본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%ED%98%84%EB%AF%B8%EA%B2%BD
최신순
조회순
실시간 나노 측정이 가능한 3D 표면예측 기술 개발
우리 대학 기계공학과 이정철 교수 연구팀이 현미경 사진을 이용해 나노 스케일 3D 표면을 예측하는 딥러닝 기반 방법론을 제시했다고 17일 밝혔다. 물리적 접촉 기반으로 나노 스케일의 표면 형상을 3D 측정하는 원자현미경은 웨이퍼 소자 검사 등 반도체 산업에서 사용되고 있다. 하지만, 원자현미경은 물리적으로 표면을 스캔하기 때문에 측정 속도*가 느리고, 고온 극한 환경에서는 작동할 수 없다는 단점을 지닌다. * 측정 속도를 높이기 위해 표면 스캔 방식의 효율을 개선해 20 FPS(초당 프레임 수) 수준의 비디오 프레임 원자현미경이 개발됐지만, 측정 가능한 표면의 면적이 100제곱마이크로미터(μm2) 수준으로 제한되며, 극한의 환경에서는 여전히 작동이 제한된다. 이에 연구팀은 비접촉 측정 방법인 광 현미경에서 딥러닝을 이용하여 원자현미경으로 얻어질 수 있는 나노 스케일 3D 표면을 예측했다. 비슷한 개념인 사진에서 깊이를 예측하는 기술은 자율주행을 위해 많이 연구되고 있는 분야다. 연구팀은 이러한 기술이 적용되는 스케일을 일상생활 범위에서 나노 스케일 범위로 옮겨 인공지능 모델을 훈련했다. 인공지능 모델로는 입력 데이터에서 대상의 특징을 추출하고, 추출된 특징에서 출력 데이터를 표현하는 인코더-디코더 구조*를 활용했다. 연구팀이 제안한 모델은 광 현미경 사진을 하나의 변수로 표현하고, 이후 이 변수에서 현미경 사진을 3D 표면으로 계산하여 나타내는데 성공했다. *인코더-디코더 구조: 입력 데이터에서 인공 신경망 혹은 합성곱 층을 이용하여 데이터의 크기 및 차원을 추출하며 특징을 추출하고 (인코더), 추출된 특징에서 출력 데이터를 생성하는 (디코더) 구조. 활용 목적에 따라 추출된 특징 혹은 출력 데이터가 사용됨. 연구팀은 제안된 방법론을 반도체 산업의 센서, 태양 전지 및 나노 입자 제작에 응용되는 저메니움(게르마늄) 자가조립 구조*의 공정 중 분석 및 검사를 위해 적용했다. 광 현미경 사진을 이용해 15% 오차 수준 이내에서 1.72배까지 더 높은 해상도의 높이 맵을 예측하였는데, 이를 기반으로 각 응용에 필요한 형상의 자가조립 구조가 만들어지도록 실시간으로 공정 과정을 검사하였다. 또한, 같은 딥러닝 모델로 어닐링(가열) 중 동적으로 변하는 표면 형상을 시뮬레이션 하여 공정 과정을 분석 및 최적화하여 기존 공정으로는 불가능했던 공동의 형상을 만들어냈다. * 저메니움 자가조립 구조란, 저메니움 웨이퍼에 마이크로 단위 수직 구멍을 식각 후 고온 어닐링(가열)을 하면 생기는 표면 아래의 공동을 뜻한다. 가열과정 중 구멍이 식각된 표면이 닫히고, 이후 표면과 표면 아래 공동의 형상이 함께 변하는데 공동의 형상에 따라 각기 다른 용도로 활용된다. 연구팀은 이렇게 동적으로 변하는 구조의 표면 높이 맵을 예측했다. 이번 연구에서 제안된 딥러닝 기반 방법론은 원자현미경으로는 제한돼있던 나노 스케일 표면 높이 맵 측정을 1 제곱밀리미터(mm2) 까지의 넓은 표면에 대해 기존 원자현미경 측정 속도 대비 10배에 해당하는 200 FPS까지 측정 가능하도록 속도를 높였으며, 광학을 이용한 비접촉 관측이기에 극한의 열 환경에서도 측정이 가능한 방법을 제시한 데에 의의가 있다. 이번 연구는 광학 현미경 해상도의 물리적 한계인 빛의 파장 이하의 작은 나노 스케일에서 동적인 현상을 현미경만으로 분석할 수 있게 해, 공정 중 혹은 이후 표면 분석이 필요한 재료, 물리, 화학 등에서의 나노 스케일 연구를 촉진할 것으로 기대된다. 또한 학계 뿐 아니라 산업계에서도 쓰일 것으로 기대된다. 향후 반도체 사업에는 웨이퍼의 표면 분석 속도와 정확도를 개선함으로서, 반도체 공정 시 생산 속도와 정밀한 측정으로 수율 개선에 기여할 수 있다. 연구를 주도한 이정철 교수는 "개발된 기술은 시간에 따라 변화하는 반도체 표면 및 내부 구조에 대해 불연속적인 저해상도 광학 현미경 사진 몇 장만 이용해서, 연속적인 고해상도 원자현미경 동영상을 생성해내는 최초의 연구로서, 극한 공정 중 실시간 나노 측정을 대체하는 효과를 가져와 반도체 및 첨단센서 산업 발전에 기여할 것ˮ이라고 말했다. 한편, 이번 연구는 국제 학술지 어드밴스드 인텔리전트 시스템(Advanced Intelligent Systems)에 지난 12월 20일 字에 온라인 게재됐으며, 23년 1사분기의 표지 논문(Inside back cover) 중 하나로 선정됐다. 이번 연구는 한국연구재단의 중견연구자지원사업과 기초연구실 지원사업의 지원을 받아 수행됐다.
