-
페로브스카이트 상에서 이산화탄소 열화학적 환원반응 기작 규명
우리 대학 생명화학공학과 이재우 교수 연구팀이 페로브스카이트* 상에서 발생하는 이산화탄소의 열화학적 환원반응의 기작을 규명하고, 반응을 최적화하기 위한 요인을 다변화하는 데에 성공했다고 13일 밝혔다.
☞ 페로브스카이트: ABO3 (A = 란탄족, B = 전이금속)의 분자식을 가진 입방체 구조의 산화금속으로 차세대 태양전지에 응용되는 물질로 알려져 있다.
이 교수 연구팀은 이산화탄소의 환원반응 성능을 예측하기 위해, 기존에 주로 활용돼왔던 산소 공공 형성 에너지 계산 외에도 수소 흡착에너지, 이온 전도도 및 이산화탄소의 흡착상태를 분석해 성능 예측의 정확도를 더욱 높일 수 있다는 것을 확인했다. 연구팀이 다변화에 성공한 요인을 통해, 탄소중립 실현을 개발될 다분야의 이산화탄소 전환 및 환원 촉매의 성능을 더욱 정확하게 예측할 수 있을 것으로 기대된다.
우리 대학 생명화학공학과 임현석 박사와 김이겸 박사과정이 공동 제1 저자로 참여하고 영남대학교 화학공학부 강도형 교수 연구팀과의 협업을 통해 이루어진 이번 연구 결과는 국제 학술지 `ACS 카탈리시스(ACS Catalysis)'에 9월 17일 字 온라인판에 게재됐으며, 연구의 파급력을 인정받아 표지논문(Front cover)으로도 선정됐다. (논문명 : Fundamental Aspects of Enhancing Low-Temperature CO2 Splitting to CO on a Double La2NiFeO6 Perovskite).
페로브스카이트는 고온에서, 그리고 지속적인 산화환원을 거치면서도 그 구조를 안정적으로 유지할 수 있어 산화탄소 환원반응 및 물 분해반응에 활용될 수 있는 물질로 주목받고 있다. 하지만 기존에는 다양한 조성의 페로브스카이트 상에서 이산화탄소 환원반응의 성능을 예측하는 요인으로 `산소공공 형성 에너지' 만을 활용했기 때문에 그 정확도가 다소 떨어진다는 단점이 있었다.
이 교수 연구팀은 란타넘-니켈-철산화물(La2NiFeO6 분자식) 더블 페로브스카이트를 합성하고 란타넘-니켈산화물(LaNiO3)과 란타넘-철산화물(LaFeO3)과의 비교 분석을 실시했다. 페로브스카이트 내 니켈(Ni) 구역은 산소 공공의 형성뿐만이 아닌 수소 흡착과 이온 전도도를 향상하는 것을 통해 입자의 환원을, 철(Fe) 구역은 이산화탄소의 강한 흡착을 방지해 이산화탄소의 해리 반응을 촉진하는 것을 확인했다. 이에 La2NiFeO6 더블 페로브스카이트에서는 각 구역의 역할이 시너지로 발현돼 각각의 단일 페로브스카이트 대비 월등한 이산화탄소 전환을 보이는 것을 확인해 일련의 요인들이 모두 성능을 예측하는 데 활용될 수 있다는 것을 연구팀은 확인했다.
이재우 교수는 "페로브스카이트는 대량생산이 가능해 스크리닝 과정을 거쳐 최적화한 조성으로 페로브스카이트를 생산할 시, 이산화탄소를 전환해 활용하는 탄소 포집 및 활용저장 기술(CCUS)의 조기 실현에 기여할 것ˮ이라고 설명했다.
공동 제1 저자인 임현석 박사는 "연구를 통해 페로브스카이트 상에서의 이산화탄소 전환뿐만이 아닌, 물 분해 기반의 수소생산 등 다양한 반응연구를 촉진해 탄소중립에 다방면으로 기여할 수 있을 것ˮ이란 기대를 표했으며, 김이겸 박사과정생도 "페로브스카이트 촉매에서의 이산화탄소 전환 반응 기작 규명을 통해 분리와 반응이 동시에 진행될 수 있는 열화학 전환기술 상용화에 큰 역할을 할 수 있을 것ˮ 으로 기대했다.
한편 이번 연구는 한국연구재단과 한국에너지기술연구원의 지원을 받아 수행됐다.
2021.10.13
조회수 5554
-
알츠하이머 치료제 개발을 위한 새로운 가능성 제시
우리 연구진이 알츠하이머 발병 원인을 동시다발적으로 억제 가능한 치료제 개발 원리를 증명하고 또 동물실험에서 효능을 입증하는 등 알츠하이머병에 관한 새로운 치료제 개발에 대한 가능성을 제시함으로써 많은 주목을 받고 있다.
