계를 극복하고 동작전압을 낮추기 위해, 반도체 공정에 사용되는 하프늄옥사이드(HfO2) 강유전체 박막의 NC 효과를 안정화해 저전압 구동이 가능한 강유전체 소재의 NC-플래시 메모리를 세계 최초로 개발했다. 개발된 NC-플래시 메모리는 기존 플래시 메모리 대비 전력 소모가 10,000배 이상 낮은 저전력 고성능 특성을 달성했다. 연구팀은 그뿐만 아니라 기존 컴퓨팅 구조인 폰노이만 아키텍처를 대체하여 새롭게 지향하는 인메모리 컴퓨팅을 NC-플래시 메모리를 기반으로 구현해 세계 최고 수준의 에너지 효율 또한 달성했다. 이번 연구 결과는 빠른 스토리지를 필요로 하는 최신 컴퓨팅과 네트워킹의 요구를 충족하는 차세대 낸드 플래시 메모리 개발에 있어 핵심 역할을 할 것이다. 한편, 이번 연구는 연세대학교와 협업을 통해서 이루어졌고, 한국 연구재단 지능형 반도체 기술개발사업의 지원을 받아 수행됐다.
2023.01.18
조회수 2831
돼지표피에서 추출한 젤라틴 활용해 고성능 고체산화물 연료전지 개발
우리 대학 기계공학과 이강택 교수 연구팀이 돼지 표피에서 추출한 젤라틴을 활용해 수백 나노 수준의 매우 얇은 고 치밀성 다중도핑 세라믹 박막 제조 기술을 적용한 고성능의 양방향 고체산화물 연료전지 개발에 성공했다고 8일 밝혔다. 양방향 고체산화물 연료전지(R-SOFC)는 하나의 연료전지 소자에서 수소 생산과 전력생산이 모두 가능한 시스템으로서 탄소중립 사회 실현을 위해 필수적인 에너지 변환장치다. 이러한 에너지 소자의 성능을 높이기 위해서는 700oC 이하의 중저온에서 고활성을 갖는 전극의 개발이 필수적이며, 이를 위해 코발트 기반 페로브스카이트 전극이 집중적으로 연구돼왔다. 하지만 이러한 코발트 기반 전극 소재는 범용으로 사용되는 지르코니아(ZrO2) 전해질과 고온에서 화학반응을 일으켜 성능을 저하하는 문제가 있다. 이를 해결하기 위해 전극과 전해질 사이에 세리아(CeO2) 기능층을 도입하는 연구가 진행돼왔지만, 세리아와 지르코니아 사이의 반응을 억제하기 위해서 공정온도가 제한되며 이로 인해 두꺼운 다공성 구조를 갖게 되어 연료전지의 성능 및 안정성이 저하된다는 문제가 있었다. 이 교수 연구팀은 이 연구에서 젤라틴을 활용해 매우 얇으면서도 치밀한 다중도핑의 세리아 나노박막 제조 공정기술을 개발해 양방향 고체산화물연료전지에 기능층으로 적용하는 데 성공했다. 전기화학 및 구조 분석을 통해 치밀한 기능층의 도입으로 산소이온의 이동경로가 크게 감소하며 전기화학적 활성영역이 크게 증가함을 확인했다. 또한 개발된 양방향 연료전지는 기존 공정을 적용한 연료전지 대비 2배 이상 높은 성능을 보였으며 동일소재를 사용한 연료전지 중 가장 높은 성능(3.5 W/cm2, 750oC) 을 나타냈으며, 수소 생산도 세계 최고성능을 발휘했다. 또한, 개발된 연료전지 소자는 1,500시간 동안 열화 없이 구동돼 매우 높은 안정성을 갖고 있음을 실증했다. 이강택 교수는 "이번 연구에서 사용된 공정들은 대면적 양산시스템에도 쉽게 적용할 수 있는 기술들이기 때문에, 탄소중립 실현을 위한 고성능 양방향 연료전지 상용화에 본 기술을 적용할 수 있을 것ˮ이라며 연구의 의미를 강조했다. 기계공학과 유형민 석사과정, 임하니 박사후연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지인 `어드벤스드 펑셔널 머티리얼스, Advanced Functional Materials' (IF : 19.924) 지난 9월 8일 字 온라인판에 게재됐다. (논문명 : Exceptionally High-performance Reversible Solid Oxide Electrochemical Cells with Ultra-thin and Defect-free Sm0.075Nd0.075Ce0.85O2-���� Interlayers). 또한 해당 논문은 연구의 파급력을 인정받아 표지논문 (Front cover)으로 선정됐다. 한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업, 중견연구자지원사업, 나노 및 소재 기술개발사업, 그리고 기후변화대응기술개발사업의 지원으로 수행됐다.
