-
유독물질 뺀 초고해상도 QLED 신기술 개발
디스플레이 패널에 쓰이는 차세대 발광소재로 양자점(Quantum dot)이 각광을 받고 있다. 특히, 카드뮴이나 납과 같은 유독성 물질을 포함하지 않는 친환경 인듐 포스파이드(InP) 양자점이 주목을 받고 있으나 현재 기술로는 초고해상도 구현이 어려워 양자점 LED(QLED) 디스플레이 및 안경형 증강현실/가상현실 기기 적용에 있어 한계를 지닌다.
우리 대학 신소재공학과 조힘찬 교수 연구팀이 친환경 InP 양자점의 우수한 광학적 특성을 유지하며 초고해상도 패턴을 제작하는 신기술을 개발했다고 26일 밝혔다.
현재, 국제 유해물질 제한지침 (RoHS, Restriction of Hazardous Substances) 규정을 만족하지 못하는 제품은 많은 나라에서 판매가 금지되므로, 최근 많은 디스플레이 기업은 환경친화적인 특성을 갖춘 InP 양자점을 디스플레이에서의 빛 방출 소재로 채택하여 TV 등 중대형 디스플레이에 적용하기 시작하였다.
그러나 InP 양자점은 외부 환경에 매우 민감한 성질을 가지고 있어 픽셀을 만드는 패터닝 공정 적용시 소재의 광학적 특성이 크게 저하되는 단점이 있어 우수한 광학적 및 전기적 특성이 동시에 요구되는 QLED 디스플레이나, 기존 TV 대비 수십배의 초고해상도를 필요로 하는 안경형 증강현실/가상현실 기기 적용에 어려움이 있었다.
조 교수 연구팀은 자외선을 받으면 산을 발생시키는 광산 발생기(photoacid generator)의 원리를 활용하여 초미세 양자점 패턴을 제작하였다. 양자점이 자외선을 받은 경우, 생성된 산에 의해 양자점 표면이 변화하면서 자외선을 받지 않은 부분 대비 용해도 차이가 생겨 패턴 형성이 가능해지는 원리이다.
연구팀은 패터닝시 손상된 InP 양자점의 발광 효율을 획기적으로 높일 수 있는 양자점 표면 치료법을 개발하였다. 양자점에는 양자점을 둘러싸고 있는 표면 리간드(ligand)들이 있는데, 이 리간드들에 의해 양자점의 발광 효율이 큰 영향을 받는다. 연구팀은 친환경 InP 양자점의 표면 리간드를 개질할 수 있는 맞춤형 후처리 공정을 개발하였고, 이를 통해 최종적으로 높은 발광 효율을 가지는 1 마이크로미터(μm)급 초미세 양자점 패턴을 구현할 수 있었다. 이는 기존의 디스플레이 (TV, 스마트폰, 모니터 등)에서 일반적으로 요구되는 픽셀 너비와 비교했을 때 수십 배 작은 패턴으로 증강현실/가상현실 기기 적용 가능성을 크게 높였다고 할 수 있다.
또한 연구팀은 정밀한 분석을 통해 개발된 광산 발생기 기반의 패터닝 기술의 반응 원리를 규명했고, 개발된 기술이 양자점 LED나 대면적 공정에 쉽게 적용될 수 있음을 증명하였다.
조힘찬 교수는 “이번에 개발한 친환경 InP 양자점 패터닝 기술은 높은 발광 효율과 초고해상도 패턴 제작을 동시에 가능하게 하여 차세대 양자점 LED 기반 디스플레이, 증강현실 기기, 이미지 센서 등 다양한 산업에 실제로 적용될 수 있을 것으로 기대하고 있다”라고 언급했다.
KAIST 신소재공학과 이재환 석사과정 학생이 제1 저자로, 미국 시카고 대학교의 Dmitri V. Talapin 교수가 공동교신저자로, KAIST 생명화학공학과 이도창 교수 연구팀이 공동저자로 참여한 이번 연구는 국제 학술지 `에이씨에스 에너지 레터스 (ACS Energy Letters)' 에 출판됐다. (논문명 : Direct Optical Lithography of Colloidal InP-Based Quantum Dots with Ligand Pair Treatment)
한편 이번 연구는 한국연구재단 및 삼성전자, 중소벤처기업부 그리고 KAIST의 지원을 받아 수행됐다.
