-
스파이더맨 슈트처럼 내 몸에 착 맞춰지는 옷감형 웨어러블 햅틱 개발
우리 대학 기계공학과 오일권 교수 연구팀이 형상기억합금 와이어를 오그제틱(auxetic) 메타구조로 매듭지어 형상 적응이 가능한 옷감 형태의 착용형 '햅틱(haptic) 인터페이스'를 개발했다고 28일 밝혔다.
착용형 햅틱 인터페이스 기술은 시·청각 기반의 플랫폼의 한계를 벗어나, 피부 표면으로 전해지는 직관적인 촉감으로 메타버스 속 상호작용 몰입도를 높이는 역할을 한다.
하지만 일반적인 햅틱 인터페이스는 피부에 부착하거나 별도의 고정 장치를 착용하는 착용(부착)형으로, 이러한 햅틱 인터페이스는 장시간 사용 시 피부 발진의 위험과 고정 방식은 일상 움직임에서 불편함을 초래할 수 있다. 또 수십 개의 촉각 전달 소자를 장착해 촉감을 모방하는 기존의 제작 방식 역시 장치의 무게·부피 증가로 이어지는 한계를 보이고 있다.
우선 연구팀은 가볍고 편하게 착용할 수 있는 햅틱 인터페이스 개발을 위해 형상기억합금 와이어를 핵심 소재로 선택했다. 형상기억합금 와이어란 상온에서 모양이 쉽게 변형되고, 특정 온도에 도달하면 미리 기억된 형태로 되돌아가는 특징을 갖는 형상기억합금을 철사처럼 가늘고 길게 제작한 것이다. 이러한 형상기억합금 와이어를 기존의 천 제작 방식을 활용해 매듭지어 옷감처럼 제작하는 방식을 활용하였다. 특히, 연구팀은 형상기억합금 와이어를 오그제틱(auxetic) 구조로 매듭지어, 일반 구조에서는 볼 수 없는 3D 방향으로 구조 전체가 동시에 수축 및 이완하는 특성을 구현해 내었고, 이를 통해 착용자의 신체 형상에 순응하며 사이즈가 자동으로 조절되는 옷감형 액추에이터를 개발했다.
또한 연구팀은 8개의 영역을 개별 수축 제어할 수 있도록 설계해 총 아홉 가지 방향과 타이밍에 대한 정보를 사용자에게 촉감 피드백으로 전달할 수 있게 제작했다.
예로 팔목에 착용 시, 사용자는 방향 및 타이밍에 관한 정보를 촉각적으로 인지할 수 있고, 반면 팔꿈치에 착용할 때는 옷감형 액추에이터의 가변강성 기능을 활용해 팔꿈치의 굽힘각도에 따른 피드백을 제공하는 멀티모달(두 가지 이상의 피드백 형태로 정보를 전달) 햅틱 인터페이스로서 개발했다.
이처럼 옷감형 액추에이터를 팔목에 착용한 사용자가 가상현실 속 모빌리티 로봇 주변의 위치정보를 파악하고, 시각과 청각 정보가 제한될 때 장애물을 피해 로봇을 안정적으로 주행하는 실증에도 성공했다.
오일권 교수는 이번 연구성과를 통한 실용화 시 활용에 대해 "착용형 햅틱 인터페이스는 촉각 정보를 활용한 로봇, 무인기 제어와 메타버스가 접목된 의료·교육 등에도 활용할 수 있다"고 말했다.
한편, 이번 연구는 과학기술정보통신부(장관 이종호)와 한국연구재단이 추진하는 리더연구자(창의연구) 지원 사업으로 수행됐다. 연구 성과는 첨단 소재 분야 국제학술지 <어드밴스드 머티리얼스(Advanced Materials)>에 9월 19일 게재됐고, 연구의 우수성을 인정받아 학술지 표지 논문으로 선정됐다. (논문명: Easy-To-Wear Auxetic SMA Knot-Architecture for Spatiotemporal and Multimodal Haptic Feedbacks)
2023.11.30
조회수 417
-
그린수소 생산에 탁월한 전해질 신소재 개발
그린수소는 풍력, 태양광등 재생에너지를 이용하여 생산과정에서 이산화탄소 배출이 전혀 없는 궁극적인 청정 에너지원으로 각광을 받고 있다. 이러한 그린수소를 활용/생산하는 연료전지, 수전해 전지, 촉매 분야에 산소 이온성 고체전해질이 널리 사용되고 있다. 이러한 산소 이온 전도체들은 주로 700oC 이상의 고온에서 활용되는데 이 때문에 소자 내의 다른 요소들과의 바람직하지 않은 화학반응, 소재 응집, 열충격이 발생하거나 높은 유지비용이 요구되는 등의 문제가 발생하고 있다.
우리 대학 기계공학과 이강택 교수 연구팀이 미국 메릴랜드 대학 에릭 왁스만(Eric Wachsman) 교수 연구팀과 공동연구를 통해 기존 소재 대비 전도성이 140배 높은 산소 이온 전도성 고체전해질 개발에 성공했다고 22일 밝혔다.
개발된 신소재는 비스무트 산화물 기반으로 400oC에서 기존 지르코니아 소재의 700oC에 해당하는 높은 전도성을 보이며 중저온(600oC) 영역대에서 140배 이상 높은 이온전도도 나타냈다. 비스무트 산화물 산소 이온 전도체 소재는 중저온 영역대에서 상전이로 인해 이온전도도가 급격하게 감소한다는 문제가 있었으나, 이번 연구에서 개발된 산소 이온 전도체 신소재는 도핑을 통해 중저온 영역대에서도 1,000시간 이상 높은 이온전도도를 유지해 상용화 가능성을 크게 높였다.
또한, 공동연구팀은 원자단위 시뮬레이션 계산화학을 통해 도핑된 원소가 산소 이온 전도체 신소재의 성능 및 안정성을 향상하는 메커니즘을 규명했다. 개발된 신소재는 고체산화물 연료전지(SOFC)에 적용돼 학계에 보고된 소자 중 가장 높은 수준의 전력 생산(2.0 W/cm2, 600oC) 능력을 보였다. 그뿐만 아니라, 고체산화물 전해전지(SOEC)에도 적용돼 기존 대비 2배 높은 단위면적당 15.8 mL/min의 탁월한 그린 수소 생산 능력을 보이며, 해당 신소재의 실제 소자에의 적용 가능성을 증명했다.