2022.12.08
조회수 3680
기계공학과 박인규 교수, 팽창하는 입자를 이용한 불규칙한 마이크로 돔 구조 기반 고감도 압력센서 개발
우리 대학 기계공학과 박인규 교수 연구팀이 한국생산기술연구원 조한철 박사와 공동 연구를 통해 3D 마이크로 구조 기반의 표면 형태 제어 기술 및 고감도 압력센서 설계 관련 원천기술을 개발했다. 최근 인간과 전자기기 간의 상호작용 기술의 중요성 증가에 따라, 그 매개체 역할을 하는 센서 기술 개발에 대한 관심이 증가하고 있다. 고성능 센서 기술은 스마트 기기, 보안 및 안전, 의료 및 헬스케어 분야와 같은 고부가가치 산업에 주로 적용되고 있다. 최근에는 뛰어난 센서 특성과 함께 유연한 특성으로 인해 사람의 피부와 같은 굴곡진 부위에 쉽게 부착 가능한 유연 압력센서 및 웨어러블 센서 응용에 대한 관심이 급증하고 있다. 특히, 표면에 3D 마이크로 구조가 어레이된 필름을 사용하면 센서의 전반적인 특성을 향상시킬 수 있어, 3D 마이크로 구조의 크기 및 밀도를 제어할 수 있는 기술이 필수적으로 요구된다. 하지만, 기존의 연구들은 원하고자 하는 패턴의 역상으로 제작된 몰드에 액상의 엘라스토머를 부어 제작하기 때문에 몰드 제작 공정이 필수적으로 요구되며, 3D 마이크로 구조의 크기/밀도 등을 조절하는데 한계가 있어 제작 유연성에 있어 큰 한계점이 존재했다. 공동 연구진은 이러한 문제를 해결을 위해, 온도에 의해 팽창하는 입자를 이용하여 표면에 3D 마이크로 구조를 제작하는 기술을 개발하였다. 본 연구에서 핵심으로 사용한 물질은 온도에 의해 팽창하는 미소 입자이다. 이 입자는 상온에서는 초기 상태인 6~11 ㎛를 유지하는데, 특정 온도를 가하면 내/외부의 변화로 인해 약 30~50 ㎛로 크기가 변하게 된다. 해당 입자를 유연 엘라스토머와 혼합하여 유연 필름을 제작한 뒤에 열팽창을 시키는 표면에 3D 마이크로 구조가 어레이된 유연 필름의 제작이 가능하다 (그림 1). 이를 활용하여 고민감도의 유연 압력센서에 적용하였다 (그림 2). 본 센서는 기존에 제안되었던 3D 마이크로 구조 기반 압력센서에 비해 높은 감도를 보여주었으며 내구성/검출한계/응답속도 등에서도 뛰어난 성능을 보였다. 이를 활용하여 다양한 사용자 맞춤형 어플리케이션에 적용하였다. 첫 번째로 손가락형 압력센서에 적용하였다. 개발된 손가락형 압력센서는 높은 감도로 인해 미세한 압력 변화를 감지할 수 있었으며 이를 이용하여 손가락의 미세한 맥박 변화, 물체를 누르는 힘 등에 대해 정밀하게 감지/구분할 수 있음을 보였다. 두 번째로는 대면적 어레이 센서로 제작하여 인간-컴퓨터 상호작용에 적용하였다. 이를 통해 손목의 움직임을 감지하고 획득한 신호를 기계학습에 적용하여 마우스 커서를 움직일 수 있음을 증명하였다 (그림 3). 이번 연구는 제 1 저자로는 정영 박사후연구원(KAIST 기계공학과)과 최중락 박사과정 학생(KAIST 기계공학과)이, 교신저자로는 조한철 박사(한국생산기술연구원)와 박인규 교수(KAIST 기계공학과)가 참여했으며, 과학기술정보통신부의 재원으로 한국연구재단의 중견연구자 과제 (박인규 교수), 창의도전연구 과제 (정영 박사), 신진연구자 과제 (조한철 박사)의 지원을 받아 수행되었다. 본 연구 결과는 재료연구 분야 최상위 학술지 중 하나인 Advanced Functional Materials (Impact factor 18.81) 지 2022년 7월 4일자로 논문이 게재되었으며, 후면 표지논문 (Back cover)에 선정되었다. (논문명: “Irregular Microdome Structure-Based Sensitive Pressure Sensor Using Internal Popping of Microspheres”)
2022.08.01
조회수 4127
두뇌 신경 조율 활동을 모방한 저전력 인공지능 하드웨어 핵심기술 개발
우리 대학 신소재공학과 김경민 교수 연구팀이 두뇌에서 일어나는 신경 조율 활동을 구현한 인공지능용 하드웨어와 관련 알고리즘의 개발에 성공했다고 19일 밝혔다. 4차 산업 혁명 시대를 맞아 인공지능 기술(Artificial Intelligence; AI)의 연구가 활발해지고 이에 따라 인공지능 기반 전자기기들의 개발 및 제품 출시가 가속화되고 있다. 인공지능을 전자기기에서 구현하기 위해서 맞춤형 하드웨어의 개발 또한 뒷받침돼야 하는데, 현재 대부분의 인공 지능용 전자기기들은 많은 연산량을 수행하기 위해 높은 전력 소모와 고도로 집적된 메모리 배열을 사용하고 있다. 인공 지능의 능력 향상을 위해 이러한 전력 소모 및 집적화 한계의 문제를 해결하는 것은 인공 지능 기술 분야의 커다란 과제이며, 인간의 뇌 활동에서 문제 해결의 단서를 찾고자 하는 노력이 계속돼왔다. 