2023.01.17
조회수 756
인공지능으로 정확한 세포 이미지 분석..세계 AI 생명과학 분야 대회 우승
우리 대학 김재철AI대학원 윤세영 교수 연구팀이 세계 최고 수준의 인공지능(AI) 학회인 `뉴립스(NeurIPS, 신경정보처리시스템학회) 2022'에서 개최된 `세포 인식기술 경진대회'에서 취리히 리서치센터, 베이징대, 칭화대, 미시간대 등 다수의 세계 연구팀을 모두 제치고 1위로 우승을 달성했다고 28일 밝혔다. 뉴립스는 국제머신러닝학회(ICML), 표현학습국제학회(ICLR)와 함께 세계적인 권위의 기계학습 및 인공지능 분야 학회로 꼽힌다. 뛰어난 연구자들이 제출하는 논문들도 승인될 확률이 25%에 불과할 정도로 학회의 심사를 통과하기 어려운 것으로 알려져 있다. 윤세영 교수 연구팀은 이번 학회에서 `세포 인식기술 경진대회(Cell Segmentation Challenge)'에 참가했다. 이기훈(박사과정), 김상묵(박사과정), 김준기(석사과정)의 3명의 연구원으로 구성된 OSILAB 팀은 초고해상도의 현미경 이미지에서 인공지능이 자동으로 세포를 인식하는 MEDIAR(메디아) 기술을 개발해 2위 팀과 큰 성능 격차로 1위를 달성했다. 세포 인식은 생명 및 의료 분야의 시작이 되는 중요한 기반 기술이지만, 현미경의 측정 기술과 세포의 종류 등에 따라 다양한 형태로 관찰될 수 있어 인공지능이 학습하기 어려운 분야로 알려져 있다. 세포 인식기술 경진대회는 이러한 한계를 극복하기 위해 초고해상도의 현미경 이미지에서 제한된 시간 안에 세포를 인식하는 기술을 주제로 개최됐다. 연구팀은 기계학습에서 소수의 학습 데이터를 더 효과적으로 활용해 성능을 높이는 데이터 기반(Data-Centric) 접근법과 인공신경망의 구조를 개선하는 모델 기반(Model-Centric) 접근법을 종합적으로 활용해 MEDIAR(메디아) 기술을 개발했다. 개발된 인공지능 기술을 통해 정확하게 세포를 인식하고 고해상도 이미지를 빠르게 연산함으로써 대회에서 좋은 성과를 얻을 수 있었다. 지도교수인 KAIST 김재철AI대학원 윤세영 교수는 “MEDIAR는 세포 인식기술 경진대회를 통해 개발됐지만 기상 예측이나 자율주행과 같이 이미지 속 다양한 형태의 개체 인식을 통해 정확한 예측이 필요한 많은 분야에 적용할 수 있다”라고 향후 다양한 활용을 기대했다. 팀을 이끌었던 이기훈 박사과정은 "처음 접하는 분야에서도 성과를 낼 수 있었던 것은 평소 기본기를 중요시하는 교수님의 가르침 덕분ˮ이라며 "새로운 문제에 끊임없이 도전하자는 것이 연구팀의 기본 정신ˮ이라고 강조했다. 이어 같은 연구실 김상묵 박사과정은 "연구 과정에서 많은 실패가 있었지만, 세상에 꼭 필요한 기술이라는 생각으로 끝까지 노력했다ˮ라며 "혼자서라면 절대 해내지 못했던 결과인 만큼 팀원들에게 정말 감사하다ˮ라고 수상 소감을 전했다. 같은 연구실 김준기 석사과정은 "팀원들과 이룬 성과가 의료 분야 인공지능이 겪는 현실의 문제를 해결하는 데 도움이 될 수 있기를 바란다”라고 밝혔다. 연구팀은 생명과학 분야 연구의 발전을 돕기 위해 개발된 기술을 전면 오픈소스로 공개한다고 밝혔다. 학습된 인공지능 모델과 인공지능을 구현하기 위한 프로그램의 소스 코드는 개발자 플랫폼인 깃허브 (GitHub)를 통해 이용할 수 있다.
2022.12.28
조회수 1195
리튬이차전지 실리콘 기반 음극의 수명과 관련된 전자전도도 퇴화를 나노스케일에서 영상화 성공
고에너지 밀도를 갖는 리튬이차전지 개발에 대한 수요가 폭발적으로 증가하면서, 실리콘 기반 음극 개발에 관한 연구가 활발히 이뤄지고 있다. 실리콘 활물질은 기존 음극 활물질인 흑연 대비 높은 용량 값(4200 mAh/g)을 가지고 있어, 고에너지 밀도를 가지는 리튬이차전지용 음극의 유력한 후보로 자리 잡고 있다. 하지만 충전 및 방전 간 400%에 달하는 높은 부피 팽창/수축률이 실리콘 활물질의 상업화를 방해하고 있다. 실리콘 기반 음극의 급격한 부피 변화는 특히 전극 내 전자 전달 시스템에 큰 악영향을 미치고 있으며, 이를 보완하기 위해 다양한 도전재 시스템을 적용하는 연구가 활발히 진행 중이다. 전극 내 전자 전도 채널의 확보는, 활물질 내 균등한 전기화학 반응을 유발하기 위해 필수적이지만, 이를 나노스케일 공간 분해능을 갖고 영상화하는 방법론에 관해서는 많은 연구가 진행되지 않은 실정이다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 LG에너지솔루션과 협업해, 나노스케일 분해능으로 전극 내 전자 전도 채널을 왜곡 신호 없이 정량적으로 추출하는 방법론을 개발하는 데 성공했다고 8일 밝혔다. 연구팀은 전극 소재와 같이 표면 거칠기가 큰 시료에서 전도성 원자간력현미경(Conductive Atomic Force Microscopy, C-AFM) 운용 시 발생하는 왜곡 정보인 용량성 전류(capacitive current)의 원인을 규명하고, 피어슨 상관 분석 방법을 기반으로 해당 왜곡 정보를 제거했다. 이 방법론을 실리콘/흑연 기반 복합 음극에 적용해 도전재 성분에 따른 전자 전도 채널 영상화를 실시했으며, 이를 통해 단일벽 탄소나노튜브(Signle-Walled Carbon Nano Tube, 이하 SWNCT)가 적용된 전극의 전기적, 전기화학적 우수성을 입증하는 데 성공했다. 연구팀은 이번 연구를 통해 실리콘 기반 전극과 같이 활물질의 부피 변화가 큰 시스템에서는 기존의 점형 도전재 대비 선형의 구조적 장점을 갖고 있는 SWCNT가 안정적인 전자 전도 채널을 확보하는 데 유리함을 보였다. 또한 SWCNT가 포함된 복합 전극의 경우, 130 사이클 이후에도 활물질의 분쇄가 보다 억제됐음을 보여주며, 전자 전도 채널의 불균일성이 활물질의 구조적 안정성에도 영향을 미칠 수 있음을 가설을 들어 설명했다. 제1 저자인 신소재공학과 박건 박사과정은 "전자 전도 채널 불균일이 유발한 전극의 전기화학 특성 퇴화라는 주제로 후속 연구를 진행 중이다ˮ라며 "나노스케일 영상화를 기반으로 지금껏 관찰하지 못했던 현상을 탐구할 수 있어 즐겁다ˮ라고 말했다. 교신 저자인 홍승범 교수는 "왜곡 신호의 원인을 규명하고, 이를 정량적으로 제거하는 연구는 영상화 분야에서 매우 중요하다ˮ라며 "이번에 개발한 방법론이 전극 내 전자 전도 채널을 강화하는데 적용돼, 실리콘 기반 복합 음극의 고도화를 앞당기는 데 도움이 되면 좋겠다ˮ라고 말했다. 이번 연구는 국제 학술지 `에이씨에스 어플라이드 머티리얼즈 앤드 인터페이시스(ACS Applied Materials & Interfaces)'에 게재됐다. (논문명: Nanoscale Visualization of the Electron Conduction Channel in the SiO/Graphite Composite Anode) 한편 이번 연구는 LG에너지솔루션-KAIST 프론티어 리서치 랩(Frontier Research Lab)과 KAIST 글로벌 특이점 사업의 지원을 받아 수행됐다.