우리 대학 화학과 임미희 교수 연구팀이 알츠하이머 발병의 원인으로 알려진 ‘활성 산소종’과 ‘아밀로이드 베타’, ‘금속 이온’ 등을 손쉽고도 동시다발적으로 억제할 수 있는 치료제 개발 원리를 새롭게 증명하고 알츠하이머 질환에 걸린 동물 모델(실험용 쥐) 치료를 통해 이를 입증하는 데 성공했다고 11일 밝혔다.
이번 연구에는 KAIST 백무현 교수와 서울아산병원 이주영 교수도 함께 참여했으며 저명 국제 학술지인 미국 화학회지(Journal of the American Chemical Society) 4월 1일 字에 게재됐다. 이 논문은 특히 4월 26일 字 ‘편집장 선정 우수 논문(Editors’Choice Paper)’으로 꼽혀 많은 주목을 받고 있다. (논문명 : Minimalistic Principles for Designing Small Molecules with Multiple Reactivities against Pathological Factors in Dementia)
알츠하이머병은 치매를 일으키는 대표적인 뇌 질환이다. 이 질환의 원인으로 다양한 요소들이 제시됐지만, 원인 인자들 사이의 원리들은 아직도 명확하게 밝혀지지 않고 있다.
알츠하이머병을 일으키는 대표적인 원인 인자로는, 활성 산소종과 아밀로이드 베타, 금속 이온이 알려져 있다. 이 요인들은 개별적으로 질병을 유발할 뿐만 아니라, 상호 작용을 통해 뇌 질환을 더욱 악화시킬 수 있다. 예를 들어, 금속 이온들은 아밀로이드 베타와 결합해 아밀로이드 베타의 응집 속도를 촉진시킬 뿐만 아니라, 활성 산소종들을 과다하게 생성하여 신경독성을 유발할 수 있다. 따라서 이처럼 복잡하게 얽힌 여러 원인 인자들을 동시에 겨냥할 수 있는 새로운 알츠하이머병 치료제 개발이 필요하다.
임 교수 연구팀은 단순한 저분자 화합물의 산화 환원 반응을 이용해 알츠하이머병의 원인 인자들을 손쉽게 조절할 수 있음을 증명했다. 임 교수팀은 산화되는 정도가 다른 화합물들의 합리적 설계를 통해 쉽게 산화되는 화합물들은 알츠하이머 질병의 여러 원인 인자들을 한꺼번에 조절할 수 있다는 사실을 확인했다.
연구 결과, 임 교수 연구팀은 저분자 화합물의 산화 환원 반응으로 활성 산소종에 대한 항산화 작용의 가능성을 확인했을 뿐만 아니라 아밀로이드 베타 또는 금속-아밀로이드 베타의 응집 및 섬유 형성 정도 또한 확연히 감소되는 것을 실험적으로 증명했다.
이 밖에 알츠하이머병에 걸린 동물 모델(실험용 쥐)에 체외 반응성이 좋고 바이오 응용에 적합한 성질을 가지고 있는 대표 저분자 화합물을 주입한 한 결과, 뇌 속에 축적된 아밀로이드 베타의 양이 크게 줄어드는 현상과 함께 알츠하이머 동물 모델의 손상된 인지 능력과 기억력이 향상되는 결과를 확인했다.
이번 연구가 크게 주목받는 이유는 알츠하이머병을 치료하기 위한 화합물을 개발하는 데 있어 아주 단순한 방향족 저분자 화합물의 구조변화를 통해 산화 환원 정도를 조절하여 여러 원인 인자들을 동시에 조절할 수 있고 이러한 간단한 원리를 통해 누구나 손쉽게 치료제를 디자인할 수 있기 때문이다.
임미희 교수는“이번 연구는 아주 단순한 방향족 저분자 화합물의 산화 정도의 차이를 이용해 여러 원인 인자들과의 반응성 유무를 확연히 구분할 수 있다는 점을 증명한 데 의미가 있다”며, “이 방법을 신약 개발의 디자인 방법으로 사용한다면, 비용과 시간을 훨씬 단축시켜 최대의 효과를 가질 수 있다”고 덧붙였다. 임 교수는 이와 함께 “제시된 치료제의 디자인 방법은 다양한 퇴행성 뇌 질환 치료제들의 개발 성공 가능성을 높일 것으로 기대된다”라고 강조했다.
한편 이번 연구는 한국연구재단, 기초과학연구원과 서울아산병원 등의 지원을 받아 수행됐다.
2020.05.11
조회수 9658
-
이산화탄소 환원 나노구조 촉매 개발
신소재공학과 전석우 교수와 오지훈 교수 연구팀이 이산화탄소의 전기화학 환원 반응 시 발생하는 물질이동의 한계를 극복해 값 비싼 금 촉매의 사용을 효과적으로 줄일 수 있는 3차원 나노구조 촉매를 개발했다.
연구팀은 두 가지 크기의 기공 네트워크를 지닌 계층 다공성 나노 구조를 이용해 이산화탄소에서 일산화탄소로의 전환율을 기존 나노 구조 촉매 대비 최대 3.96 배 높일 수 있는 촉매 디자인을 제시했다.