이강택 교수는 “이번 연구에서 개발된 산소 이온 전도체 신소재는 중저온 영역대에서도 안정적으로 높은 전도도를 유지할 수 있어 세라믹 소자의 높은 작동온도를 획기적으로 낮추는 데 활용될 것으로 기대되며, 탄소중립 실현을 위한 에너지/환경 소자 상용화에 본 기술을 적용할 수 있을 것”이라며 연구의 의미를 강조했다.
기계공학과 유형민 박사과정, 정인철 박사, 장승수 박사과정이 공동 제1 저자로 참여했으며 한국에너지기술연구원 이찬우 박사 연구팀이 공동으로 참여한 이번 연구는 전 세계적으로 권위있는 국제 학술지인 ‘어드벤스드 머티리얼스(Advanced Materials)’ (IF : 29.4) 10월 17일 字 온라인판에 게재됐다. (논문명 : Lowering the Temperature of Solid Oxide Electrochemical Cells Using Triple-doped Bismuth Oxides).
한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업과 나노 및 소재 기술개발사업의 지원으로 수행됐다.
2023.11.22
조회수 492
-
알츠하이머병 유발하는 독성 단백질 발굴
알츠하이머병은 가장 대표적인 신경퇴행성 질환으로, 기억력 감퇴와 인지능력 저하를 유발한다. 알츠하이머병의 발병 인구가 급속히 증가하고 있으나, 현재까지 발병 원인이 명확히 밝혀진 바 없고, 이에 따라 효과적인 치료제 개발 또한 굉장히 더디게 진행되고 있다.
우리 대학 화학과 임미희 교수(금속신경단백질연구단 단장) 연구팀이 한국기초과학지원연구원 바이오융합연구부 이영호 박사 연구팀, 우리 대학 화학과 백무현 교수 연구팀, 의과학대학원 한진주 교수 연구팀과의 공동연구와 한국생명공학연구원 희귀난치질환연구센터 이다용 박사 연구팀과 공동연구를 통해 알츠하이머병 유발인자의 독성을 촉진하는 세포 내 단백질을 발굴함으로써, 알츠하이머병과 관련된 새로운 병리적 네트워크를 제시했다고 20일 밝혔다.
알츠하이머병 환자들의 뇌에서 대표적으로 나타나는 병리적 현상은 노인성 반점 축적이다. 노인성 반점의 주된 구성분은 아밀로이드-베타 펩타이드로인 응집체로 세포 내 물질들과 결합해 세포 손상을 유발한다. 따라서, 이들 응집체와 세포 사멸 간의 상관관계가 활발히 연구되고 있다. 그러나, 아밀로이드-베타와 세포 사멸 유발 인자들 간의 직접적인 상호작용에 관해서는 아직 많은 부분이 밝혀진 바 없다.
최근 미국 FDA에서 승인한 알츠하이머병 신약은 노인성 반점을 나타내는 아밀로이드-베타 펩타이드의 응집체의 세포 손상을 주요 타깃으로 하여 개발됐다. 하지만, 제한된 사용 여부(특히, 부작용)로 그 신약 개발의 방향 전환 및 개선이 필요함을 연구자들은 절실히 느끼고 있다.
임미희 교수 연구팀은 알츠하이머병에서 과발현되며 원인 미상의 신경세포 사멸을 유발하는 ‘아밀로이드 전구체 C 말단 절단체’ 단백질이 아밀로이드-베타 및 금속-아밀로이드-베타 복합체와 결합해 응집을 촉진하고 독성 촉진제 역할을 함을 세계 최초로 증명하는 연구 내용을 발표했다.
이번 연구 결과는 아밀로이드 전구체 C 말단 절단체 자체 또는 아밀로이드-베타과 결합한 복합체가 새로운 알츠하이머병의 새로운 바이오마커로 작용할 수 있고, 또한 그들이 새로운 신약개발 타깃이 될 수 있음을 제시하고 있다.
임미희 교수 연구팀의 남은주 박사(KAIST 화학과 박사 졸업, 現 브리검 여성 병원 및 하버드 의과대학 연구원)가 제1 저자로 참여한 이번 연구는 세포 내 단백질 미세주입 기술을 통해 세포 안에서 아밀로이드 전구체 C 말단 절단체가 아밀로이드-베타 응집 촉진에 미치는 역할을 연구팀은 확인했다. 더 나아가, 뉴런 세포 및 설치류의 뇌에서 아밀로이드-베타와 관련된 세포 사멸, 뉴런 손상, 염증반응이 아밀로이드 전구체 C 말단 절단체에 의해 더욱 증가하는 현상을 최초로 확인해 세계적으로 주목받고 있다.
임미희 교수는 “이번 연구 결과는 알츠하이머병에서 기존에 알려지지 않은 생체 내 아밀로이드-베타 응집 및 독성 촉진제 발굴에 큰 의의가 있다”고 말하며, “이 연구 성과는 새로운 바이오마커 및 치료타깃을 제안하고 있다”고 밝혔다.
이번 연구는 국제 저명 학술지인 `어드밴스드 사이언스(Advanced Science, Impact factor: 15.1)'에 11월 10일 자 게재됐다. (논문명: APP-C31: An Intracellular Promoter of Both Metal-Free and Metal-Bound Amyloid-β40 Aggregation and Toxicity in Alzheimer’s Disease) Adv. Sci. 2023, 2307182 (https://doi.org/10.1002/advs.202307182)
이번 연구는 한국연구재단 기초연구사업(특히, 리더연구), KBSI, 국가과학기술연구회(NST), IBS 및 KAIST의 지원을 받아 진행됐다.