2022.11.08
조회수 1531
RNA를 통한 유전자 전사 조절 원리 규명
세포가 어떤 유전자를 얼마나 발현하느냐에 따라 그 세포의 모양, 기능, 수명 등이 결정되므로 유전정보를 처음으로 발현하는 RNA 합성효소의 활성은 세포 내에서 매우 중요하게, 또 정교하게 조절된다. 그러나 이러한 유전자 전사(transcription) 조절의 중요성에도 불구하고 RNA 합성효소가 이러한 단백질과 RNA들에 의해서 어떻게 조절되는지 분자적인 수준에서는 잘 알려져 있지 않았다. ☞ 유전자 전사: DNA의 유전정보가 RNA에 옮겨지는 과정을 말한다. 유전정보의 복사물인 RNA는 단백질 합성에 사용된다. 우리 대학 화학과 강진영 교수 연구팀이 RNA를 통한 RNA 합성효소의 조절 메커니즘을 알아내고자 RNA 합성효소와 RNA 합성효소를 조절하는 바이러스 유래 RNA인 *HK022 putRNA의 결합 구조를 초저온 전자현미경(cryo-EM)으로 규명하여 유전자 전사조절의 기초 원리를 규명했다고 7일 밝혔다. *HK022 putRNA: HK022 박테리오파지(박테리아를 감염시키는 바이러스)의 RNA로 다른 단백질의 도움 없이 해당 RNA를 만든 RNA 중합효소와 결합해 RNA 합성이 계속 되도록 RNA 중합효소를 조절 화학과 황승하 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈 (Nature Communications)'에 지난 8월 15일 출판되었다. (논문명: Structural basis of transcriptional regulation by a nascent RNA element, HK022 putRNA). HK022 putRNA는 RNA 합성효소와 결합해서 RNA 합성이 멈추지 않고 계속 되도록 도와주는 역할을 한다. 이러한 기능을 이해하기 위해서 본 연구팀은 putRNA와 RNA 합성효소의 결합 복합체(put-associated RNA polymerase elongation complex, putEC)의 세 가지 구조를 초저온 전자현미경으로 규명하였다. 이 연구에서는 활성을 가진 putRNA를 제작하기 위해 장애물 단백질을 RNA 합성에 활용하는 방법을 고안하였으며, 초저온 전자현미경 촬영 결과 예상하지 못했던 세 종류의 복합체 – putRNA가 잘 접혀서 RNA 합성효소와 결합하고 있는 putEC, put RNA가 접히지 않은 put-없는 EC, 잘 접힌 putRNA와 시그마 단백질이 함께 RNA 합성효소와 결합하고 있는 시그마* 결합-putEC – 를 발견할 수 있었다. (그림 1) *시그마: RNA 합성효소가 유전자 RNA 합성을 처음 시작할 때 필요한 단백질로 RNA 합성이 어느 정도 안정화되면 RNA 합성효소에서 떨어진다. 연구팀은 이들 복합체의 구조를 통해 putRNA가 이전 연구에서 예측된 대로 RNA 합성효소와 안정적으로 결합하고 있지만 예측과 달리 예상보다 더 많은 염기쌍(base pair)을 사용해 RNA 이중나선(double helix) 뿐 아니라 삼중나선(triple helix)을 형성하는 것을 확인하였다. 또한, putRNA가 RNA 합성효소와 결합하면 RNA 합성효소가 RNA 합성을 잠시 멈출 때 가지는 구조의 변화를 방해해서 RNA 합성을 지속하도록 한다는 가설을 제시할 수 있었다. 한편, 시그마 단백질(σ70)은 RNA 합성효소가 전사를 시작할 때 필요한 전사 개시인자로, RNA 합성이 안정되면 RNA 합성효소에서 떨어졌다가 특정 DNA 서열(–10-유사 서열)이 있으면 전사 과정 중이라도 다시 RNA 중합효소와 결합해 RNA 합성을 일시적으로 멈추는 것으로 알려져 있다. 이번 연구에서는 예상치 못하게 관찰된 시그마 결합-putEC 구조를 통해 시그마가 RNA 합성효소와 결합하여 RNA 합성이 잠깐 멈추면 putRNA가 더 잘 접힌다는 것을 알 수 있었다. 이 연구의 교신저자인 강진영 교수는 "RNA 합성효소는 세포 내에 저장된 유전 정보를 처음으로 꺼내어 생명활동에 활용하는, 세포 내에서 제일 중요한 단백질 중 하나이다. 그러나 RNA 합성효소의 큰 크기와 다양한 구조 변화 때문에 이전에 주로 활용하던 X-ray 결정학 방식으로는 그 구조를 관찰하기가 어려웠다. 최근 초저온 전자현미경의 발달로 이제야 조금씩 RNA 합성효소의 작동 원리가 알려지고 있는 상황이다. 이번 연구는 이전에 잘 알려지지 않았던, RNA를 통한 전사 조절의 기초적인 원리를 설명한 것으로, RNA를 통한 RNA 합성효소 조절의 다양한 전략을 밝혀줄 시작점이며, 더 나아가 유전자 발현을 조작할 수 있는 RNA의 개발을 도울 수 있는 정보를 제공할 것이라 기대한다.ˮ고 밝혔다. 한편 이번 연구는 한국연구재단의 이공분야기초연구사업(우수신진연구)과 원천기술개발사업의 지원을 받아 수행됐다.