현가예 박사과정과 송준태 교수가 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘미국 국립과학원회보(PNAS)’ 3월 4일 자 온라인판에 게재됐다. (논문명: Hierarchically Porous Au Nanostructures with Interconnected Channels for Efficient Mass Transport in Electrocatalytic CO2 Reduction)
최근 이산화탄소의 배출과 화석 연료 고갈이 심화됨에 따라 이산화탄소를 재활용해 유용한 화합물로 전기 화학적 전환하는 연구가 주목받고 있다. 이산화탄소 환원 반응은 유사한 산화환원 전위를 갖는 수소 생산 반응과 경쟁적으로 일어나는 문제점이 있어, 원하는 화합물로 선택도를 높이고 활성 부위를 극대화해 높은 전환율을 얻기 위한 금속 나노 구조 촉매 개발이 활발히 진행 중이다.
이산화탄소에서 일산화탄소로의 전환 반응 촉매 중 금은 가장 우수한 성능을 보이지만 값이 매우 비싸 실제 적용을 위해서는 나노 구조를 형성하는 등의 방법을 통해 적은 양의 금을 활용하는 것이 이상적이다.
하지만 기존 연구에서 보고된 나노 구조는 복잡하게 엉킨 촉매 구조로 인해 수계 반응을 통해 생성되는 일산화탄소 기포가 반응 도중 쉽게 구조를 막아 활성 부위를 차단하고, 전해질을 통한 반응물의 이동도 어렵게 해 촉매의 생산성을 떨어뜨린다.
연구팀은 문제 해결을 위해 정렬된 3차원 나노 구조 제작에 효과적인 근접장 나노패터닝(PnP, Proximity-field nanopatterning)과 전기 도금 기술을 이용해, 약 10나노미터 크기의 나노 기공과 200~300나노미터 크기의 매크로 기공이 주기적으로 연결된 채널을 포함하는 3차원 계층 다공성 금 나노 구조를 대면적으로 제작했다.
그 결과, 계층 나노 구조 촉매는 나노 기공을 통해 높은 일산화탄소 생산 선택도를 달성함과 동시에 주기적으로 배열된 매크로 기공 채널을 통해 효율적인 물질이동을 유도함으로써, 높은 질량당 전환율을 달성해 값 비싼 금의 사용을 효과적으로 줄일 수 있는 해결 방안을 제시했다.
또한, 3차원 나노 구조 금 촉매의 기공 크기와 분포가 조절 된 서로 다른 세 가지 나노 구조 촉매를 통해 기공 네트워크와 반응물, 생성물의 확산에 미치는 영향을 구조적 관점에서 조사했다.
이 기술은 이산화탄소 환원 촉매 연구 뿐 아니라 유사 전기화학 분야에서 발생하는 물질이동 문제를 해결하고 효율적인 촉매활용을 위한 폭넓은 응용이 가능할 것으로 기대된다.
이번 연구는 한국연구재단 원천기술개발사업의 미래소재디스커버리 사업과 나노소재원천기술개발사업, 그리고 이공분야기초개발사업의 지원을 통해 수행됐다.
2020.03.10
조회수 9776
-
㈜남선기공 현물 기증에 따른 감사패 수여
우리 대학이 2억 원 상당의 5축 가공기를 현물 기증한 대전 지역의 공작기계업체 ㈜남선기공에 감사패를 수여했다.
이번 수여식은 7일 KAIST에서 신성철 총장과 손종현 남선기공 회장 및 관련 인사들의 참석 하에 진행됐다.
이번에 기부 받은 SPHINK-5X/30은 남선기공 5축 가공기의 대표적 모델로 독일 HEIDENHAIN사의 최신 컨트롤러인 TNC_640을 장착한 최신 기종이다. 정밀 소형 금속 자동 가공에 특화돼 시계, 의료기기 등 초정밀 부품 가공 분야에서 주로 이용된다.
특히 유럽에서 좋은 반응을 얻고 있으며 스위스 명품 시계 제조업체 등 세계 유수의 업체에 판매되는 베스트셀러이다.
5축 가공기에 대한 수요에 비해 장비 운용 인력 및 교육이 부족한 상황에서 인재 양성을 위한 이번 기증은 의미를 갖는다.
기계공학과 학생들에게 시스템 교육과 구체적 실습 기회를 제공하고 최고수준의 미래 기계공학 리더 육성에 힘을 실어줄 것으로 기대된다.
남선기공(회장 손종현)은 1950년 설립 이후 관련 핵심 기술 국산화에 매진하며 국내 공작기계 기업으로 위상을 높이는 동시에 지역사회 환원 사업도 활발히 진행 중이다.
2011년부터는 지역 내 고등학교 및 대학교에 꾸준히 장비 기증 활동을 이어가고 있으며 이번 기증도 그 일환으로 진행됐다.