김경민 교수 연구팀은 인간의 두뇌 신경망이 신경 조율(Neuromodulation) 기능을 통해 연결 구조를 상황에 따라 지속적으로 변화시키는 것을 모방, 인공 지능을 위한 수학적 연산을 효율적으로 처리할 수 있는 기술을 개발했다. 두뇌에서는 학습하는 과정에서 실시간으로 신경망의 연결도를 변경해 필요에 따라 기억을 저장하거나 불러내는데, 이러한 신경 조율 기능을 하드웨어에서 직접 구현하는 새로운 방식의 인공 지능 학습 방식을 제시한 것이다. 연구팀은 개발된 기술의 효율성을 증명하기 위해 독자적인 전자 시냅스 소자가 탑재된 인공 신경망 하드웨어를 제작했으며, 여기에 개발한 알고리즘을 적용해 실제 인공지능 학습을 진행했고, 그 결과 인공지능 학습에 필요한 에너지를 37% 절약할 수 있었다. 공동 제1 저자인 신소재공학과 정운형 박사과정과 전재범 박사과정은 "인간의 두뇌는 생존을 위해 에너지 소모를 최소화하는 방향으로 진화해왔다. 이번 연구에서는 간단한 회로의 구성만으로 인간 두뇌의 학습 방식을 구현하였으며, 이를 통해 40%에 가까운 에너지를 줄일 수 있었다, 이는 범용성 있게 모든 SNN(스파이킹 뉴럴 네트워크) 인공 신경망에서 사용 가능한 장점을 가진다ˮ며 "뇌 활동을 모방해 개발한 새로운 학습 방식의 착안은 앞으로 인공 지능 분야의 소프트웨어·하드웨어 분야가 나아가야 할 길의 이정표가 될 것이다ˮ라고 말했다. 이러한 두뇌 신경 활동을 모방한 학습 알고리즘은 기존 전자기기 및 상용화된 반도체 하드웨어에 적용 및 호환을 할 수 있으며 차세대 인공 지능용 반도체 칩의 설계에 사용할 수 있을 것으로 기대된다. 이번 연구는 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials)'에 지난 3월 31일 자에 게재됐으며 한국연구재단, ㈜SK Hynix, 나노종합기술원(NNFC) 및 KAIST의 지원을 받아 수행됐다. (논문명: Demonstration of Neuromodulation-inspired Stashing System for Energy-efficient Learning of Spiking Neural Network using a Self-Rectifying Memristor Array)
2022.04.19
조회수 5661
6개의 표적 물질을 동시에 검출할 수 있는 질병물질 검출 종이센서 개발
우리 대학 생명화학공학과 이진우 교수 연구팀이 가천대학교 바이오나노학과 김문일 교수팀, POSTECH 화학공학과의 한정우 교수팀과 함께 새로운 무기 소재(*나노자임, Nanozyme)를 합성하는 데 성공하였고, 이를 이용해 종이 기반 질병 물질 검출 센서에 도입, 6개의 표적 물질을 동시에 그리고 민감하게 검출 가능한 종이 센서를 개발했다고 7일 밝혔다. ☞나노자임(Nanozyme): 단백질로 이루어진 효소와 달리 무기물질로 합성된 효소 모방 물질을 말한다. 기존 효소의 단점으로 꼽히는 안정성, 생산성 그리고 가격적 측면에서 매우 뛰어나며, 기존의 효소가 사용되던 질병 진단 시스템에 그대로 활용될 수 있다. 공동연구팀은 기존의 과산화효소 모방 나노자임들과 달리 중성에서 활성을 지니며 큰 기공(구멍)을 가져 산화효소를 적재할 수 있는 코발트가 도핑된 메조 다공성 구조의 산화 세륨을 개발했고, 이를 이용해 질병 진단물질인 글루코오스, 아세틸콜린, 콜레스테롤을 비롯한 6개의 물질을 동시에 검출 가능한 종이 센서를 개발했다. 생명화학공학과 이준상 박사과정생이 가천대학교 바이오나노학과 푸엉 타이 응우옌(Phuong Thy Nguyen) 박사과정생, 포항공과대학교 화학공학과 조아라 박사과정생과 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials)' 2월 19권 2호에 출판됐다. (논문명 : Rational Development of Co-Doped Mesoporous Ceria with High Peroxidase-Mimicking Activity at Neutral pH for Paper-Based Colorimetric Detection of Multiple Biomarkers). 나노자임은 기존의 효소가 사용되던 다양한 질병의 검출에 사용될 수 있을 뿐만 아니라 효소가 사용되기 어려웠던 극한 환경 혹은 다양한 미세환경이 존재하는 체내에서도 그 역할을 수행할 수 있어 목적에 맞는 활성을 지니는 나노자임의 필요성이 더욱 강조되고 있다. 효소는 우리의 몸속의 다양한 화학 반응에 촉매로서 작용을 하고 있었지만, 최근에는 이러한 효소들을 정제해서 다양한 물질들을 검출 및 치료 등 다방면에서의 활용이 가능하다는 것이 보고돼왔다. 