2022.09.07
조회수 1791
새로운 인공지능 형광 현미경 적용, 뇌 신경세포 등 3차원 고화질 영상기술 개발
우리 대학 김재철 AI 대학원 예종철 교수 연구팀이 서울대학교 장성호 교수팀, 포스텍 김기현 교수팀과 공동연구를 통해 형광 현미경의 오랜 문제인 이방성(Anisotropy)을 해결해, 3차원 영상 화질을 획기적으로 끌어올리는 인공지능 기술을 개발했다고 29일 밝혔다. 이방성 문제란 형광 현미경으로 3차원 영상을 획득하는 데 있어 빛의 성질로 인해 영상 공간 방향 간에 적게는 2~3배, 많게는 10배까지도 화질 차이가 발생하는 문제를 뜻한다. 예를 들면 3차원 영상을 보는 각도마다 화질의 차이가 발생하는 것이다. 연구팀은 수학적 기법인 최적 수송이론 기반을 둔 새로운 인공지능 시스템을 개발해 공초점 현미경과 광 시트 현미경에 적용했다. 기존 인공지능 기법들과는 다르게, 인공지능 학습 데이터가 따로 필요하지 않고, 하나의 3차원 영상만으로도 인공지능 학습에 적용할 수 있다는 점에서 획기적이라 볼 수 있으며, 생물학 연구자들에게 생물 표본의 3차원 고화질 영상 획득에 큰 도움을 줄 것으로 기대된다. 예종철 교수는 "3차원 영상 획득에 있어 극복하기 어려웠던 현미경의 물리적 한계를 인공지능 기술을 통해 뛰어넘었다는 점에서 의미가 있고, 비지도 학습 기반으로 훈련이 진행되기 때문에, 다양한 많은 종류의 3차원 영상 촬영 기법에도 확장 적용 가능하며, 또한 인공지능 연구의 새로운 응용을 개척했다는 데 의미가 있다ˮ 고 말했다. 김재철 AI 대학원의 예종철 교수가 주도하고, 박형준 연구원이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)' 6월 8일 字 온라인판에 게재됐다. *논문명 : Deep learning enables reference-free isotropic super-resolution for volumetric fluorescence microscopy 논문 링크: https://www.nature.com/articles/s41467-022-30949-6
2022.06.29
조회수 1715
인공지능 이용해 3차원 홀로그래피 현미경의 박테리아 신속 식별 기술 개발
우리 대학 물리학과 박용근 교수 연구팀이 홀로그래피 현미경과 인공지능을 이용한 신속 박테리아 병원균 식별 기술을 개발했다고 27일 밝혔다. 병원균의 조기 식별은 감염질환 치료에 필수적이다. 치명적인 상태로 진행되기 전에 감염균에 맞는 효과적인 항생제의 선택과 투여가 가능해지기 때문이다. 하지만 현재의 일상적 병원균 식별은 통상 수일이 소요된다. 이로 인해 감염 초기 식별 결과 없이 실증적인 처방으로 항생제를 투여하는 사례가 빈번하며, 이로 인해 패혈증의 경우 치명률이 50%에 달하며 항생제 남용으로 인한 슈퍼박테리아 문제도 발생한다. 기존 방법으로 병원균 식별이 오래 걸리는 원인은 긴 박테리아 배양 시간이다. 질량 분석기로 대표되는 식별 기술들은 일정량 이상의 박테리아 표본이 확보되어야 균종과 관련된 분자적 신호를 검출할 수 있다. 이로 인해, 환자에서 추출한 시편을 하루 이상 배양해야만 검출이 될 정도의 박테리아 개수가 확보된다. 광학 분야의 저명 학술지인 `빛: 과학과 응용(Light: Science & Applications), (IF = 17.782)'에 게재된 이번 연구(논문명: Rapid species identification of pathogenic bacteria from a minute quantity exploiting three-dimensional quantitative phase imaging and artificial neural network)에서 박용근 교수 연구팀은 3차원 홀로그래피 현미경과 인공지능 알고리즘을 활용해서 단일 세포 수준의 표본으로도 병원균의 균종을 정확히 알아낼 수 있음을 입증했다. 홀로그래피 현미경으로 측정되는 3차원 굴절률 영상 정보에 내재된 균종과 관련된 특성을 인공지능 알고리즘으로 학습해 종을 구분하는 것이 핵심 아이디어다. 연구팀은 종별로 500개 이상의 박테리아의 3차원 굴절률 영상을 측정했고, 이를 인공지능 신경망을 통해 학습시켰다. 연구팀은 개발한 방법을 이용해 주요한 혈액 감염균을 신속하게 식별함으로써 실제 진단에도 응용될 가능성을 검증했다. 구체적으로 그람 음성 및 양성, 구균 및 간균을 모두 포함한 총 19가지 균종으로 혈액 감염 사례의 90% 이상의 원인이 되는 균들이다. 한 개의 병원균 혹은 병원균 덩어리를 측정한 단일 3차원 굴절률 영상에서는 약 82.5%의 정확도로 균종 판별이 가능했다. 연구팀은 또한 여러 영상을 확보할 수 있을 때 정확도가 증가해, 7개의 박테리아 영상이 확보된다면 99.9%의 정확도를 얻을 수 있었다. 연구진의 책임자이자 논문의 교신저자인 박용근 교수는 "홀로그래피 현미경의 세포 감별 능력을 인공지능으로 극대화해 감염 진단 기술로서의 가능성을 확인한 것이 의미ˮ라고 말했다. 제1 저자인 물리학과 김건 박사과정 학생은 "100,000분의 1 수준의 표본량으로도 질량 분석기의 균종 검출률과 비슷한 정확도를 얻었고 환자 시편에서 다양한 병원균을 식별하는 플랫폼 기술이 될 것으로 기대된다ˮ라고 덧붙였다. 이번 연구는 KAIST-삼성서울병원-토모큐브 팀의 수년간의 공동 연구를 통해 진행됐다. 물리학과 박용근 교수 연구팀의 기술에 다양한 기관의 경험과 비전을 반영함으로써 완성할 수 있었다. 삼성서울병원 진단검사의학과 이남용 교수, 진단검사의학과 허희재 교수, 감염내과 정두련 교수 연구팀, 서울성모병원 진단검사의학과 유인영 교수, 분당 차병원 응급의학과 김규석 교수, 우리 대학 나노과학기술대학원 정현정 교수 등 다양한 분야와 기관이 모여, 실험적 검증을 효과적으로 진행할 수 있었다. 또한 KAIST 교원 창업 기업인 ㈜토모큐브의 3차원 홀로그래피 기술 지원도 필수적인 역할을 했다. 한편 이번 연구는 한국연구재단 창의연구사업, 과학기술일자리진흥원의 지원을 받아 수행됐다.
2022.06.27
조회수 2090
리튬이온전지 충방전 과정을 나노스케일에서 영상화 성공
리튬이온전지는 스마트폰과 전기차 그리고 드론을 비롯한 각종 이동 수단에 필수적인 에너지 저장 매체로 사용되고 있다. 기후변화와 코로나 팬데믹이 키워드가 되는 시대가 도래하면서 급증하는 수요에 대응하기 위해 리튬이온전지의 에너지 용량, 충전 속도 등의 전기화학적 특성을 향상하려는 연구들이 이뤄지고 있지만, 기존의 전기화학 특성 평가 방법으로는 나노미터 수준의 미시세계에서 벌어지고 있는 현상들을 이해하기 어렵다. 따라서, 전기화학 특성에 대한 통합적인 이해를 위해 나노스케일 수준에서 리튬이온의 농도 및 전기전도도 분석 기술의 개발은 필수적이다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 독일의 아헨공과대학교 플로리안 하우센(Florian Hausen) 교수와 독일 뮌스터 대학교 카린 클라이너(Karin Kleiner) 교수와 협업하여 고용량 리튬이온배터리를 충‧방전할 때 리튬이온이 움직이는 모습과 그로 인해서 전자들이 움직이는 전도 경로 그리고 격자들의 움직임을 원자간력 현미경과 엑스레이 회절 및 흡수 패턴을 분석해 영상화하는 데 성공했다고 28일 밝혔다. 홍 교수 연구팀은 원자간력 현미경의 모드 중에서 전기화학적 변형 현미경(Electrochemical Strain Microscopy, 이하 ESM)과 전도성 원자간력 현미경(Conductive Atomic Force Microscopy, 이하 C-AFM)을 활용해, 친환경차 배터리에 적용되는 고용량 양극재인 NCM622 시료의 충방전상태(State of Charge, SOC)에 따른 리튬이온의 나노스케일 분포도를 영상화했으며, 이를 근단엑스선형광분광계(Near Edge X-ray Absorption Fluorescence Spectroscopy, NEXAFS)와 엑스선회절패턴(X-ray Diffraction Pattern, XRD pattern)과 비교 분석해 리튬이온이 양극재에 확산하여 들어갈 때 산소팔면체에 들어가면서 니켈과 산소의 결합이 이온 결합에서 공유결합으로 바뀌면서 전기전도도가 낮아지는 현상을 검증하고, 이를 ESM, C-AFM 영상과 비교하면서 상당한 상관관계가 있음을 밝혀냈다. 교신 저자인 홍승범 교수는 "배터리 소재 내에서 리튬이온의 확산을 영상화하고 이를 통해서 일어나는 현상들을 다중스케일에서 이해하는 것은 향후 신뢰성이 높고 수명이 긴 고속 충‧방전 배터리 소재를 디자인하는 데 있어 매우 중요하다ˮ라며 "향후 신소재 영상화 기술과 머신러닝 기술을 융합하는 것이 20년 걸리던 배터리 소재 개발기간을 5년 이내로 단축할 수 있을 것이다ˮ 라고 말했다. 신소재공학과 알비나 제티바예바(Albina Jetybayeva) 연구원이 제1 저자로 참여한 이번 연구는 국제 학술지 `ACS 어플라이드 에너지 머티리얼스 (ACS Applied Energy Materials)'에 게재됐다. (논문명: Unraveling the State of Charge-Dependent Electronic and Ionic Structure−Property Relationships in NCM622 Cells by Multiscale Characterization) 이번 연구는 KAIST 글로벌 특이점 사업과 한국연구재단의 거대과학연구개발사업의 지원을 받아 수행됐다.