우리 대학 기계공학과는 개교 이래 5천 700여 명에 달하는 고급 인재를 배출했고 국내외 산업체, 연구소, 정부기관 등에서 중추적 역할을 하고 있다. 최근 QS 대학 순위에서 세계 15위를 차지한 바 있다.
기계공학과 배충식 학과장은 “교육과 산학협력에 대한 깊은 철학을 가진 남선기공 손종현 회장의 뜻에 감사하고 대학발전과 인재양성에 진일보할 수 있는 계기를 마련해 기쁘다”며 “세계가 주목하는 인재 발굴 및 연구 성과를 통해 모든 기부자들 마음에 보람과 자긍심을 선사할 수 있도록 최선을 다하겠다”고 말했다.
남선기공 손종현 회장은 “국내 최고 대학인 KAIST에 기증하게 돼 기쁘고 우리 장비가 국가와 청년들에게 보탬이 되길 바란다”고 말했다.
2017.06.07
조회수 8125
-
오지훈 교수, 이산화탄소 90%이상 분해 가능한 광전극 구조 개발
우리 대학 EEWS 대학원 오지훈 교수 연구팀이 빛을 이용해 이산화탄소를 분해하기 위한 금 나노 다공성 박막과 실리콘(Silicon) 기반의 새로운 광전극 구조를 개발했다.
광전기화학적 이산화탄소 변환은 태양광 에너지를 이용해 물과 이산화탄소를 연료로 바꿔주는 기술로 많은 주목을 받고 있다. 연구팀이 개발한 기술은 이를 위한 반도체 광전극 구조의 기본 틀을 제공할 것으로 기대된다.
송준태 박사가 1저자로 참여한 이번 연구는 화학, 에너지 및 소재 분야의 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 8일자 내면 표지 논문에 게재됐다.
안정적인 이산화탄소를 환원시키기 위해서는 낮은 과전압을 지닌 우수한 촉매가 필요하다. 그 중 금(Au)은 이산화탄소를 일산화탄소로 환원시키는 전기 촉매로 알려져 있다.
그러나 금은 과전압이 비교적 높고 일산화탄소 생산성이 낮아 수소가 많이 발생하는 문제점이 있다. 또한 가격이 비싸기 때문에 사용량도 조절을 해야 한다.
연구팀은 문제 해결을 위해 나노 다공성 구조를 갖는 금 박막을 제작하는 데 성공했다. 금을 박막형태로 기판 재료에 증착해 이를 양극산화 처리한 뒤 연속적인 환원 처리를 통해 제작했다.
높은 전류 효율을 보였다. 이전의 나노구조 촉매는 0.1mm의 두꺼운 호일을 이용해 제작됐다면 연구팀의 박막은 약 5만 배 정도 얇은 200나노미터 수준으로서 금 기반 촉매의 제작비용을 최소화했다.
나아가 연구팀은 직접 제작한 나노다공성 금 박막을 촉매로 활용하기 위해 새로운 실리콘(Si) 광전극 구조를 개발했다. 기존 방법인 나노 입자 형태로 반도체 표면에 촉매를 형성하면 전기화학적 처리 과정에서 기판 자체에 영향을 주게 된다.
따라서 연구팀은 금 박막을 표면 전체에 연결될 수 있는 메쉬 패턴 구조로 제작해 광전극에 영향을 주지 않고도 독립적으로 표면의 전극 접합을 통해 전기화학처리를 가능하게 했다.
제작된 광전극은 실리콘에서 생성된 광전압과 금 박막층의 높은 촉매 특성이 작용돼 기존의 일산화탄소 변환을 위해 필요한 에너지보다 더 낮은 양으로도 변환이 가능하다.
오 교수는 “다양한 반도체 및 촉매 재료도 쉽게 적용 가능한 플랫폼 역할을 할 수 있을 것이다”며 “다른 연구자들이 우리 연구팀의 구조를 적용해 이산화탄소 광전환의 광변환 효율을 향상시킬 수 있을 것이다”고 말했다.
1저자인 송준태 박사는 “발상의 전환을 통해 매우 간단하지만 중요한 새로운 타입의 광전극 구조를 개발했고, 이를 통해 효율적인 이산화탄소 환원이 가능해졌다”며 “생성물의 평형 전위보다 더욱 낮은 전위조건에서 이산화탄소 환원을 하는 결과를 낸 것은 처음이다”고 말했다.
이번 연구는 KAIST EEWS 대학원 정성윤 교수가 공동으로 참여했고 한국이산화탄소 포집 및 처리 연구개발센터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 게재된 논문 이미지
그림2. 실리콘 광전극 모식도 및 전자현미경 사진
그림3. 제작된 광전극의 광전기화학적 이산화탄소 특성
2017.02.24
조회수 13951
-
생명화학공학과 학부팀, 美화학공학회 Chem-E-Car 대회 우승
〈우승을 차지한 생명화학공학과 학부 팀〉
우리 대학 생명화학공학과 학부생 팀(지도교수 이도창)이 11월 13일 미국 샌프란시스코 유니온 스퀘어에서 열린 케미카(Chem-E-Car) 대회에서 우승을 차지했다.