2023.11.20
조회수 840
-
뉴로모픽 반도체로 통증도 느낀다
최근 인간의 뇌를 모방한 뉴로모픽 반도체 소자 연구가 주목받고 있다. 이에서 더 나아가 최근에는 뇌를 넘어 첨단 센서와 휴머노이드 분야에 적용가능한 감각신경계 모사에 관한 연구가 활발하게 진행되고 있다.
우리 대학 신소재공학과 김경민 교수 연구팀이 새로운 메모리 소자인 멤리스터를 사용하여 통증자극 민감도 조절 기능을 갖는 뉴로모픽 통각수용체 소자를 최초로 구현했다고 15일 밝혔다.
※ 멤리스터(memristor): 메모리(memory)와 저항(resistor)의 합성어로, 전류의 흐름에 따라 저항이 변화하는 전자소자
감각신경계의 핵심적인 역할 중 하나는 유해한 자극을 감지해 위험한 상황을 회피하는 것이다. 특히 통각수용체는 자극이 민감도의 임계치를 넘으면 통증 신호를 발생하여 인체가 자극에서 회피할 수 있도록 한다. 이를 위해 통각수용체의 신호 전달에는 통증 신호를 전달하는 흥분성 신경전달물질(Excitatory Neurotransmitter)과 외부 자극에 대한 임계치를 조절하는 억제성 신경전달물질(Inhibitory Neurotransmitter)이 관여하는 것으로 알려져 있다. 특히 억제성 신경전달물질은 흥분 작용과 역균형을 이뤄 신경의 과도한 활성화를 방지하고, 다양한 외부 자극에 적절하게 반응하기 위한 핵심적인 역할을 가지게 된다. <그림 1> 그동안 이러한 복잡한 감각신경계의 동작을 모사하는 전자 소자를 개발하는 연구가 활발히 진행되었는데, 기존의 연구에서는 흥분성 신경전달물질의 특성은 쉽게 구현할 수 있었으나, 억제성 신경전달물질에 의한 임계치 조절 특성까지 동시에 구현하는데 한계가 있었다.
김경민 교수 연구팀은 이중 전하 저장층 구조를 통해 외부에서의 자극에 대한 임계치를 조절할 수 있는 뉴로모픽 통각수용체 소자를 최초로 개발했다. <그림 2> 두 종류의 서로 다른 전하 저장층은 각각 전도성을 조절하는 흥분성 신경전달물질의 역할과 임계치를 조절하는 억제성 신경전달물질의 역할을 맡아 통각수용체의 필수적인 기능들인 통증 전달 특성(threshold triggering), 통증 완화(Relaxation), 통증 민감화(Sensitization) 등의 특성을 조절할 수 있음을 확인했다. <그림 3> 이는 신경계의 복잡한 기능을 신경계의 동작 원리를 모방하여 단순한 구조의 전자 소자로 구현하는 새로운 방법을 제시한 의의가 있다.
또한, 이 소자는 온도 자극에도 반응하는 온도수용체 특성을 보였으며, 특히 억제성 상태를 제어하여 단일 소자가 고온 범위와 저온 범위를 모두 감지할 수 있는 가변적인 온도수용체 특성을 구현할 수 있었다. <그림 4> 이러한 통각수용체, 온도수용체 소자는 인간을 모방하는 휴머노이드 피부에 적용하여 인간과 같은 방식으로 자극을 감지하는 센서로 활용될 수 있다.
김경민 교수는 "이번 연구는 흥분성 및 억제성 신호 작용의 특성을 단일 소자에 구현해, 간단한 반도체 기술로 복잡한 생물학적 감각신경계의 특성을 모사하는 새로운 방법론을 제시한 것에 큰 의의가 있다ˮ며 "이처럼 임계치를 조절할 수 있는 특성은 감각신경계 모사뿐 아니라 임계 스위칭 특성을 활용하는 보안 소자나 차세대 컴퓨팅 소자에도 활용될 수 있을 것으로 기대된다ˮ고 밝혔다.
한편 이번 연구는 신소재공학과 김근영 석박사통합과정 학생이 제1 저자로 참여했으며, 국제 학술지 `어드밴스드 머티리얼즈(Advanced Materials, Impact Factor: 29.4)'에 10월 21일 字 온라인 게재됐다.
이번 연구는 한국연구재단, 나노종합기술원, KAIST, 그리고 SK 하이닉스의 지원을 받아 수행됐다. (논문명: Threshold Modulative Artificial GABAergic Nociceptor, 논문링크: https://doi.org/10.1002/adma.202304148)
2023.11.15
조회수 942
-
고성능 비 백금계 연료전지 촉매 개발
연료전지는 부산물로 물 만을 배출하는 친환경적인 에너지 변환 장치로, 다양한 연료전지 중 양성자 교환막 연료전지(PEMFC)는 수송용 및 발전용 연료전지로 현재 상용화가 진행 중이다. 다만 연료전지의 촉매로 사용되는 백금 촉매는 자원의 희소성으로 인한 높은 가격 때문에 대량 생산 및 전 세계적인 보급에 문제점을 갖고 있었다.
우리 대학 생명화학공학과 이진우 교수 연구팀이 국민대학교 장세근 교수 연구팀, 서강대학교 백서인 교수 연구팀과 공동연구를 통해 비백금계 촉매 기반 고 전력밀도의 양성자 교환막 연료전지를 개발했다고 7일 밝혔다.
상대적으로 다른 비 백금계 촉매들에 비해 좋은 성능을 가진다고 알려져 백금을 대체하고 기존 연료전지 비용을 줄이기 위한 가장 유력한 후보 물질로 주목받아 온 M-N-C계 촉매는 PEMFC 연료전지에서 높은 전력밀도를 구현하는 데는 많은 한계가 있었다.
이진우 연구팀은 기존 백금 촉매를 대체할 수 있는 비 백금계 Fe-N-C 촉매의 높은 성능을 구현해 매우 뛰어난 가격 경쟁력과 높은 전력밀도의 연료전지 성능을 달성했다.