2022.04.29
조회수 2641
형광 염색 없이 분자 정보를 보는 AI 현미경 개발
우리 대학 물리학과 박용근 석좌교수 연구팀이 형광 염색 없이 세포의 분자 정보를 볼 수 있는 인공지능 현미경 기술을 개발했다고 20일 밝혔다. 광학 현미경은 수백 년 전부터 현재에 이르기까지 생물학 및 의학에서 가장 중요하게 쓰이는 기술 중 하나로, 이미지 형성 원리에 따라 여러 형태로 발전해왔다. 최근 수십 년간 분자생물학이 눈부시게 발전하면서 세포 내의 특정 구조를 형광(fluorescence) 으로 표지하는 것이 가능해졌고, 이처럼 높은 생화학적 특이성(biochemical specificity) 덕분에 형광 현미경은 현재 가장 폭넓게 쓰이는 광학 현미경 기술이 됐다. 그러나 형광 현미경은 형광 표지 자체가 세포를 변형하는 것이기 때문에 세포에 부담을 주게 되고, 밝기와 세포독성, 안정성 문제 때문에 초고속 또는 장기간 측정이 힘들며, 제한된 색깔로 인해 다양한 구조를 동시에 보는 것이 어려운 근본적인 한계가 있다. 이와는 대조적으로, 각 물질과 빛의 상호작용을 결정하는 근본적인 특성인 굴절률(refractive index)을 이용해 아무런 염색을 하지 않아도 되는 현미경 기술 또한 꾸준히 발전해왔다. 굴절률로부터 파생되는 빛의 흡수, 위상차 등을 이용한 전통적인 현미경은 물론, 최근에는 굴절률 자체를 3차원 상에서 정량적으로 측정하는 다양한 홀로그래픽 현미경(holographic microscopy) 기술이 박용근 교수 연구팀에서 개발돼 상용화된 바 있다. 이러한 비표지(label-free) 현미경 기술은 형광 현미경과 비교해 여러 가지 장점을 갖고 있지만, 굴절률과 세포 내 구조들의 관계가 명확하지 않아 분자 특이성이 떨어진다는 단점이 있었다. 박용근 교수 연구팀에서는 2012년 초부터 조영주 졸업생(제1 저자, 물리학과·수리과학과 학사 11학번·KAIST 총장 장학생, 現 스탠퍼드대학교 응용물리학과 박사과정) 주도로 홀로그래픽 현미경 분야에 인공지능을 도입해 특이성 문제를 해결하려는 일련의 연구가 시작됐다. 우선 형태적으로는 비슷하나 생화학적인 구성에 차이가 있는 시료(여러 종의 박테리아, 다양한 분류의 백혈구 등)의 굴절률 영상은 사람 눈에는 비슷하게 보이는데, 흥미롭게도 인공지능은 이를 높은 정확도로 분류할 수 있음을 보였다(2013-2014년 KAIST 학부연구프로그램(URP) 이후, 2015년 Optics Express, 2017년 Science Advances, 2020년 ACS Nano 등 게재). 이러한 결과는 매우 다양한 생체 시료에서 일관되게 관찰됐고, 따라서 연구팀은 생화학적 특이성이 높은 정보가 굴절률의 공간 분포에 숨겨져 있다는 가설을 세웠다. 세포생물학 분야 최고 권위지인 `네이처 셀 바이올로지(Nature Cell Biology, IF 28.82)'에 12월 7일 발표된 이번 연구(논문명: Label-free multiplexed microtomography of endogenous subcellular dynamics using generalizable deep learning)에서, 연구팀은 홀로그래픽 현미경 영상으로부터 형광 현미경 영상을 직접 예측할 수 있음을 보임으로써 이 가설을 증명했다. 인공지능이 찾아낸 굴절률 공간 분포와 세포 내 주요 구조 간의 정량적인 관계를 이용해 굴절률의 공간 분포 해독이 가능해졌고, 놀랍게도 이러한 관계는 세포 종류와 관계없이 보존돼 있음을 확인했다. 이 과정에서 만들어진 `인공지능 현미경'은 홀로그래픽 현미경과 형광 현미경의 장점만을 갖는다. 즉, 형광 표지 없이 형광 현미경의 특이적인 영상을 얻을 수 있다. 따라서 자연 상태 그대로의 세포에서 동시에 수많은 종류의 구조를 3차원으로 볼 수 있으며, 밀리초(ms) 수준의 초고속 측정과 수십 일 수준의 장기간 측정이 가능해졌다. 더욱이 기존 데이터에 포함되지 않은 새로운 종류의 세포에도 즉시 적용이 가능하기에, 다양한 생물학 및 의학 연구에 응용이 가능할 것으로 기대된다. 이번 연구는 조영주 박사과정과 박용근 교수가 지난 10여 년간 발전시켜온 광학 및 인공지능 기술력 이외에도, 다학제적 접근과 KAIST 기술을 바탕으로 한 창업 덕분에 가능했다. 생명과학과 허원도 교수(공동 교신저자)와 박외선 박사(공동 제1 저자)가 오랜 기간 발전시켜온 분자생물학 및 형광 현미경 기술 덕분에 인공지능 학습에 필요한 데이터를 얻을 수 있었으며, 조영주 박사과정이 허원도 교수 연구팀에서 2015년 1년간 연구했던 경험 덕분에 구체적인 아이디어가 나오게 됐다. 또한 박용근 교수 연구팀 홀로그래픽 현미경 기술로 창업한 ㈜토모큐브를 통해 현미경 및 데이터 형식이 규격화돼 대규모 인공지능 학습이 용이했고, 이를 바탕으로 ㈜토모큐브 조형주 연구원(공동 제1 저자) 및 민현석 연구원(공동 교신저자) 등 인공지능 전문 인력이 합류하면서 최신 인공지능 기법들의 빠른 도입이 가능했다. 한편 이번 연구는 한국연구재단의 창의연구사업, 과학기술정보통신부의 정보통신방송 기술개발사업 (홀로그램핵심기술), 일자리진흥원의 연구장비개발 및 고도화지원사업, 한국보건산업진흥원의 보건의료기술 연구개발사업의 지원을 받아 수행됐다.