미국화학공학회(AIChE) 주최로 1999년부터 매년 개최된 케미카 대회는 화학공학을 전공하는 전 세계 대학생이 참여한다. 올해는 카네기멜론 대학, 퍼듀 대학 등 세계의 41개 대학이 참여했으며 우리 대학은 생명화학공학과 차영현, 신진솔, 오대석, 김완태 학생이 참가했다.
2014년 처음 참가해 28위에 그쳤던 우리 대학은 2015년 16위를 차지했고, 올해는 세계적 명문대학인 조지아 공대를 제치고 우승을 차지했다.
케미카 대회는 화학반응으로 구동되는 자동차를 제작하고 그 차량의 제어 기술 수준을 겨루는 대회이다. 목표 지점에 가장 빠르게 도착하는 성능 뿐 아니라 도착점에 자동차가 정확하게 정지하는 것이 중요하다. 즉, 화학 반응을 세밀하게 제어할 수 있어야 좋은 성적을 거둘 수 있다.
대회 규칙 상 반드시 화학반응으로만 자동차를 제어해야 하고 경연 당일 현장에서 주행해야 할 거리와 수송할 화물의 무게가 결정된다.
이를 위해 KAIST 팀은 화학반응이 신속하고 정확한 요오드시계반응(iodine clock reaction)을 이용했고, 생명화학공학과 김희탁 교수의 바나듐 산화환원 화학전지를 통해 안정적인 출력을 갖는 자동차를 제작했다.
KAIST 팀은 경연 당일 미션으로 제시된 17미터의 주행거리를 결승지점에서 가장 근접한 11센티미터 앞까지 주행해 1위를 차지했다. 2위를 차지한 조지아 공대는 13센티미터 앞에서 정지했다.
우승을 차지한 차영현 학생은 “처음 차를 제작할 때는 작동이 되지 않거나 연결이 안 되는 등 여러 가지 문제가 발생했다. 계속된 수정과 노력을 통해 가장 좋은 결과를 낼 수 있었던 것 같다”고 말했다.
1908년 설립된 미국화학공학회는 100개 이상의 국가에서 4만 5천명 이상의 회원을 보유한 세계 최대의 화학공학 전문조직으로 높은 전문적 기준과 윤리, 교육의 증진을 지원하는 단체이다.
2016.11.30
조회수 9322
-
우성일, 김형준 교수, 귀금속 성능에 버금가는 육각형 아연촉매 개발
우리 대학 생명화학공학과 우성일 교수와 EEWS 대학원 김형준 교수 공동연구팀이 이산화탄소를 높은 효율로 환원시킬 수 있고 내구성이 강한 육각형 아연 촉매를 개발했다.
연구 결과는 화학분야 학술지 앙게반테 케미(Angewandte Chemie International Edition) 6월 28일자 온라인 판에 게재됐다.
이산화탄소는 온실가스로 지구 온난화의 주범으로 알려져 있다. 이산화탄소를 탄소의 자원으로 사용해 연료를 만든다면 기후 문제는 물론 에너지 고갈 문제를 해결할 수 있는 혁신적 기술이 될 것이다.
하지만 이러한 시스템 개발을 위해서는 열역학적으로 안정적인 이산화탄소를 성공적으로 변환시킬 수 있는 촉매를 개발하는 것이 중요하다.
연구팀은 문제 해결을 위해 전기화학적 시스템과 아연을 이용했다. 전기화학적 시스템은 여러 이산화탄소 변환 시스템 중 태양에너지처럼 지속가능한 전기에너지와 결합이 가능하다는 점에서 각광받고 있다.
아연은 이산화탄소 변환 촉매 중 일산화탄소를 선택적으로 생성할 수 있다는 장점과, 같은 특성을 갖는 금, 은에 비해 2만분의 1에 불과한 저렴한 가격 경쟁력을 갖는다. 그러나 부족한 성능으로 인해 많은 주목을 받지 못했다.
연구팀은 아연 촉매의 성능 향상을 위해 화학 반응에 참여하는 부분의 표면적을 최대한 넓혔다. 그리고 흡착에너지를 수월하게 조절할 수 있도록 전기화학적 증착법을 통해 육각형 형태로 배열된 아연 촉매를 제작했다.
육각형이라는 구조적 특성은 효율적인 이산화탄소 변환을 가능하게 했고, 선택적으로 일산화탄소가 생성되고 부산물로 수소가 발생했다. 일산화탄소와 수소는 합성가스(syngas)로서 탄화수소 연료를 생산할 수 있는 유용한 원료이다.
연구팀은 이 육각형 아연 촉매에 가하는 전압에 따라 일산화탄소와 수소 생성 비율을 다양하게 조절할 수 있음을 확인했다. 또한 일산화탄소와 수소를 각각 잘 생성하는 아연의 결정면이 Zn(101)과 Zn(002)임을 밀도범함수이론(density functional theory) 계산을 통해 이론적으로 밝혔다.