연구팀은 M-N-C 촉매 중 하나인 Fe-N-C 촉매 나노입자의 활성점 주변의 결함 정도를 조절하여 높은 성능의 Fe-N-C 촉매를 합성했다. 탄소 기반의 물질을 특정 양의 이산화탄소(CO2)를 흘려주면서 열처리를 진행하는 이산화탄소 활성화 방법을 통해 탄소 기반 촉매 내부의 결함 정도를 미세 조정했고 그에 따른 최적화된 촉매가 활성화되는 것을 확인했다.
연구팀은 결과적으로 적절한 결함을 가질 때 철 단일원자 활성점의 전자구조가 최적화되면서 결함을 만들지 않은 기존 Fe-N-C 촉매에 비해 매우 우수한 전기화학적 성능을 제공하는 것을 확인해 결함과 활성점의 성능 상관관계에 대하여 규명했다.
연구팀이 개발을 한 최적화된 Fe-N-C촉매는 PEMFC 연료전지에서 기존에 개발이 된 Fe-N-C촉매보다 44% 향상된 높은 전력 밀도를 보였으며 현재 사용이 되고 있는 백금 촉매를 대체를 할 수 있음을 PEMFC단전지에서 보여주었다.
연구팀이 개발한 비 백금계 Fe-N-C촉매는 높은 전기화학적 특성으로 기존의 백금 촉매 대체를 통해 연료전지의 스택 가격 감소와 그에 따른 상용화에 이바지할 수 있을 것으로 기대된다.
KAIST 생명화학공학과 이승엽 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼스 (Advanced materials)' 10월 13일 온라인으로 게재됐다. (논문명: Insight into Defect Engineering of Atomically Dispersed Iron Electrocatalysts for High-Performance Proton Exchange Membrane Fuel Cell)
이진우 교수는 "비 백금계 Fe-N-C 촉매의 결함과 성능의 관계를 밝히고 결함 조절을 통해서 백금을 전혀 사용하지 않고 높은 전력밀도의 양성자 교환막 연료전지를 개발한 것은 큰 의미가 있으며 개발된 촉매 및 합성 방법은 향후 다양한 종류의 연료전지에서 귀금속인 백금을 대체하여 적용할 수 있을 것으로 기대된다ˮ 라고 말했다.
한편 이번 연구는 한국연구재단 중견연구자지원사업과 한국전력 사외공모 기초연구지원사업의 지원을 받아 수행됐다.
2023.11.07
조회수 546
-
포스트 AI 시대 핵심 신소재는?
우리 대학 신소재공학과 김상욱 교수 연구팀이 인공지능(Artificial Intelligence, 이하 AI)이 불러온 4차 산업혁명 이후를 뜻하는 포스트 AI시대의 핵심 신소재를 전망하는 초청논문을 발표했다고 6일 밝혔다.
대화형 AI인 `챗GPT(ChatGPT)'가 월간 사용자 1억 명을 두 달 만에 달성하는 등 AI는 우리 생활에 한층 가까이 다가왔다. 4차 산업혁명의 핵심 기술인 AI는 인간의 지능을 모사해 데이터를 학습하고 이에 따라 합리적인 의사결정을 내릴 수 있다. 단순 반복적인 작업을 대체하는데 머물렀던 과거 인공지능 기술들과 달리, 더욱 어렵고 복잡한 작업을 효율적으로 수행할 수 있어 의료, 자율 주행 자동차, 로보틱스 등의 분야에서 새로운 기술 혁신을 이루고 있다.
최근에는 사물인터넷(IoT) 기술의 발전과 함께 현실 세계의 다양한 사물과 개체들이 인터넷을 통해 연결된 초연결 시대가 도래하고 있다. 포스트 AI 시대에는 AI가 다양한 기기들과 결합해 우리 주변의 정보를 항상 받아들이고 이에 따라 최적의 의사결정을 하며 이를 현실적으로 실물세계에 구현하는 사이버세계와 현실세계가 하나로 융합되는 시대가 될 것으로 전망되고 있다.
포스트 AI 시대가 다가옴에 따라 웨어러블 장치를 위한 스마트 섬유, 소프트 로보틱스를 위한 인공근육, 환경친화적인 에너지 생산효율을 극대화할 수 있는 단일원자촉매등 AI의 한계를 보조하고 보완할 수 있는 신소재의 혁신이 더욱 중요해지고 있으며, 무엇보다 실용적인 기술의 확보가 시급하다.
김상욱 교수 연구팀은 스마트 섬유 개발의 원천소재인 그래핀 산화물 액정성을 세계 최초로 발견하였고, 소프트 로보틱스 분야에 새로운 돌파구를 마련한 헤라클레스 인공 근육 개발 그리고 세계 최초로 단일원자촉매를 발견하는 등 미래 신소재분야에서 혁신적인 연구를 수행해 온 공로를 인정받아 세계적인 학술지 `어드밴스드 머티리얼스 (Advanced Materials)' 명예의 전당(Hall of Fame) 특집 리뷰논문을 게재했다.
`어드밴스드 머티리얼스' 명예의 전당 초청논문은 신소재 분야의 세계적인 석학들을 매우 엄격한 기준에 따라 선정하여 그 미래 연구방향을 소개하는 권위 있는 특집 논문이다.
김상욱 교수는 "인공지능이 이끄는 4차 산업혁명 이후의 포스트 AI 시대는 신소재 기반의 사물 혁신이 중요해질 것인데 그래핀과 같은 2차원 소재가 매우 중요한 역할을 할 것으로 기대된다ˮ고 밝혔다.
KAIST 응용과학연구소 이강산 박사가 제1 저자로 참여하고 KAIST 신소재공학과 수치스라 파드마잔 사시카라(Suchithra Padmajan Sasikala) 연구교수와 경희대학교 정보디스플레이학과 임준원 교수가 공동 교신저자로 참여한 이번 연구는 한국연구재단의 리더 연구자 지원사업인 다차원 나노 조립제어 창의연구단의 지원을 받아 수행됐다.
*논문명: 2D Materials Beyond Post-AI Era: Smart Fibers, Soft Robotics And Single Atom Catalysts
2023.11.06
조회수 705
-
천 배 축소된 분광기로 과일 당도 정밀 측정
눈으로 보기에 잘 익은 사과의 당도를 휴대용 분광기로 정확하게 예측이 가능한 기술이 개발됐다.