특히 과산화효소의 경우 과산화수소의 존재 하에서 투명한 발색 기질을 산화시켜 푸른색을 띠기 때문에 과산화수소를 시각적으로 검출할 수 있으며, 이를 이용해 산화 과정에서 과산화수소를 배출하는 아세틸콜린, 글루코오스를 포함한 다양한 물질들의 산화효소와 함께 사용되면 표적 물질을 시각적으로 검출할 수 있다. 하지만 아세틸콜린, 글루코오스 등을 산화시키는 대부분의 산화 효소는 중성에서 최적 활성을 가지는 것과 달리, 과산화효소 모방 나노자임은 산성에서만 활성을 지니기 때문에 중간에 수소 이온 농도 지수(pH)를 조절하는 버퍼 용액을 변경해야 하거나, 최적 활성이 아닌 지점에서 반응이 일어나 표적 물질의 미세한 검출을 하기 어렵고, 바이오 센서로서의 적용도 어렵다. 이 때문에 중성 상태에서도 과산화효소 활성을 모방하면서 표적 물질의 산화효소를 담을 수 있는 나노자임의 개발이 필수적이다. 공동연구팀은 문제 해결을 위해 밀도범함수이론(Density Functional Theory, DFT)을 도입해 기존에 과산화효소 활성이 있던 산화 세륨 위에 어떠한 원소를 도핑할 경우 중성에도 과산화효소 활성이 유지될지 스크리닝을 진행했고, 코발트 원소가 최적 물질임을 계산을 통해 예측했다. 연구팀은 중성에서의 활성을 유도할 코발트 원소를 도핑하면서 산화효소를 적재할 수 있게 17 나노미터(nm)의 큰 기공을 지니는 메조 다공성 구조의 산화세륨 합성에 성공했다. 메조 다공성 나노물질들이 2~3 나노미터(nm) 기공을 지니는 것과 달리, 연구팀은 열처리 과정에서의 변화를 통해 큰 기공을 지니도록 합성할 수 있었고, 이 기공에 산화효소들을 적재할 수 있다는 것을 확인했다. 또한, 합성된 나노자임은 중성(pH 6)에서 최적 활성을 지녀 pH의 변경 없이 산화효소와 연쇄 반응을 일으킬 수 있었다. 연구팀은 개발한 나노자임에 중요한 질병 진단물질인 글루코오스, 아세틸콜린, 콜린, 갈락토오스, 콜레스테롤의 산화효소를 담아, 과산화수소를 포함한 6개 물질을 동시에 검출이 가능한 종이 센서를 개발했다. 이 종이 센서는 20분 만에 6개 물질을 빠르게 검출할 수 있으며, 기존 하나씩만을 검출할 수 있는 센서들의 검출한계보다 더 좋은 성능을 보였다. 또한 연구팀은 산화효소를 메조 다공성 산화세륨에 적재해 60℃의 고온에서도 안정적이고, 60일이 넘는 시간 동안 안정적으로 작동함을 확인했다. 이 교수는 "나노자임은 분야 자체가 시작된 지 오래되지 않았지만, 기존 효소를 대체해 쓰일 수 있다는 잠재성 때문에 폭발적으로 관심이 증가하고 있다ˮ라며 "앞으로 종이 센서 뿐만 아니라 각종 진단 및 암 치료에 나노자임을 도입해 진단 및 치료 분야에 큰 도약을 이뤄낼 가능성이 있다ˮ 라고 말했다. 한편 이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
2022.03.07
조회수 5833
낙엽을 활용한 친환경 마이크로 슈퍼커패시터 개발
우리 대학 기계공학과 김영진 교수 연구팀과 한국에너지기술연구원(이하 에너지연, 원장 김종남) 에너지저장연구실 윤하나 박사 연구팀이 공동연구를 통해, 극초단 펨토초 레이저 직접 묘화 기술을 기반으로, 세계최초 낙엽 상 그래핀-무기-하이브리드 마이크로 슈퍼커패시터 제작에 성공했다고 13일 밝혔다. 웨어러블 전자 장치의 발전은 유연한 에너지 저장장치의 혁신에 직접적으로 영향을 받는다. 다양한 에너지 저장장치 중 마이크로 슈퍼커패시터의 경우 높은 전력 밀도, 긴 수명 및 짧은 충전 시간으로 큰 관심을 끌고 있다. 그러나, 증대되는 전자 전기 제품의 소비 및 사용, IT 모바일 기기의 첨단화에 따른 짧은 교체 주기에 따라 폐전지의 발생량이 증대하고 있다. 이는 폐전지의 수거, 재활용 및 처리 과정에 있어, 안정성 및 환경적인 이슈 등의 많은 어려움을 유발한다. 산림은 전 세계 육지의 30% 가량을 덮고 있으며, 산림에서는 엄청난 양의 낙엽이 배출된다. 이러한 바이오매스는 자연적으로 풍부하고, 생분해성이며 재생 가능한 매력적인 친환경 재료다. 그러나 이를 효과적으로 활용하지 못하고 방치하면 화재 위험, 식수원 오염 등 산림 재해가 발생할 수 있다. 연구팀은 두 가지 문제점을 동시에 해결할 방법으로 친환경의 생분해성 바이오매스인 낙엽 위에 추가 재료 없이 펨토초 레이저 펄스를 조사해, 대기 중에서 특별한 처리 없이 단일 단계로 높은 전기 전도성을 지닌 미세 전극인 3D 다공성 그래핀을 생성하는 기술을 개발했다. 또한 이를 활용해 유연한 마이크로 슈퍼커패시터를 제작하는 방안을 제시했다. 연구팀은 해당 연구를 통해 낙엽으로부터 쉽고 저렴하며 빠르게 다공성 그래핀-무기결정 하이브리드 전극을 제작할 수 있음을 보였으며, 제작된 그래핀 마이크로 슈퍼커패시터를 LED 발광을 위한 전원 공급 및 온, 습도계 타이머/카운터 기능의 전자시계 전원 공급을 테스트함으로써 성능을 검증했다. 