향후 이 두 면의 비율을 조절함으로써 원하는 공정이나 생성물의 비율을 얻을 수 있음을 규명했다.
육각형 아연 촉매는 이산화탄소 변환의 반응 선택성을 의미하는 페러데이 효율(Faradaic efficiency)에서 95%를 기록했고, 이 성능이 30시간 이상 지속돼 기존 귀금속을 포함한 모든 일산화탄소 생성 촉매 중 가장 긴 시간 동안의 안정성을 보였다.
연구팀은 태양에너지와 같은 신재생에너지로부터 전기에너지를 얻고, 이산화탄소를 환원시켜 일산화탄소 및 수소를 생성하고 이 합성가스를 피셔-트롭쉬 반응에 직접 이용할 예정이다. 이를 통해 추가적인 이산화탄소 배출 없이도 높은 에너지 밀도를 가진 탄화수소 연료 생산이 가능해진다고 밝혔다.
우 교수는 “생산한 연료들을 연소하면 다시 이산화탄소와 물이 발생하므로 이것이야말로 지속가능한 에너지 생산 시스템이 될 것이다”고 말했다.
생명화학공학과 원다혜 박사가 제 1저자로 참여한 이번 연구는 EEWS대학원의 BK21PLUS 연구사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 육각형 아연 촉매 위에서의 반응 모식도
그림2. 육각형 아연 촉매의 FE-SEM 이미지
그림3. 장시간 진행된 전기화학적 이산화탄소 환원 반응
그림4. 밀도범함수계산 결과 (Free energy diagram)
2016.07.26
조회수 10598
-
이수영 광원산업 회장, 80억원대 부동산 기부
- “KAIST의 미래가 대한민국의 미래입니다” -
- 미국 LA 700만 달러 부동산, 국가발전 위한 인재양성에 써 달라 기부 -
세계 최정상급 대학 반열에 우뚝 선 KAIST에 최근 낭보가 잇따르고 있다.
지난 7일 KAIST에 이름을 밝히지 않은 독지가가 현금과 주식, 채권 등 약 55억원 규모의 동산을 발전기금으로 쾌척한데 이어 11일 영국의 세계적인 대학평가기관 QS(Quacquarelli Symonds)가 발표한 ‘2012년 세계대학 평가’에서는 63위에 이름을 올려 71년 개교이후 41년만에 역대 최고의 성적을 달성했다. 특히 학교 핵심역량인 과학기술·공학분야에서는 세계 24위를 차지했다.
이와 함께 14일에는 70대 노부인이 평생을 아껴 모은 80억원대의 재산을 학교발전 기금으로 기탁했다. 올 9월 한달에만 고액 기부자 2명이 모두 약 135억원의 동산과 부동산을 KAIST에 기부한 것이다.
최근 70대 노부인이 평생을 아껴 모아 마련한 재산을 유증(유언으로 재산의 전부 또는 일부를 무상으로 타인에게 증여)하겠다는 뜻을 우리 학교에 전해와 14일 오후 2시 KAIST 행정본관 1층 회의실에서 발전기금 약정식을 갖는다.
화제의 주인공은 이수영(76) 광원산업 회장. 일간지 기자출신으로 지난 ‘71년 창업한 광원목장을 기반으로 기업을 일궈 1988년부터 광원산업 회장을 맡고 있다.
이수영 회장은 미국 LA에 소재한 자신 소유의 약 700만 달러(원화 약 80억원) 상당의 부동산을 KAIST 발전을 위해 14일 아낌없이 내놨다.
이 회장은 “과학기술의 힘이 대한민국 발전의 힘이며, 그 원동력은 KAIST라고 확신합니다. 저의 작은 도움이 우리나라의 훌륭한 과학기술 인재 양성에 도움이 되길 바랍니다”라고 기부배경을 설명했다.
“평생을 안 쓰고, 열심히 일해서 모아 미국에 부동산을 구입했습니다. 재산이라는 것이 죽을 때 가지고 갈 수 있는 것도 아니고 언젠가는 사회에 환원하리라 생각해서 아무 곳에나 함부로 낭비하진 않았어요. 우리나라 국가발전을 위하는 길이 무엇인가 고민하다 주저 없이 KAIST를 선택하게 된 거죠”
이 회장은 KAIST 발전을 위해 물불 가리지 않고 밤낮으로 열심히 일하는 서남표 총장을 비롯한 KAIST 구성원들의 개혁의지에 감동을 받아 최종 결심을 굳혔다고 전했다.
“세계적인 석학인 서남표 총장이 지난 6년간 KAIST를 새롭게 일으키며 발전시키고 있는 모습이 매우 인상적이었습니다. 이렇게 발전해 나아간다면 KAIST가 우리나라를 넘어 세계적인 대학이 될 수 있다고 생각했어요. KAIST에 대한 공헌이 바로 국가공헌이라는 확신이 들었습니다”
이수영 회장은 재산을 모으기까지 누구보다도 더 아끼고 아끼는 삶을 살았지만 기부에 대해선 한 치의 망설임도 없었다고 KAIST 발전재단 관계자는 밝혔다.