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 가시광선 및 근적외선 분광을 바탕으로 현장 진단에 적합한 고해상도의 휴대용 분광 센서를 개발하는 데 성공했다고 24일 밝혔다.
물질이 반사 또는 흡수하는 빛의 파장 분포를 통해 고유의 성분을 분석할 수 있다는 면에서 분광측정은 다양한 응용 분야에서 비파괴 시료 분석에 활발히 사용되고 있다. 기존 상용분광기는 실시간 성분분석을 제공하지만, 시스템의 크기가 커서 휴대용이나 현장 진단에 활용하는데 한계가 존재한다.
최근 마이크로나노공정 기술의 발전으로 소형 분광센서가 개발돼 품질 평가, 환경 모니터링, 위약 진단 및 헬스케어 등에서 활용되고 있다. 하지만 현재의 소형 분광센서들은 내부 광부품들의 간소화를 거치며 광학 성능이 크게 저하돼 시료 분석의 정확도를 낮추고 있으며, 여전히 광학 성능이 저하되지 않으면서 동시에 크기를 줄이는 데 어려움을 겪고 있다.
연구팀은 수 밀리미터 두께의 분광기 내로 들어온 가시광선이 석영(Quartz) 속에 제작된 회절판을 거치며 짧은 거리에서 넓게 분산시키는 형태인 고체잠입회절판구조를 최초로 제안하였다. 또한, 회절판과 굴절률이 유사한 렌즈를 접합하여 분산된 빛이 이미지센서에 평면 초점을 맺히도록 설계하여 가시광선 전 영역에서 균일한 분광분해능을 갖도록 제작하였다. 연구팀이 제작한 마이크로분광기 모듈은 8 mm × 12.5 mm × 15 mm의 크기를 가지고, 이는 기존 상용분광기를 1천 배 이상 축소시킨 성과이다. 또한, 상용분광기의 성능과 비슷한 평균 5.8 nm의 고해상도 및 작동 파장 범위 내 76% 이상의 고감도를 나타낸다.
연구팀은 마이크로분광기 모듈의 응용예시를 실험적으로 검증하기 위해 휴대용 분광 센서를 설계·제작하고, 분광 응용 분야 중 가장 대표적인 사례인 과일의 품질 검증을 진행했다. 제작한 마이크로분광기와 백색 LED 등을 결합한 분광 센서는 과일의 표면에 부착하여 손쉽게 분광 신호를 획득했다. 또한, 분광 신호의 형태를 분석하여 과일의 성숙도를 예측해 실제 성숙도와 비교하고, 0.91 이상의 높은 상관계수로 신뢰도 높은 예측 모델을 정립했다.
이를 통해 기존 소형 분광기에서 발생했던 광학 성능의 저하를 고체잠입회절판구조의 마이크로분광기를 이용해 해결하고, 연구팀은 휴대용 분광 센서의 현장 진단에 활용 가능함을 확인했다.
정기훈 교수는 “이 초박형 및 고해상도의 마이크로분광기는 식음료 품질검사는 물론 현장형 검사/진단이 필요한 농수산물·헬스케어 분야뿐만 아니라 고속 품질분석이 필요한 제약·바이오·반도체 검사 분야에서 정확하고 비침습적인 분석을 위한 중요한 도구 역할을 수행할 수 있을 것”이라고 연구의 의미를 설명했다.
우리 대학 바이오및뇌공학과 박정우 박사과정이 주도한 이번 연구 결과는 국제 학술지 ‘어드밴스드 사이언스 (Advanced Science)’에 게재됐다. (논문명: 휴대용 가시광선 및 근적외선 분광 응용 분야를 위한 초박형 고체잠입회절판구조 마이크로분광기, Fully Integrated Ultrathin Solid Immersion Grating Microspectrometer for Handheld Visible and Near-Infrared Spectroscopic Applications)
한편 이번 연구는 과학기술정보통신부, 재단법인 범부처전주기의료기기연구개발사업단, ㈜파이퀀트의 지원을 받아 수행됐다.
2023.10.24
조회수 898
-
카이랄 과학 혁신으로 암질환 치료제부터 인공효소까지
많은 약물은 카이랄 분자로 이루어져 있고 카이랄 분자의 두 거울상(이성질체)은 서로 다른 생물학적 효과를 가질 수 있다. 예를 들면, 하나의 형태는 의학적 효과를 가져올 수 있지만 다른 형태는 독성을 가져올 수 있다. 암 치료 사용 약물은 특정 암세포에만 작용되도록 설계되어 있는데 카이랄성을 활용하면 특정한 형태 약물을 선택적으로 전달할 수 있어 부작용을 줄이고 효과를 극대화할 수 있다. 이런 카이랄성 원리를 통해 암 질환 치료를 위한 약물 전달 등 다양한 분야에서 응용이 가능한 분자과학의 새로운 기술이 개발되었다.
우리 대학 화학과 이희승 교수 연구팀이 원자 수준의 정밀도 로 극미세 나선형 카이랄 통로를 만드는 방법을 발표했다고 19일 밝혔다. 이 통로는 인간 머리카락 직경의 약 5만분의 1에 해당하며, 그 특별한 나선 형태 때문에 특정 분자와만 세밀한 상호작용이 가능하다. 이 기술은 약물의 효율적인 개발부터 첨단 소재 설계에 이르기까지 혁신적인 응용을 가능하게 한다.
연구팀은 자연의 카이랄성 원리에 착안해, 짧은 비천연 펩타이드(아미노산으로 이뤄진 단백질 조각)와 구리 클러스터(다발)를 이용해 규칙적인 나선형 채널을 가진 금속-펩타이드 네트워크를 성공적으로 합성했다. 특히, 연구팀은 카이랄 채널의 세밀한 구조 조절로 이 금속-펩타이드 네트워크가 특정 카이랄성 분자에만 상호작용을 가능하게 만들었으며, 단결정 분석을 통해 이러한 복잡한 상호작용 원리를 명확히 규명했다.