2021.12.20
조회수 3769
고체 전해질 내부 나노 단위 영상화 성공
오늘날 리튬이온전지는 휴대용 전자 장비와 전기차를 비롯한 각종 이동 수단에 필수적인 에너지 저장 매체로 사용되고 있다. 폭발적인 수요에 발맞춰 리튬이온전지의 에너지 용량, 충전 속도 등의 전기화학적 특성을 향상하려는 연구들이 가속화되고 있다. 그러나 기존의 전기화학 특성 평가 방법은 소재 혹은 소자 특성의 평균값을 측정하는 것에 집중되어 있기에, 나노미터 수준의 미시세계에서 벌어지고 있는 현상들을 이해하기에는 충분하지 않다. 따라서 전기화학 특성에 대한 통합적인 이해를 위해 미시적 수준에서 공간 분해능을 가진 분석 기술의 개발은 필수적이다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 원자간력 현미경(Atomic force microscope, AFM)의 한 모드인 전기화학 변위 현미경(Electrochemical strain microscopy, ESM)을 이용해 리튬이온전지 소재 내부의 이온 이동 특성을 나노미터 수준에서 정량적으로 측정하는 방법을 개발했다고 13일 밝혔다. 전기화학 변위 현미경은 나노 크기의 탐침에 전압을 가했을 때, 이온의 이동이 유발하는 시료 표면의 변형(displacement)을 측정하는 기술로서 이 변형을 발생시킨 이온의 양과 이온의 이동도 등을 간접적으로 측정할 수 있게 도와주는 기술이다. 홍 교수 연구팀은 비행시간형 2차 이온 질량 분석법(Time-of-flight secondary ion mass spectroscopy, ToF-SIMS)과 유도결합 플라즈마 분광분석기(Inductively coupled plasma optical emission spectrometer, ICP-OES)를 이용해 고체 전해질 시료의 깊이에 따른 이온 분포를 정량적으로 계산하고, 전기화학 변위 현미경 결과와의 캘리브레이션(calibration, 계측기 등의 눈금을 표준기 등을 사용해 바로잡는 일)에 성공했다. 이후, 연구진에 의해 고안된 직류 전압 펄스(pulse)를 시료의 깊이에 따라 가했으며, 전기장에 의해 표면으로 이동했다가 다시 내부 쪽으로 확산하는 이온을 전기화학 변위 현미경으로 영상화했다. 특히, 해당 펄스를 설계하는 과정에서 기존 전기화학 변위 현미경 사용에 대한 오류를 지적하고, 개선된 사용 방법에 대해 안내했다. 그 결과, 연구팀은 시간 및 거리의 함수로 이온의 이동 과정을 영상화하는 데 성공했으며, 이 결과를 이용해 깊이 및 이온의 농도에 따라 변화하는 확산계수 값을 정량적으로 보여줬다. 홍승범 교수는 "이온의 움직임을 나노미터 수준에서 정량적으로 관찰할 수 있는 방법론이 다양한 이온 거동의 메커니즘을 규명하는데 기여할 것ˮ이라며, "추후 다양한 실제 소자 구동 환경을 모사한 상태에서 이번 방법론을 적용하는 후속 연구를 진행할 것ˮ이라고 설명했다. 우리 대학 신소재공학과 박건 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 ACS 어플라이드 에너지 머티리얼스(ACS Applied Energy Materials)에 게재됐다. (논문명: Quantitative Measurement of Li-Ion Concentration and Diffusivity in Solid-State Electrolyte) 한편 이번 연구는 과학기술정보통신부·한국연구재단 거대과학연구개발사업 및 KAIST 글로벌특이점연구 지원으로 수행됐다.
2021.04.13
조회수 52188
그래핀 이용해 아쿠아리움처럼 액체 내 물질을 관찰하는 현미경 기술 개발
우리 대학 신소재공학과 육종민 교수 연구팀이 그래핀을 이용해 유체 내 물질들의 분자, 원자 단위 고해상도 영상을 획득할 수 있는 전자현미경 기술을 개발했다고 19일 밝혔다. 이번 연구 결과로 유체에서 일어나는 다양한 반응들의 분자 단위, 원자 단위에서의 관찰이 쉬워졌으며, 그동안 관찰하지 못했던 물질의 합성 과정을 밝히고 바이러스 및 단백질들의 상호작용과 같은 생명 현상 규명의 실마리를 제공할 수 있는 등 기초 과학 및 공학 분야에서 다양하게 활용될 수 있을 것으로 기대된다. 우리 대학 신소재공학과 구건모 박사, 박정재 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼스(Advanced Materials)'에 내지 삽화와 함께 1월 14일 字 게재됐다. (논문명 : Liquid-Flowing Graphene Chip-Based High-Resolution Electron Microscopy). 전자빔을 광원으로 이용하는 전자현미경 기술은 일반 광학현미경보다 약 수천 배가량 높은 배율에서 물질을 관찰할 수 있어, 나노미터(nm, 10억분의 1미터) 단위로 집적화되고 있는 반도체 공정에서 품질 관리와 코로나 바이러스와 같은 생체 분자의 구조를 규명하는 데 활발히 이용되고 있다. 그렇지만 전자현미경을 구동하기 위해서는 매우 높은 수준의 진공 상태가 필요하다. 진공에서 쉽게 증발하는 액체 샘플은 관찰하기가 힘들어 기존에는 액체 시료를 건조시키거나 시료를 급격히 냉동시키는 초저온 전자현미경 방식으로 관찰이 이뤄졌다. 하지만 이런 방식들은 시료가 정지된 상태에서 구조적인 정보만을 주기 때문에, 액상 전자현미경 기술과 같이 액체 내에서 일어나는 역동적인 현상을 관찰할 수 있는 기술에 관한 관심이 높아지고 있다. 전자현미경을 이용해 액체를 관찰하는 것은 아쿠아리움에서 물고기들을 관찰하는 것으로 비유할 수 있다. 물고기들을 선명하게 관찰하기 위해서는 높은 투과도를 가지고 수압을 견딜 수 있는 튼튼한 유리가 필요한 것처럼, 액상 투과전자현미경에서는 전자빔에 대해서 투명하며 높은 진공 상태를 견딜 수 있는 물질을 필요로 한다. 기존의 액상 전자현미경 기술은 약 50나노미터(nm) 두께의 질화 실리콘 막을 이용해 액체를 고진공으로부터 보호했지만, 이러한 막은 전자빔에 대해서 반투명하므로 물질을 흐릿하게 만들어 원자 단위의 관찰을 방해하고, 특히 단백질이나 바이러스와 같은 생체 분자들의 경우 명암을 높이는 염색 과정 없이는 쉽게 관찰할 수 없었다. 2012년 육 교수 연구팀은 이를 해결하기 위해 차세대 소재로 주목받고 있는 그래핀 두 층 사이에 액체를 가두는 그래핀 액상 셀 기술을 세계 최초로 도입했고, 이번 연구에서 이를 개선해 자유로운 액체 순환이 가능한 그래핀 아쿠아리움 전자현미경 이미징 플랫폼을 개발하는 데 성공했다. 연구팀이 투과 막으로 이용한 그래핀은 원자 단위의 두께를 가지고 강철보다 200배 높은 강도를 가지고 있다. 