“KAIST 학생들이 공부하는데 저의 기부가 도움이 되길 바라는 마음뿐이에요. 우리나라를 이끌어갈 훌륭한 일꾼으로 성장하는데 제가 도움이 된다면 더 이상 무엇을 바라겠습니까”
이수영 회장은 경기여고와 서울대 법대를 졸업하고 지난 ‘63년부터 서울신문을 시작으로 한국경제신문과 ’80년 서울경제신문 기자로 퇴직할 때까지 약 17년 동안 일간지 신문기자로 활동했다.
‘71년 창업한 광원목장을 기반으로 키워 낸 광원산업을 운영, 회장으로 재직 중이며 ’10년 11월부터 현재 서울대 법대 장학재단 이사장을 맡고 있다.
기자로 재직하던 ‘71년에는 언론인 특별취재상을 받기도 했다.
서남표 총장은 “KAIST에 고액의 기부가 지속적으로 이어지고 있는 것은 우리나라도 세계적인 대학을 가져보자는 국민들의 염원과 열망이 담겨있는 것”이라고 의미를 설명했다.
서 총장은 이와 함께 “평생 모은 재산을 흔쾌히 기부해주신 이 회장님을 포함한 기부자들의 KAIST에 대한 사랑과 관심을 학교가 앞으로 어떤 방향으로 어떻게 나아가야 하는지를 일깨워주는 준엄한 명령으로 받아들인다”며 “모든 기부자들의 기대를 학교발전의 동력으로 삼아 ‘세계 초일류 대학’으로 한 발짝 더 도약하기 위해 구성원 모두 최선을 다하겠으며 반드시 그렇게 될 것”이라고 강조했다.
한편, 발전기금은 기부자인 이수영 회장의 뜻에 따라 ‘KAIST-이수영 국제교육 프로그램’에 사용될 예정이다.
KAIST는 올 봄학기 부터 멀티미디어 서비스를 활용한 스마트 러닝, 학생주도 중심의 차세대 교수학습법인 ‘Education 3.0"을 시범적으로 운영 중인데 ‘Education 3.0"의 글로벌화를 위한 프로젝트와 외국대학과의 실질적인 교류확대와 함께 교육수출을 목적으로 하는 ’글로벌 사이버 복수학위제‘ 운영 등을 주요내용으로 하는 ’KAIST-이수영 국제교육 프로그램‘ 계획을 마련하고 곧 추진에 들어갈 계획이다.
2012.09.14
조회수 10761
-
올 여름 KAIST는 나눔캠프로 더 뜨겁다!
- 지식을 나누는 통영시 봉사캠프, 2011 YLKamp, 군 자녀 캠프 열어 -
올 여름에도 KAIST 학생들은 ‘통영시 봉사캠프’, ‘2011 YLKamp’, ‘군자녀 과학캠프’를 통해 지식을 나누며 사회봉사 활동에 적극 나서고 있다.
이러한 봉사활동을 통해 KAIST 학생들은 공부와 연구만 열심히 하는 엘리트 교육에서 벗어나, 사회에 보탬이 되는 진정한 리더가 된다.
KAIST는 오는 8월17~19일까지 국내 최고의 과학영재교육 프로그램과 리더십을 통영시 자녀들에게 제공하는 ‘통영시 봉사캠프’를 죽림초등학교에서 연다
이번 캠프는 KAIST학생들이 벽지에 직접 찾아가는 봉사캠프로 초등학생 70여명에게 꿈과 희망을 심어준다. 창의력과 과학적, 논리적 사고력을 키울 수 있는 과학영재 프로그램과 리더십프로그램으로 구성되어 있다.
KAIST 자기계발 동아리인 "Young Leaders in KAIST(이하YLK)"는 8월 11일~14일까지 고등학생을 대상으로 하는 학습 멘토링 캠프인 "2011 YLKamp"를 갖는다.
3박4일간 KAIST 캠퍼스에서 진행되는 이번 캠프는 60여명의 충청도 농어촌 소재 고등학교 1학년 학생들을 대상으로 과학탐구, 수리, 외국어 등의 학습법 및 미래의 진로와 대학생활에 대해 조언한다.
YLK는 2010 여름부터 ‘사회 환원을 통한 교육 양극화 해소’라는 취지 아래 무료 멘토링 캠프를 개최하고 있다. 올해 2회째를 맞이하고 있는 YLK 캠프는 참가자 모집에서부터 내용 기획, 후원 기업 모집 및 행사 진행까지 모든 업무가 KAIST 학생들의 자발적인 활동에 의해 진행된다.
현대자동차, 종근당고촌재단, 하이드로스타㈜, ㈜테스트마이다스, KAIST총동문회의 후원에 힘입어 참가비는 무료다.