이번 연구에서 연구팀은 기존에 알려진 금속-유기 프레임워크와는 달리, 폴대머(비천연 펩타이드) 기반의 방법을 도입해 3차원 구조 내에서 분자와의 상호작용을 더욱 세밀하게 제어할 수 있는 기술을 선보였다. 이는 분자 공학과 첨단 소재 분야에 새로운 지평을 열 것으로 전망된다.
원자 단위로 정의된 카이랄 채널의 제작은 다양한 분야, 특히 카이랄 촉매, 카이랄 광학센서, 암 질환 치료를 위한 약물 전달 등, 다양한 분야에서의 혁신적인 기술적 발전을 기대하게 한다.
연구를 주도한 이희승 교수는 “이번 연구는 세포막 채널 단백질 또는 효소의 활성부위에서 분자의 기질 특이적 상호작용을 인공적으로 재현하는 노력의 일환으로 시작되었으며, 복잡한 미세 상호작용이 가능하도록 다양한 기능기를 원하는 3차원 위치에 모듈식 치환을 통해 도입할 수 있는 청사진을 제시한 의의가 있다” 고 전하며 “앞으로 약물 전달, 고분자 및 나노기술에 응용이 가능하며 특정 카이랄 반응에 반응하는 인공효소 개발을 위한 핵심 기술로 간주될 것으로 기대된다”며 소감을 밝혔다.
화학과 김재욱 석박사통합과정이 제1 저자로 주도한 이번 연구는 화학소재 분야 최정상급 학술지인 `어드밴스드 머티리얼즈(Advanced Materials, ISSN: 0935-9648 print, 1521-4095 online, Impact Factor: 29.4)' 9월 18일 字 온라인판에 발표됐다.(논문명: Tailoring Enantiomeric Chiral Channels in Metal-Peptide Networks: A Novel Foldamer-Based Approach for Host-Guest Interactions, https://doi.org/10.1002/adma.202305753)
이번 연구는 한국연구재단의 선도연구센터사업(멀티스케일 카이랄구조체 연구센터, CMCA)의 지원으로 진행됐다.
2023.10.19
조회수 1468
-
인간의 뇌를 모방한 3차원 집적 뉴로모픽 반도체 개발
우리 대학 전기및전자공학부 최양규 교수, 명현 교수, 그리고 신소재공학과 이건재 교수 공동연구팀이 ‘인간의 뇌를 모방한 3차원 집적 뉴로모픽 반도체’를 개발하는 데에 성공했다. ‘인간의 뇌를 모방해 동일평면 상에 수평 집적한 뉴로모픽 반도체’를 개발(2021년 Science Advances 게재)하는 데에 성공했던 연구팀은, 뉴런 소자와 시냅스 소자를 상하부에 3차원 방식으로 수직 집적해, 보다 높은 집적도와 전력 효율을 가지는 뉴로모픽 반도체를 구현할 수 있음을 처음으로 보였다.
전기및전자공학부 졸업생 한준규 박사, 전기및전자공학부 이정우 박사과정과 김예은 박사과정, 그리고 신소재공학과 김영빈 박사과정이 공동 제1저자로 참여한 이번 연구는 저명 국제 학술지 ‘Advanced Science’ 2023년 9월 온라인판에 출판됐다. (논문명 : 3D Neuromorphic Hardware with Single Thin-Film Transistor Synapses Over Single Thin-Body Transistor Neurons by Monolithic Vertical Integration). ‘Advanced Science’는 재료과학, 물리학, 화학, 생명과학, 엔지니어링 분야의 기초 및 응용 연구를 다루는 학제 간 오픈 액세스 저널이다. (impact factor : 17.521)
뉴로모픽(neuromorphic) 하드웨어는, 인간의 뇌가 매우 복잡한 기능을 수행하지만 소비하는 에너지는 20와트(W) 밖에 되지 않는다는 것에 착안해, 인간의 뇌를 모방해 인공지능 기능을 하드웨어로 구현하는 방식이다. 뉴로모픽 하드웨어는 기존의 폰 노이만(von Neumann) 방식과 다르게 인공지능 기능을 초저전력으로 수행할 수 있어 많은 주목을 받고 있다. 뉴로모픽 하드웨어를 구현하기 위해서는 생물학적 뇌와 동일하게 일정 신호가 통합되었을 때 스파이크를 발생하는 뉴런과 두 뉴런 사이의 연결성을 기억하는 시냅스가 필요하다.
연구팀은 단일 박막 트랜지스터(thin-film transistor) 기반 시냅스 소자를 단일 트랜지스터 기반 뉴런 소자 위에 3차원 방식으로 수직 집적해, 높은 집적도와 전력 효율을 가지는 3차원 집적 뉴로모픽 반도체를 개발했다. 아래층 뉴런 소자의 손상 없이 위층 시냅스 소자를 제작하기 위해, 엑시머 레이저 어닐링(excimer laser annealing) 기법을 활용했다. 또한, 아래층 뉴런 소자의 손상 없이 위층 시냅스 소자의 내구성을 향상시키기 위해, 소자 내부의 줄열(Joule heat)을 이용한 자체 어닐링 기법도 제안했다. 이러한 뛰어난 내구성을 바탕으로, 이벤트 카메라(event camera)를 기반으로 제작된 손동작 기반의 수화 (手話) 패턴을 높은 성공률로 인식할 수 있음을 보였다.
2023.09.21
조회수 1211
-
색이 변하는 고효율 스마트 유연전지 개발
스마트 전자 기기 및 웨어러블 시장의 급속한 발전에 따라, 단순한 에너지저장 기능을 가진 이차전지를 넘어서 색깔이 변하는 스마트 이차전지 시스템이 주목받고 있다. 하지만 기존 전기변색소자는 낮은 전기전도도로 인해 전자와 이온의 이동효율 및 에너지 저장 용량이 낮고 플랙서블/웨어러블 에너지 기술에 적용하기 어려운 한계가 있었다.