이는 저가의 녹색 그래핀 기반 유연한 전자 제품의 대량 생산을 위한 길을 열 수 있음을 의미한다. (그림1) 연구 논문의 교신저자인 우리 대학 김영진 교수는 개발된 차세대 에너지 저장 소자에 대해 "현재 감당이 어려운 산림 바이오매스인 낙엽을 차세대 에너지 저장 소자로 재사용함으로써, 폐자원의 재사용 및 에너지 선순환 시스템 확립을 가능하게 한다ˮ라고 했다. 또한 공동 교신저자인 에너지연 윤하나 박사는 "이번 기술은 친환경 산업의 기술 혁신 및 고부가가치 신재생에너지 및 이차전지 사업으로써의 신시장 창출뿐 아니라 국가의 사회적, 경제적 비용을 크게 감소시킬 수 있을 것이며, 더 나아가 웨어러블 전자 제품 및 스마트 홈이나 사물 인터넷에도 적용될 것으로 기대된다ˮ라고 말했다. 이번 연구는 한국농림축산식품부의 기획평가원 지원사업과 산림청의 산림과학기술 연구개발사업 및 한국에너지기술연구원 주요사업의 지원을 받아 수행됐다. 기계공학과 레딘츤손 박사 후 연구원과 에너지연 이영아 연구원이 공동 제1 저자로 참여한 이번 연구 결과는 재료과학 및 융합연구분야의 세계적인 학술지인 `어드밴스드 펑셔널 머티리얼즈'(Advanced Functional Materials)에 작년 12월 5일 온라인 공개됐다. (논문명 : Green Flexible Graphene–Inorganic-Hybrid Micro-Supercapacitors Made of Fallen Leaves Enabled by Ultrafast Laser Pulses)
2022.01.13
조회수 6742
디스플레이 구동 가능한 OLED 전자 섬유 개발
우리 대학 전기및전자공학부 최경철 교수 연구팀이 정보 출력이 가능한 유기발광다이오드(OLED) 전자 섬유를 개발했다고 12일 밝혔다. 전자 섬유는 실제 입을 수 있는 형태의 소자로서 기존 2차원 평면 소자와는 다르게 인체의 다양한 움직임에 순응하고 뛰어난 착용성과 휴대성을 제공할 수 있는 섬유의 1차원 구조 덕분에 차세대 폼 팩터(form-factor)로 주목받고 있다. 특히나 빛을 방출하는 전자 섬유는 패션, 기능성 의류, 의료, 안전, 차량 디자인 등 다양한 응용 잠재력에 많은 주목을 받고 있다. 하지만 지금까지의 발광 전자 섬유 연구는 디스플레이로 활용되기엔 부족한 전기광학적 성능을 보여 왔거나 단순히 소자 단위로만 연구가 진행 또는 종횡비가 긴 2차원 평면 단위에서 연구가 이루어져 응용 기술 개발에 어려움이 있었다. 최경철 교수 연구팀은 OLED 전자 섬유 디스플레이 구현을 위해 높은 전기광학적 성능 구현과 함께 주소 지정 체계 구축에 주목했다. 연구팀은 먼저 300 마이크로미터(µm) 직경의 원통형 섬유 구조에 적합한 RGB 인광 OLED 소자 구조를 설계했고 연구팀이 보유한 원천기술인 딥 코팅 공정을 활용해 평면 OLED 소자에 버금가는 수준의 OLED 전자 섬유를 개발했다. 특히 고효율을 얻을 수 있는 인광 OLED를 섬유에 성공적으로 구현해 최고 1만 cd/m2(칸델라/제곱미터) 수준의 휘도, 60 cd/A(칸델라/암페어) 수준의 높은 전류 효율을 보였다. (이는 기존 기술 대비 약 5배 이상의 전류 효율에 해당하는 수치다.) 연구팀은 아울러 OLED 전자 섬유를 기반으로 안정적인 디스플레이 구동을 위해, OLED 전자 섬유 위에 접촉 영역을 설계해 직조된 주소 지정 체계를 구축했다. 그리고 문자와 같은 정보를 디스플레이 해 실제 입을 수 있는 기능성을 확인했다. 최 교수 연구팀 관계자는 이 전자 섬유가 디스플레이라는 표시 장치 관점에서 반드시 요구되는 밝은 밝기와 낮은 전력 소모를 위한 높은 전류 효율, 낮은 구동 전압, 그리고 주소 지정성을 갖췄다고 밝혔다. 이번 연구를 주도한 최 교수 연구팀의 황용하 박사과정은 "섬유 기반 디스플레이 구현을 위해 필수적으로 요구되는 요소 기술들을 구현하는 데 집중했다ˮ며 "전자 섬유가 가진 뛰어난 착용성과 휴대성을 제공함과 동시에 디스플레이 기능성을 구현해 패션, 기능성 의류 등 다양한 응용 분야에 적할 수 있을 것이라 기대된다ˮ고 말했다. 최경철 교수 연구팀의 황용하 박사과정이 제1 저자로 주도한 이번 연구 결과는 나노 분야의 권위 있는 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials)' (피인용지수(IF) 16.836) 2월 4일 字로 온라인 게재됐으며, 5월 3일 字로 전면 표지 논문(Front Cover)으로 게재됐다. (논문명: Bright-Multicolor, Highly Efficient, and Addressable Phosphorescent Organic Light-Emitting Fibers: Toward Wearable Textile Information Displays) 한편, 이번 연구는 산업통상자원부 전자부품산업핵심기술개발사업과 LG디스플레이의 지원을 받아 수행됐다.