또한 연구팀은 자유로운 액체 순환과 교환을 위해 30~100나노미터(nm) 두께의 액상 수로를 가지는 구조체를 반도체 제작 공정인 리소그래피 공정으로 구현해 그래핀 액상 유동 칩을 제작했다. 연구팀의 그래핀 액상 유동 칩은 약 4기압에 달하는 압력 차를 견딜 수 있으며, 기존보다 20배 빠른 액체 유동 조건에서도 안정적인 작동이 가능하다. 또한 기존 막보다 100배 정도 얇은 그래핀은 전자빔에 대해 투명하기 때문에 이를 이용해 원자 단위에서 물질을 선명하게 관찰할 수 있으며, 박테리아 및 생체 분자를 염색 과정 없이 온전히 관찰할 수 있다. 연구팀이 개발한 그래핀 액상 유동 칩은 체내의 혈관과 같은 역할을 할 수 있으므로 코로나 바이러스가 어떻게 감염을 일으키는지, 알츠하이머와 같은 퇴행성 뇌 질환의 발병 원인으로 여겨지는 아밀로이드 섬유화가 어떻게 진행되는지 등과 같이 기존 기술로는 관찰할 수 없었던 현상들의 직접적인 관찰과 신약 개발에 도움을 줄 수 있을 것으로 기대된다. 육 교수는 "새로운 이미징 플랫폼의 개발은 과학 기술 발전의 토대가 되는 것으로, 액체 내 물질들을 분자 및 원자 단위로 관찰하면 자연의 가장 작은 단위에서 시작되는 다양한 현상들을 규명할 수 있으며, 이를 토대로 미지에 싸여있던 생명 현상의 비밀을 밝힐 수 있을 것으로 기대한다ˮ 라고 말했다. 한편 이번 연구는 삼성 미래기술 육성 센터의 지원을 받아 수행됐다.
2021.01.19
조회수 65910
암 진단에 필요한 새로운 형광 증폭 기술 개발
우리 대학 신소재공학과 장재범 교수 연구팀이 암 진단에 필요한 새로운 형광 신호 증폭 기술을 개발했다고 17일 밝혔다. 연구 결과는 국제 학술지인 영국왕립화학회(Royal Society of Chemistry)의 `나노스케일(Nanoscale)'誌 11월 13일 字에 게재됐다. (논문명: FRACTAL: Signal amplification of immunofluorescence via cyclic staining of target molecules) ※ 저자 정보: 조예린(신소재공학과 학사과정 학생, 제1 저자), 서준영(신소재공학과 박사과정 학생, 제2 저자), 장재범 교수(교신저자) 등 총 8명 최근 3D 전체 조직 영상화(이미징)를 가능하게 하는 생체조직 *팽창 기술(ExM) 및 투명화 기술(CLARITY, 3DISCO, CUBIC)은 복잡한 세포 간 상호작용 및 역할을 밝혀내는 핵심적인 역할을 하고 있다. 하지만 큰 부피 내부의 세포 변화를 관찰하기 위해서는 약한 형광 신호를 증폭해 높은 이미지 처리량을 갖는 기술이 필요하다. ※ 팽창 현미경 (Expansion Microscopy): 조직을 팽창시켜 일반 현미경으로 초고해상도를 얻을 수 있는 기술 ※ 조직 투명화 기술 (Tissue Clearing System): 빛의 산란을 최소화하고 투과도를 극대화하여 3D 전체 조직을 이미징하는 기술 지금까지 신호 증폭 기술은 다양한 화학 반응으로 개발돼왔는데, 이들 중 많은 기술은 단일 화학 반응을 이용하기 때문에 다중 표지 신호 증폭 영상화를 위해서는 단일 신호 증폭과 비활성화 과정을 채널별로 반복해야 하는 단점이 있고, 유전자(DNA) 기반의 신호 증폭 기법은 서로 다른 항체에 대한 유전 물질 분자 결합의 최적화 과정이 필요하므로 일반적인 생물 실험실에서 사용이 어렵다. 장재범 교수 연구팀은 이러한 문제점 개선을 위해 현재 상용화돼 있는 형광 분자가 표지된 항체를 사용해, 추가적인 최적화 과정이 필요 없는 신호 증폭 기술에 주목했다. 결과적으로 연구팀은 `프랙탈(FRACTAL, Fluorescence signal amplification via repetitive labeling of target molecules)'이라는 새로운 신호 증폭 기술을 개발했다. 프랙탈 기술은 항체 기반의 염색 방법으로, 신호 증폭 과정이 매우 간단하다는 특징이 있다. 이 기술은 신호 증폭을 위해 특수한 화학 물질을 필요로 하지 않으며, 형광 분자가 표지된 2차 항체의 반복적인 염색을 통해 형광 신호를 증폭시킨다. 이 기술은 한 종류의 1차 항체, 두 종류의 2차 항체, 총 세 종류의 항체를 이용하는 아주 간단한 기술이다. 신호 증폭 과정은 표적 단백질에 대한 1차 항체 및 첫 번째 2차 항체 염색으로 시작되며, 그다음으로 첫 번째 2차 항체에 결합하는 두 번째 2차 항체의 염색이 이뤄진다. 두 번째 2차 항체의 숙주(host)와 1차 항체의 숙주(host)는 같으며, 그다음 염색은 다시 두 번째 2차 항체에 결합하는 첫 번째 2차 항체의 염색으로 이어진다. 예를 들어 토끼의 1차 항체를 사용하고 당나귀의 항-토끼 2차 항체를 첫 번째 2차 항체로 사용했다면 토끼의 항-당나귀 2차 항체를 두 번째 2차 항체로 사용하게 된다. 그러면 두 번째 2차 항체에는 첫 번째 2차 항체가 결합하게 되고 그 반대의 경우로도 결합해 염색을 이어나가게 된다. 이 과정의 반복을 통해 연구팀은 기존 형광 신호를 9배 이상 증폭시켰으며, 이는 같은 밝기를 얻는 데 필요한 영상화 시간을 9배 이상 줄일 수 있다는 결과를 얻었다. 연구팀은 초고해상도 현미경(STORM) 분석을 통해 염색 횟수에 따라 항체가 균일한 결합 층을 형성하며 형광 신호를 증폭시키는 현상을 확인했다. 연구팀은 이 기술을 서로 다른 종으로부터 유래된 직교적인(orthogonal) 항체 쌍에 적용해, 동시 다중 표지 신호 증폭 영상화를 구현했으며, 팽창 현미경에도 적용해 팽창 후에도 높은 형광의 강도를 갖는 형광 신호 증폭 기술을 구현했다. 이 기술은 간단한 항체-항원 반응에 기반해 형광 신호를 증폭시키는 기술로, 영상을 통한 생체조직의 분석 및 치료기술 개발, 다지표 검사, 의료 및 신약 개발 분야에 이바지할 것으로 연구진은 기대하고 있다. 제1 저자인 조예린 학생은 "높은 이미지 처리량을 가진 이 기술은 디지털 병리 분야의 발전에 중추적인 영향을 미칠 것ˮ이며, "생체 내 다중지표에 대한 정보를 정밀하게 제공해 현대 의약 분야의 의약품 분석 및 치료 시스템에 직접적으로 응용될 수 있다ˮ라고 말했다. 장재범 교수도“이 기술은 환자 생체 검사 조직 내부에서 매우 중요하지만 낮은 수준으로 발현되는 바이오마커들을 정확하게 이미징 할 수 있게 해주기 때문에, 암 진단 및 면역 항암제 반응률 예측 등에 큰 도움이 될 것으로 기대된다.”라고 강조했다 한편 이번 연구는 과학기술정보통신부가 지원하는 뇌과학원천기술개발 과제와 KAIST 학부연구생프로그램(URP)의 지원을 받아 수행됐다.