우리 대학 신소재공학과 김일두 교수와 명지대학교(총장 유병진) 신소재공학과 윤태광 교수로 구성된 공동 연구팀이 전자와 이온의 이동효율을 높여주는‘파이(π) 결합 간격재(Spacer)’가 내장된 전기변색 고분자 양극재 개발을 통해, 충전․방전 과정을 시각화하는 스마트 전기변색-아연 이온 전지를 개발했다고 21일 밝혔다.
전기변색 기능이 접목된 전지는 충전과 방전 상태를 색 변화로 시각화하고, 태양광 흡수량을 조절해 실내 냉방 에너지 소비량을 절감하는 디스플레이 소자로 활용할 수 있는 획기적인 스마트 전지다. 공동연구팀은 장시간 공기 노출 및 기계적 변형에도 전기변색 성능과 우수한 전기화학 특성이 유지되는 유연 전기변색-스마트 아연 이온전지 구현에 성공했다.
공동 연구팀은 전자와 이온의 이동효율을 극대화하기 위해‘파이(π) 결합 간격재(Spacer)’가 내장된 고분자 양극재를 이론적인 모델링을 바탕으로 설계하고 최초로 합성했다. 파이(π) 결합은 구조 내 전자이동을 향상시켜 이온 이동 속도가 매우 빨라지고, 이온 흡착효율이 극대화되어 에너지 저장 용량 또한 높이는 효과가 있다.
‘파이(π) 결합 간격재(Spacer)’가 내장된 고분자 양극재 기반 전지는 간격재가 없는 경우와 비교했을 때 간격재가 공간을 마련해주어 이온 이동 속도를 빠르게 하여 고속충전이 가능하며 아연 이온 성능이 방전용량 110 mAh/g로 기존보다 40% 이상 저장용량도 확대되고 충·방전시 남색에서 투명색으로 빠르게 바뀌는 변색 성능도 30%가 상승한 결과를 나타냈다. 아울러 투명 유연전지 기술을 스마트 윈도우에 적용하면, 낮시간 동안 태양에너지를 흡수하는 과정에서 짙은 색을 띄게되어 자외선과 눈부신 태양빛을 차단하는 커튼 기능이 포함된 미래형 에너지 저장 기술로 쓰일수 있다.
신소재공학과 김일두 교수는 ‘파이(π) 결합 간격재(Spacer)’가 내장된 고분자를 개발해 우수한 변색효율과 높은 에너지 용량의 스마트 아연이온전지 개발에 성공했다ˮ고 밝혔으며 "에너지 저장의 역할만을 수행하는 기존 전지의 개념을 넘어서, 스마트 전지 및 웨어러블 기술의 혁신을 가속화하는 미래형 에너지 저장 시스템으로 활용될 것을 기대한다ˮ 고 말했다.
이번 연구 결과는 윤태광 교수(KAIST 신소재공학과 졸업), 이지영 박사(現 노스웨스턴 대학교 박사 후 연구원), 충북대학교 신소재공학과 김한슬 교수가 공동 제1 저자로 참여하였으며, 국제 학술지 `어드밴스드 머티리얼즈 (Advanced Materials)' 에 인사이드 표지 논문(Inside Cover)으로 8월 3일 (35권, 31호)에 게재되었다. (논문명 : A π-Bridge Spacer Embedded Electron Donor–Acceptor Polymer for Flexible Electrochromic Zn-Ion Batteries)
이번 연구는 과학기술정보통신부 나노소재기술개발사업, 한국연구재단 나노 및 소재 기술개발사업, 교육부 학문후속세대양성사업과 산업통산자원부의 알키미스트 프로젝트의 지원을 받아 수행됐다.
2023.08.21
조회수 1513
-
유전자 가위와 약물로 동시에 암을 잡는 신약 개발
암은 과거부터 인류의 건강을 위협하는 요인이다. 암을 치료하는 방법으로 임상에서 주로 화학 약물 및 항체 치료가 사용되고 있으나, 심각한 부작용 또는 반복 투여가 필요해 어려움이 있다. 따라서, 영구적인 유전자 조절을 일으키는 유전자가위(CRISPR, 이하 크리스퍼) 기반 유전자 교정 기술을 이용하면 문제를 극복할 수 있지만, 생체 내 전달이 어려워 효과적인 전달 방법이 절실히 필요한 실정이다.
우리 대학 생명과학과 정현정 교수, 화학과 박희성 교수 공동연구팀이 유전자가위 기반 항암 신약으로 크리스퍼 단백질 및 화학 약물을 동시에 생체 내에 전달하는 나노복합체를 개발해 기존 항암제보다 월등한 항암 효능을 보였다고 3일 밝혔다.
크리스퍼 기술은 표적 세포에서 정밀하고 영구적으로 유전자 교정을 일으킬 수 있어 기존 유전자 조절 방법에 비해 암의 치료제로서 큰 장점이 있다. 하지만 크리스퍼의 구성 요소인 단백질과 가이드 RNA를 생체 내에 전달했을 때 극히 낮은 조직 투과성 및 세포 유입 효율로 인해 치료 효능이 떨어진다. 이러한 한계점을 극복하기 위해 지질 나노입자, 고분자, 무기나노입자 등에 나노 전달체에 기반한 전달 방법이 개발됐으나, 여전히 효능이 떨어지고 심각한 독성 및 부작용 문제가 나타났다.
이러한 문제점들을 극복하기 위해 연구팀은 크리스퍼 단백질 Cas9에 서로다른 작용기가 간단히 결합되는 클릭 화학 작용기를 내재하기 위해 비천연 아미노산을 도입한 생직교 반응형 Cas9을 개발했다. 생직교 반응은 살아있는 시스템 내에서 본질적인 생화학 과정을 방해하지 않고 일어나는 반응을 말한다. 연구팀은 기존 나노 전달체의 독성 및 한계를 극복하기 위해 극미량의 고분자 물질을 생직교 반응형 Cas9에 결합시킴으로써 생체 내에 안전하게 전달 및 유전자 교정을 일으킬 수 있음을 확인했다. 또, 항암 신약으로써 효능을 극대화하기 위해 기존에 유방암 항암제로 사용되는 올라파리브(olaparib)을 생직교 반응에 의해 Cas9에 결합시킴으로써 병용 치료를 위한 유전자가위 나노복합체인 콤바인 (ComBiNE, Combinatorial and bioorthogonal nano-editing complex)을 개발했다.