2021.05.12
조회수 45030
도파민의 성질로 박테리아 생장의 실시간 탐지 기술 개발
우리 몸의 신경전달물질인 도파민의 성질을 이용해 박테리아(병원균)를 쉽게 검출할 수 있는 기술이 우리 대학 연구진에 의해 개발됐다. 생명과학과 정현정 교수, 화학과 이해신 교수 공동연구팀이 도파민의 반응을 이용해 병원균의 생장과 항생제 내성을 광학적으로 측정하고 맨눈으로 실시간 검출하는 기술을 개발했다고 7일 밝혔다. 박테리아의 항생제 내성 문제는 현대인의 건강을 위협하는 위험요인으로 꼽히고 있다. 항생제 내성에 대한 적절한 대처가 없다면 30년 이내에 항생제 내성균에 의한 피해가 암보다 더 현대인의 수명을 줄일 수 있다는 보고서가 발표되기도 했다. 항생제 내성균의 종류가 점차 늘어나면서 미국 질병통제예방센터(CDC)는 연간 최소 200만 명 이상의 환자가 항생제 내성 병원균에 의해 발생하고 있다고 보고했다. 도파민은 대다수 생명체에서 신경전달물질로 사용되며, 산소가 존재하는 환경에서 다른 물질의 도움 없이 자체 중합반응(두 개 이상 결합해 큰 화합물이 되는 일)이 일어난다. 이렇게 중합된 도파민 고분자는 짙은 갈색을 나타내고, 다양한 물질 표면에 흡착해 층을 형성한다. 연구팀은 이러한 도파민의 성질을 이용해 병원균이 생장하는지와 항생제 내성을 갖는지를 육안과 형광으로 동시에 탐지 가능한 기술을 개발했다. 이 기술은 현재 사용되는 디스크 확산 검사나 균 배양 분석에 대비해 시간이 짧고 중합효소 연쇄 반응(PCR 검사)과 비교할 때도 전처리 과정이 필요 없는 간편한 기술이라는 점이 큰 장점이다. 우리 대학 나노과학기술대학원 석박사통합과정 이주훈 학생이 제1 저자로, 나노과학기술대학원 석박사통합과정 류제성 학생과 생명과학과 강유경 박사가 공동 저자로 참여한 이번 연구 결과는 재료과학 분야 국제학술지 `어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials, IF 16.836)'에 11월 3일 字 온라인 게재됐다. (논문명 : Polydopamine Sensors of Bacterial Hypoxia via Fluorescence Coupling) 도파민의 자체 중합반응에서는 개시제 역할을 하는 산소가 필수적인 존재다. 연구팀은 박테리아가 생장함에 따라 용액 내의 산소를 소모하는 현상을 이용, 박테리아의 생장 정도를 도파민의 중합반응과 연관 지어 관측하는 방법을 개발했다. 또 박테리아의 생장에 영향을 끼치지 않는 소재인 덱스트란으로 형광나노입자를 제조해 실험에 사용했다. 도파민의 자체 중합반응은 용액 내에 존재하는 형광나노입자 표면에 흡착하고 층을 형성해 입자의 화학적, 물리적 성질에 큰 변화를 일으키고 기존에 발생하던 강한 형광 신호를 약하게 만든다. 또한, 도파민과 나노입자가 첨가된 용액 내에서는 도파민의 산화와 자체 중합반응 때문에 용액의 색이 짙은 갈색으로 변한다. 하지만 박테리아가 용액 내에 존재하는 경우 박테리아 생장 때문에 산소가 소모돼 도파민의 자체 중합반응은 저해되고 용액의 색깔은 투명하게 유지된다. 나노입자의 형광 신호 역시 원래의 신호를 유지하게 된다. 연구팀은 이러한 현상을 박테리아의 생장 및 항생제 내성을 탐지하는데 적용할 수 있다는 점에 착안, 항생제에 내성을 가지는 `뉴 델리 메탈로-베타락타마제 1 (NDM-1)'을 발현하는 대장균(E. coli)을 대상으로 실험을 진행했다. 일반적인 대장균의 경우 카바페넴 계열의 항생제인 암피실린에 의해 생장이 크게 저해되는데, 항생제에 내성을 갖는 대장균은 생장이 잘 이뤄진다. 즉 항생제 내성을 가지는지에 따라 소모하는 산소의 양이 달라지고, 이 차이 때문에 도파민의 중합반응 여부를 육안과 광학적 측정으로 확인할 수 있다. 이렇게 살아있는 세포의 활성에 따라 일어나는 도파민의 자체 중합반응은 실제로 인체에 존재하는 다양한 `카테콜아민' 물질에서 나타나는 반응과 깊은 관련이 있다. 일례로 피부에 존재하는 카테콜아민은 자체 중합반응이 왕성하게 일어나 피부의 색에 큰 영향을 주는 멜라닌 색소를 형성하게 되는데 신경계에 존재하는 카테콜아민은 자체 중합반응이 거의 일어나지 않고 단일분자 형태로 존재하여 작용하는 것으로 알려져 있다. 연구팀은 이번 연구 결과를 향후 생체 내에서 도파민 등 카테콜아민의 역할과 작용을 다양한 생체 모델에서 밝히는 연구로 발전시킨다면 매우 흥미로운 연구 결과를 얻을 것으로 기대하고 있다. 정현정 교수는 “이번 연구는 도파민의 자체 중합반응을 생체 시스템에서 규명한 연구로 큰 의미를 가지며, 이를 박테리아 생장 및 항생제 내성의 실시간 검출에 적용할 수 있어 기존의 미생물 배양법보다 신속하게, 그리고 PCR 검사보다 간편하게 진단이 가능해 감염병 확산 예방에 크게 기여할 것으로 기대된다”고 말했다. 한편 이번 연구는 한국연구재단 중견연구자지원사업 및 KAIST 그랜드 챌린지 사업의 지원을 통해 이뤄졌다.