2020.12.18
조회수 41893
열을 전기로 변환하는 하프호이즐러 물질의 나노구조 제어 성공
우리 대학 신소재공학과 최벽파 교수 연구팀이 경북대 이승훈 교수(신소재공학과) 연구팀과 공동연구를 통해 *준 안정상을 활용, *하프호이즐러 *열전재료의 나노구조를 제어하는 새로운 방법을 개발했다고 11일 밝혔다. ☞ 준 안정상(metastable phase): 어떤 물질의 가장 안정한 상(고체, 액체, 기체 등)은 아니지만 꽤나 안정하여 유지되는 상. ☞ 하프호이즐러(half-Heusler) 화합물: 금속 간 화합물(합금)의 일종으로 열전발전, 태양광 발전, 자성재료 등의 에너지 재료로 각광을 받는 물질. ☞ 열전발전: 온도 차에 의해 생긴 전위차를 이용해 전기를 생산하는 발전방식. 열전 소자는 열에너지를 전기로 직접적으로 변환시키는 에너지 소자다. 소자의 양단에 온도 차가 존재할 때 내부의 전하가 이동함으로써 전기를 발생시킨다. 좋은 열전재료가 되기 위해서는 소자 양단의 온도 차는 오래 유지돼야 하고 전하는 잘 이동해야 하므로 열전도도는 낮아야 하고 전기 전도도는 높아야 한다. 다양한 열전재료 중 하나인 하프호이즐러 물질은 폐열(에너지의 생산, 소비 과정에서 사용되지 못하고 버려지는 열)이 풍부하고 중온 영역(300~800℃)에서 높은 효율의 열전발전이 가능하다. 특히 열 안정성과 기계적 특성(강도)이 우수하고 높은 제벡 계수(온도 차이를 전력으로 변환하는 정도)와 출력 계수를 지니고 있는데 독성이 없고 지구에 풍부하게 매장된 원소로 이뤄져 있다. 하지만 상대적으로 높은 열전도도로 인해 낮은 열전성능을 갖는다는 점이 약점이다. 열 전도도를 낮추기 위해서는 포논(입자)의 산란을 극대화해야 하는데 이를 위해서는 서로 다른 상의 경계를 만든 후 나노 결정화를 통해 달성할 수 있다. 이 때문에 기존에는 하프호이즐러 합금을 제조한 뒤 물리적으로 파쇄해 나노분말을 제조하고 이를 가열해 굳히는 방법을 사용해왔다. 하지만 이 방법은 나노결정의 크기 제어는 물론 복잡한 미세구조 형성이 어렵기 때문에 열전도도를 획기적으로 감소시키기는 매우 어렵다. 최 교수 연구팀은 문제해결을 위해 준 안정상(비정질)의 결정화 방법을 활용했다. 준 안정상은 안정상에 비해 상대적으로 덜 안정한 상을 의미하는데 열처리를 통해 안정상(고체, 액체, 기체 등)으로 쉽게 상변화를 일으킬 수 있다. 이때, 열처리 온도에 따라 준 안정상(비정질)의 결정화 거동은 다양하게 변화하고 이를 이용해 나노결정의 크기와 상을 제어할 수 있다. 구체적으로 연구팀은 급속냉각 공정을 이용해 하프호이즐러(NbCo1.1Sn) 조성을 가진 비정질(준 안정상)을 제조한 뒤 비교적 저온에서 짧은 열처리를 통해 하프호이즐러 물질 내부에 풀호이즐러(NbCo2Sn) 나노 석출물이 존재하는 복잡한 나노구조를 만들었다. 최 교수 연구팀이 새로 개발한 이 방법은 기존의 방법과는 달리 고온에서의 장시간의 열처리가 필요 없으므로 쉽고 경제적이면서도 더욱 복잡하고 세밀한 나노구조의 형성이 가능하다. 연구팀은 특히 이번 연구에서 3차원 원자 탐침 현미경(Atom probe tomography)과 투과 전자 현미경(Transmission electron microscope)을 활용했는데 하프호이즐러 물질 내부에 존재하는 수 나노미터의 풀호이즐러 석출물의 존재를 규명하는 데도 성공했다. 최벽파 교수는 "이번 연구에서 새롭게 제안된 방법을 활용해 만든 열전재료는 기존 대비 복잡한 나노구조를 갖고 있어 3배 이상의 열전도도 감소 와 함께 열전발전 성능도 획기적으로 증가하는 효과가 있을 것으로 기대된다ˮ고 말했다. 신소재공학과 정찬원 박사과정이 제1 저자로 참여한 이번 연구는 국제학술지인 `나노 에너지(Nano Energy, IF: 16.602)' 10월 20일 字 온라인 판에 실렸다. (논문명: Tailoring nanostructured NbCoSn-based thermoelectric materials via crystallization of an amorphous precursor) 한편 이번 연구는 한국연구재단 과학기술 분야 기초연구사업인 기초연구실지원사업 (중온(300-800 ℃) 작동형 합금 기반 half-Heusler계 고성능/고강도 열전소재 개발)의 지원을 통해 수행됐다.
2020.11.12
조회수 26375
<<
첫번째페이지
<
이전 페이지
1
2
3
>
다음 페이지
>>
마지막 페이지 3