연구팀은 개발한 유전자교정 나노복합체를 이용해 유방암 세포 및 동물모델에서 DNA 복구에 관여하는 유전자 교정 및 올라파리브의 작용으로 기존 항암제 및 단독 치료제에 비해 월등한 항암효과가 나타남을 확인했다.
이번 연구는 최초로 크리스퍼 단백질과 화학 항암제를 단일 제형으로 안전하고 효과적인 생체 내 유전자 교정을 일으켜 높은 항암 효능을 보였다는 점에서 큰 의의가 있다. 연구팀은 이번 연구 결과가 향후 다양한 암종에 대해 유전자 및 화학 약물 기반 병용 치료제로서 적용할 수 있는 강력한 플랫폼 기술로 활용될 것을 기대하고 있다.
우리 대학 생명과학과 마셀 야니스 베하(Marcel Janis Beha) 박사와 석박사통합과정 임산해 학생, 화학과 석박사통합과정 김주찬 학생이 제1 저자로 참여한 이번 연구는 국제학술지 `어드밴스드 사이언스(Advanced Science)'에 7월 23일 온라인 게재됐다. (논문명: Bioorthogonal CRISPR/Cas9-Drug Conjugate: A Combinatorial Nanomedicine Platform)
한편 이번 연구는 한국연구재단, 보건복지부 및 삼성미래기술육성사업의 지원을 통해 이뤄졌다.
2023.08.03
조회수 1807
-
형태 변형 및 유지가 가능한 3차원 디스플레이 기술 개발
우리 대학 전기및전자공학부 정재웅 교수와 신소재공학과 강지형 교수 공동 연구팀이 단단한 평판 디스플레이를 비롯하여 유연/신축성 디스플레이를 모두 아우를 수 있는 새로운 유형의 3차원 디스플레이 폼팩터를 개발했다고 밝혔다.
디스플레이 폼팩터 혁신은 사용자들의 이동성 증대 및 기기 간의 기술 융합에 따라 다양한 웨어러블 모바일 기기, 차량 분야에 접목되며 중요하게 대두되고 있다. 현재 디스플레이 산업 분야에서는 단단한 평판 디스플레이를 넘어서 차세대 유연/신축성 디스플레이로 나아가고 있다.
하지만 기존 디스플레이 폼팩터는 기판 소재의 고정된 기계적 물성으로 인해 특정 사용 목적으로만 활용 가능한 문제점을 보인다. 단단한 평판 디스플레이의 경우, 딱딱한 특성으로 인해 거치용이나 손에 쥐고 사용하기에 적합하지만 기계적 유동성이 떨어져 웨어러블 기기로 사용하기 어렵다. 이와 반대로 유연/신축성 디스플레이의 경우, 우수한 유연성으로 웨어러블 용도로 주로 사용되지만 기기 조작 측면에서 화면을 터치하면 쉽게 형태가 변형되어 사용자에게 불편함을 줄 수 있다.
이에 연구팀은 이러한 문제를 극복하고자 자유롭게 형태 변형 및 유지가 가능한 형상기억 플랫폼을 통해 다양한 사용 목적과 환경에 적합한 차세대 디스플레이를 개발했다. 개발된 디스플레이는 기계적 물성변환이 가능한 가변성 플랫폼에 신축성 발광기판을 집적한 것이다.
연구팀이 개발한 가변성 플랫폼은 온도 변화에 의해 물성변환이 가능한 액체금속(특정 지어, 필즈 메탈(Field’s metal)) 미세방울과 그래핀 나노 입자를 포함한 고분자 복합소재로 전기적/열적 자극에 의해 다양한 3차원 구조를 구현할 수 있는 핵심적인 요소이다.
제작된 가변성 플랫폼은 약 23.9배의 큰 폭의 강성도 변화를 보인다. 이에 따라 가변성 플랫폼은 전기적/열적 자극을 통해 우수한 형상기억 특성을 보이며 3차원 변형에 대하여 약 94% 이상의 형태 유지 능력과 93% 이상의 형태 회복 능력을 가진다. 또한 그래핀 나노 입자를 통해 전기전도성을 향상 시켜 전기적 자극에 의해 균일한 발열과 30초 이내의 빠른 상변화를 통해 효율적인 형태 변형 및 유지가 가능하다.
연구팀은 개발된 가변성 플랫폼을 신축성 전기발광 디스플레이와 결합해 다양한 입체 구조 구현이 가능한 3차원 디스플레이를 개발하였다. 더불어 해당 디스플레이 기술이 형태 변형이 가능한 스마트 아트 디스플레이, 다목적 가변형 웨어러블 디스플레이, 시각-촉각형(Visio-tactile) 차량용 디스플레이로 활용 가능함을 입증하였다. 이는 기존 디스플레이 폼팩터가 구현할 수 없는 3차원 형태 실현을 통해 혁신적 폼팩터를 제시하였다는 점에서 의미가 크다.
정재웅 교수는 “개발된 디스플레이 기술은 새로운 폼팩터 유형을 제시하여 디스플레이의 활용성을 높일 것이며, 다양한 전자소자에도 응용 가능하여 차세대 다목적 전자기기 개발의 발판이 될 것이다.”라고 밝혔다.
본 연구 결과는 전기및전자공학부 오수빈 박사과정 학생이 제1 저자로 참여한 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈 (Advanced Functional Materials)' 6월 12일 字 내부 뒤 표지 논문(Inside back cover paper)으로 게재됐다. (논문명 : 3D Shape-Morphing Display Enabled by Electrothermally Responsive, Stiffness-Tunable Liquid Metal Platform with Stretchable Electroluminescent Device).
이번 연구는 LG 디스플레이(주) 및 한국연구재단의 중견연구자지원사업의 지원을 받아 수행됐다.
2023.06.27
조회수 2085