2020.12.07
조회수 39420
언제 어디서든 사람을 살리는 상시 동작형 유해가스 감지 센서 개발
밀폐된 공간에서 유해가스를 감지해 안전사고를 사전에 방지할 수 있는 초 저전력 유해가스 감지 센서가 우리 연구진에 의해 개발됐다. 우리 대학 전기및전자공학부 윤준보 교수 연구팀은 독자 기술로 개발한 나노 소재 *'나노린'을 통해 상시 동작이 가능한 초 저전력 유해가스 감지 센서를 개발했다고 1일 밝혔다. ☞ 나노린(Nanolene): 완벽하게 정렬된 나노와이어 다발들이 공중에 떠 있는 구조를 지칭하는 용어. 나노와이어의 Nanoline과 그래핀과 같은 2차원 나노 재료의 접미사 –ene을 합성해 탄생한 단어다. 일산화탄소 등의 유해가스에 의한 안타까운 인명 사고는 과거로부터 현재까지 끊임없이 반복되고 있다. 이에 따라 유해가스를 실시간으로 감지하는 예방 기술에 대한 대중의 관심과 수요가 꾸준히 증가하는 추세인데 학계에서도 유해가스 감지 센서 개발을 위한 연구가 활발하다. 금속산화물을 기반으로 하는 가스 센서는 소형화에 유리하고, 생산 단가가 저렴해서 관련 산업에 활용이 가능한 가스 감지 기술로 주목받아 왔다. 가스 센서는 수백 도 씨(℃) 내외의 고온에서 동작하기 때문에 히터를 통한 열에너지 공급이 필수적이다. 이때 주변으로 방출되는 다량의 열과 히터의 높은 소비 전력 때문에 스마트폰과 같은 휴대용기기에 적용 가능한 실시간 가스 센서를 개발하기는 쉽지 않다. 윤준보 교수팀이 개발한 유해가스 감지 센서는 독자적인 나노 공정 기술을 통해 개발한 나노 소재 `나노린'을 활용해 초 저전력으로 언제, 어디서든 항상 사용이 가능한 게 큰 특징이다. 나노 소재는 독특한 전기적, 화학적 특성 때문에 미래 센서 기술의 핵심 구성 요소로 주목받고 있지만, 제조 방법상 크기를 제어하기가 쉽지 않고 원하는 위치에 정렬된 형태로 구현하는 것 또한 어렵다. 윤 교수 연구팀은 나노린을 통해 이런 문제점을 해결했다. 윤 교수팀이 개발한 이 기술은 기존의 나노 소재 제작 방법과는 다른, 일반적인 반도체 공정을 기반으로 제작하기 때문에 양산성이 뛰어나고(대량생산이 가능) 산업적 활용 가치 또한 매우 높다고 평가받고 있다. 연구팀은 우선 나노린을 초 저전력 나노 히터에 활용했다. 시험과정에서 나노 소재가 지닌 고유의 열 고립 효과를 통해 기존 마이크로히터의 물리적 한계를 뛰어넘는 초 저전력 고온 구동을 실현하는 데 성공했다. 이와 함께 나노 히터에 완벽하게 정렬된 형태의 금속산화물 나노와이어를 일체형으로 집적해 가스 센서로 응용했는데 스마트폰 내장에 적합한 수준의 낮은 소비 전력으로 일산화탄소 가스 검출에 성공했다. 과거 광부들은 유해가스로부터 생명을 지키기 위해 탄광에 들어갈 때마다 카나리아라는 새를 데리고 들어갔다. 카나리아는 메탄, 일산화탄소 가스에 매우 민감해 유해가스에 소량만 노출돼도 죽는다. 광부들은 카나리아의 노래가 들리면 안심하고 채굴했고 카나리아가 노래를 부르지 않을 땐 탄광에서 뛰쳐나와 스스로 생명을 지킬 수 있었다. 윤준보 교수는 "상시 동작형 가스 센서는 언제 어디서나 유해가스의 위험을 알려주는 '스마트폰 속 카나리아'로 활용이 기대된다ˮ고 연구결과를 소개했다. 제1 저자인 전기및전자공학부 최광욱 박사는 이를 휴대용기기에 내장하기 적합한 초 저전력 가스 센서 기술이라고 설명하면서 "이 기술이 가스 사고를 사전에 차단하고 인명 사고를 막는 데 활용되길 기대한다ˮ고 말했다. KAIST UP 프로그램과 한국연구재단의 중견연구자 지원사업을 통해 수행된 이번 연구결과는 국제 학술지 '어드밴스드 펑셔널 머터리얼즈 (Advanced Functional Materials)' 8월 12일 字에 온라인으로 게재되는 한편 연구 내용의 우수성을 인정받아 오프라인 저널의 후면 표지논문으로 선정됐다. (논문명: Perfectly Aligned, Air-Suspended Nanowire Array Heater and Its Application in an Always-On Gas Sensor)
2020.09.01
조회수 24290
광유전학 · 광치료 연구를 위한 투명 전극 개발