YLK는 다양한 활동으로 리더십을 검증 받은 학생들이 모여 서로의 경험을 공유하며 봉사활동을 비롯, 공모전, 연사초청 강연, 워크숍, 사회활동 참여 등을 통해 자기계발을 하는 KAIST동아리이다.
또한, KAIST는 軍자녀들에게 작년부터 영재과학교육 프로그램을 제공하고 있다. 2010년에는 260명, 2011년 1월에는 100명이 참가했다. 2박3일로 진행하는 올 여름 캠프는 320명이 참가해 1일~12일까지 4차례로 나눠 열린다.
지난 2010년 2월에 시범적으로 시작한 이 과학캠프는 계룡대지역 초, 중학생으로 이뤄진 軍자녀를 대상으로 시작해 전․후방 전 지역으로 확대되었고, 이번 여름이 벌써 4회째로 전군 자녀를 대상으로 교육을 실시하고 있다.
KAIST와 육군이 직무특성상 잦은 근무지 이동으로 자녀들에게 양질의 교육을 받게 하고 싶어도 여건상 불가능했던 군인들에게 교육기회를 제공하기 위해 특별히 마련됐다.
KAIST는 앞으로 교육 수혜가 적은 지역의 학생들에게 이러한 지식나눔, 사회봉사 프로그램을 지속적으로 확대하고 지원할 방침이다.
이승섭 학생처장은 “KAIST가 국내 과학도들에게 꿈과 희망을 심어줄 의무가 있다고 생각하며 지역사회에 감사의 마음을 전하고 우리 아이들에게는 미래의 비전을 제시해주는 좋은 기회가 될 것”이라며 “아이들에게 알차고 뜻 깊은 캠프가 되도록 노력 하겠다”고 말했다.
2011.08.11
조회수 12094
-
박찬범 교수팀, 나노크기의 광감응 소재를 이용한 인공광합성 원천기술개발
신소재공학과 박찬범(朴燦範, 41세) 교수팀이 나노소재를 이용해 자연계의 광합성을 모방한 ‘인공광합성’ 시스템 개발에 성공했다.
이러한 새로운 개념의 인공광합성 기술은 고부가가치의 각종 정밀의약품들을 태양 에너지를 이용해 생산하는 친환경 녹색생물공정 개발의 전기가 될 것으로 기대된다.
식물 등 자연계의 광합성 생물체들은 태양에너지를 이용해 환원력을 재생하여 보조인자(cofactor)라는 형태로 저장하고, 이렇게 재생된 보조인자 등을 빛이 없을 때 캘빈사이클 (calvin cycle)을 통해 생존에 필요한 탄수화물 등 각종 화학물질들을 합성하는데 이용한다.
[그림 1. 자연광합성을 모방한 인공광합성 공정을 이용한 정밀화학제품 생산 개념도]
박 교수팀은 이러한 자연광합성시스템을 모방하여 자연계의 광반응 (light reaction) 대신 태양전지 등에서 사용되는 양자점 (quantum dot) 등 수 나노크기의 광감응소재로 빛에너지를 전기에너지로 효율적으로 전환하고, 이를 이용하여 보조인자를 재생했다. 또한 자연계의 복잡한 캘빈 사이클 대신 산화환원 효소반응을 보조인자 재생에 연결시킴으로써 빛에너지로부터 시작하여 최종적으로 정밀화학물질 생산이 가능한 반응시스템을 개발했다.
인류가 지구 온난화와 화석 연료의 고갈이라는 문제를 안고 있는 가운데, 온난화의 원인인 이산화탄소를 배출하지 않고 또한 무제한으로 존재하는 태양 에너지를 이용하려는 노력이 계속되고있는데, 이번에 개발된 인공광합성기술은 에너지원으로 무한한 태양광을 사용한다는 장점 때문에 그 파급효과가 매우 클것이다.
특히 각종 정밀화학물질 합성에 있어서 산화환원효소들이 매우 뛰어난 응용가능성/다양성을 가졌음에도 불구하고 이들의 효율적 사용을 위하여 필수적으로 요구되는 보조인자의 재생에 대한 연구는 지난 20여년동안 수행되어 왔으나 현재까지도 성공적인 결과가 거의 없어 향후 생물공학분야에서 해결되어야 할 미해결 난제들 중의 하나였다.
박교수팀의 연구성과는 산화환원효소를 산업적으로 활용하기 위한 토대를 마련한 것이다.
[그림 2. 산화환원효소 기반 인공광합성을 통한 고부가가치 정밀화학제품 생산]
관련 연구결과는 독일에서 발간되는 나노분야 국제저명학술지인 Small지 최근호(4월 23일자 온라인판)에 게재됐으며, 최근 특허출원이 완료됐다.
이번 연구는 교육과학기술부 신기술융합형 성장동력사업(생물공정연구단) 등으로부터 지원을 받아 수행됐으며, 나노과학과 생명공학분야의 창의적인 융합을 통하여 새로운 공정기술을 개발하는데 크게 기여했다는 평가를 받았다.
2010.04.23
조회수 18046