우리 대학 전기및전자공학부 이현주 교수와 이정용 교수, 의과학대학원 이정호 교수 공동연구팀이 폴리머 전기방사 기술을 미세 전자 기계 시스템(MEMS, Micro Electro Mechanical Systems) 공정에 접목해 실시간으로 뇌피질 전도 측정이 가능한 투명하고 유연한 미세전극 어레이(배열)를 개발했다고 15일 밝혔다. ☞ 폴리머: 한 종류 또는 수 종류의 구성단위가 서로에게 많은 수의 화학결합으로 중합돼 연결된 상태의 분자로 구성된 화합물. 통상적으로 고분자 화합물(분자량이 1만 이상의 화합물)과 같은 의미로 사용되는 경우가 많은데 고분자를 영어로는 폴리머(polymer)라고 부른다. ☞ 전기방사: 폴리머(고분자) 용액에 고전압을 인가해 나노파이버(나노섬유)를 생산하는 첨단 기술 ☞ 미세 전자 기계 시스템: 마이크로 단위의 기계적 구조물과 전자 회로가 결합된 초소형 정밀 기계 제작 기술. 전자(반도체) 기술·기계 기술·광 기술 등을 융합해 마이크로 단위의 작은 부품 및 시스템을 설계·제작하고 응용하는 기술을 의미 이번에 개발된 뇌피질 전도 미세전극 어레이는 기존의 불투명한 금속 전극과는 달리 빛에 의해 발생하는 잡음 신호가 매우 작고 자유로운 빛의 전달이 가능해 광유전학 및 광 치료 연구에 큰 도움을 줄 것으로 기대된다. 최근 빛의 새로운 활용법과 생체 내 효능에 대한 발견으로 인해 빛을 생체 내의 특정 영역에 조사해 생기는 반응과 효과에 관한 연구들이 주목을 받고 있다. 대표적인 예가 광유전학, 광 치료 기술 등이다. 광유전학은 기존 신경 자극기술과는 달리 매우 국소적인 부위의 신경 세포를 자극하고, 광 치료법은 수면장애와 알츠하이머병의 치료 가능성으로 이 분야에 관한 연구들이 활발히 진행되고 있다. 빛에 의한 생체 내 반응을 측정하는 대표적인 방법으로는 체내에 센서 등을 장착해서 호르몬의 분비과정에서 발생하는 전기생리 신호를 측정하는 방법이다. 통상적으로 전기생리 신호 측정을 위해 사용하는 일반적인 금속 박막 전극은 높은 반사도와 낮은 투과도 때문에 빛의 전달을 방해할 뿐만 아니라 빛을 쬘 때 베크렐 효과(금속 전극이 빛을 받으면 전극에 전위차가 생겨 전류가 흐르는 현상)에 의해 '포토일렉트릭 아티팩트'라는 잡음 신호가 발생한다. 따라서 일반 금속 박막 전극은 정확한 전기생리 신호를 측정하기가 어렵다. 이현주 교수팀은 그간 이런 문제해결을 위해 MEMS 공정을 통해 제작되는 미세전극 어레이를 투명화하기 위한 연구를 지속적으로 수행해왔는데 최근 폴리머 전기방사 기술을 MEMS 공정에 접목해 뇌피질 전도(ECoG, ElectroCorticoGram)측정을 위한 유연하고 투명한 미세전극 어레이를 제작하는데 성공했다. 이 장치는 높은 투과도를 지니고 있어 '포토일렉트릭 아티팩트'가 매우 약하고 또 빛의 전달이 매우 용이하기 때문에 다른 투명 미세전극 어레이와 비교해 보면 전기화학 임피던스가 낮아 뇌피질 전도 측정이 매우 유리하다. 연구팀은 자체개발한 유연·투명한 미세전극 어레이 성능평가를 위해 외부 변형에 따른 저항 변화와 전기방사 시간에 따른 전기화학 임피던스, 전하 저장 용량 등을 측정한 결과, 전극 자체의 특성을 쉽게 조절이 가능한 점 등 여러 면에서 우수한 성능을 보였다고 설명했다. 연구팀은 특히 미세 전극에서 발생하는 `포토일렉트릭 아티팩트'를 비교 분석했는데 10배 이상 감쇄 효과가 있음을 확인했다. 이와 함께 쥐 뇌의 다양한 피질 영역에 걸쳐 유연·투명한 미세전극 어레이를 위치시킨 후 광 자극을 통해 발생하는 뇌피질 전도 신호를 측정한 결과, 신호를 정량적으로 비교하고 빛이 원활하게 전달되는 현상을 관측하는데 성공했다. 연구팀은 현재 이 신기술을 기반으로 광 자극과 함께 정확한 뇌피질 전도를 실시간으로 측정할 수 있는 미세전극과 미세광원이 집적된 다기능성 미세전극 어레이 개발을 위한 후속연구를 진행 중이다. 광원과 전극이 함께 집적된 다기능성 소자 개발에 성공할 경우 광유전학이나 광 치료 등의 연구를 진행하는 뇌과학자들이 편하게 사용할 수 있는 뉴로 툴(Tool) 개발로 이어질 것으로 전문가들은 예상하고 있다. 이현주 교수는 "기존에는 광전 효과로 인해 불가피하게 발생하는 잡음 신호로 인해서 광 자극과 동시에 뇌피질 전도 측정이 불가능했지만 유연하고 투명한 미세전극 개발을 계기로 광 자극과는 무관하게 실시간으로 뇌피질 전도 측정이 가능하게 됐다”고 말했다. 이현주 교수 연구팀의 서지원 박사와 김기업 박사과정생, 그리고 이정용 교수 연구팀의 서기원 박사과정생이 각각 주도하고 의과학대학원 이정호 교수와 김정욱 박사가 참여한 이번 연구결과는 국제 학술지 '어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)'誌 7월 2일 字에 게재됐으며 표지논문(Front Cover)으로 선정됐다. (논문명: Artifact-Free 2D Mapping of Neural Activity In Vivo through Transparent Gold Nanonetwork Array) 한편, 이 연구는 과학기술정보통신부 한국연구재단의 선도연구센터 사업의 지원으로 수행됐다.
2020.07.15
조회수 23149
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2