2023.09.26
조회수 418
-
생생한 가상현실 구현 패터닝 기술 개발
디스플레이 패널에 들어가는 수많은 픽셀은 빛을 낼 수 있는 발광 소재들을 고해상도로 패터닝(patterning) 함으로써 얻어진다. 특히, 증강현실/가상현실용 근안(near-eye) 디스플레이의 경우 우수한 화질을 얻기 위해서는 기존 디스플레이 이상의 초고해상도 픽셀 패턴이 반드시 필요하다.
우리 대학 신소재공학과 조힘찬 교수 연구팀(공동저자 강정구 교수 연구팀)이 발광성 나노소재의 높은 발광 효율을 유지하며 초고해상도 패턴을 제작하는 패터닝 기술을 개발했다고 17일 밝혔다.
높은 색 순도와 발광 효율로 인해 차세대 발광체로 주목받고 있는 양자점(퀀텀닷)이나 페로브스카이트 나노결정과 같은 용액공정용 나노소재들의 경우, 고유의 우수한 광학적 특성을 유지하면서 균일한 초고해상도 패턴을 제작하는 것이 어렵기 때문에 이를 극복할 수 있는 새로운 소재 및 공정 기술을 개발하는 것이 차세대 디스플레이 구현에 있어서의 필수 요소라고 할 수 있다.
조 교수 연구팀은 양자점과 페로브스카이트 나노결정이 가지는 강한 광촉매 특성을 활용하여, 양자점 또는 페로브스카이트 나노결정에 빛이 조사되었을 때 나노결정 리간드 사이에서 가교(crosslinking) 화학 반응이 쉽게 유도되도록 소재를 설계하였고, 이를 통해 발광성 나노소재의 고유한 광학적 특성을 완전히 보존할 수 있는 초고해상도 패터닝 기술을 개발했다.
연구팀은 해당 공정을 통해 560 나노미터(nm) 수준의 패턴 너비를 가지는 초고해상도(12,000 ppi급) 페로브스카이트 나노결정 패턴을 균일하게 제작할 수 있음을 보였다. 이는 증강현실/가상현실 디스플레이에서 일반적으로 요구되는 해상도(수천 ppi)를 훨씬 상회하는 값이다. 형성된 발광 나노소재 패턴은 물리적, 광학적 특성 측면에서 높은 균일도를 보였다.
또한 연구팀은 정밀한 분석을 통해 개발된 광촉매 패터닝 공정에서의 정확한 반응 메커니즘을 규명하였고, 이러한 패터닝 메커니즘이 양자점과 페로브스카이트 뿐만 아니라 발광성 고분자에까지 범용적으로 적용될 수 있는 높은 확장성을 가지는 기술이라는 것을 확인하였다. 더 나아가, 연구팀은 개발된 광촉매 패터닝 기술이 연속적인 다층 공정 및 발광 다이오드 소자 제작에 적용 가능하다는 것을 증명하여 높은 산업적 활용 가능성을 입증하였다.
조힘찬 교수는 “본 광촉매 패터닝 기술은 간단한 공정을 통해 다양한 발광 나노소재의 우수한 광학적 특성을 그대로 유지하면서도, 초고해상도 패터닝을 쉽게 가능하게 한다는 점에서 차세대 디스플레이, 이미지 센서 등 다양한 산업에서 유용하게 활용될 수 있을 것으로 기대하고 있다”라고 언급하였다.
신소재공학과 맹성규 석사과정 및 박선재 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스 (Science Advances)' 8월 9권 33호에 출판됐다. (논문명 : Direct photocatalytic patterning of colloidal emissive nanomaterials).
한편 이번 연구는 한국연구재단 및 삼성전자의 지원을 받아 수행됐다.
2023.08.17
조회수 1151
-
2.3초만에 고해상도 망막 3차원 이미징 최초 구현
망막의 세포 수준 해상도 이미징 기술은 질병의 조기진단과 망막질환에 대한 이해를 높이기 위해 필수적이다. 하지만, 복잡한 고가의 광학 시스템을 사용하고도 망막의 매우 좁은 영역과 단일 초점면에서 세포 수준 고해상도 이미징이 가능했던 기술을 뛰어넘어 간단한 표준적 광학 시스템을 사용하면서도 2.3초 이내에 한 번의 이미징으로 넓은 망막 영역의 3차원 모든 부분에서 세포 수준 고해상도 이미징을 제공하여 망막질환 임상 및 연구에 새로운 전기를 가져올 기술이 개발되어 화제다.
우리 대학 기계공학과/KI헬스사이언스연구소 오왕열 교수 연구팀이 세계 최초로 사람 망막의 넓은 영역에서 초점 위치뿐만이 아니라 초점에서 벗어난 위치에서도 세포 수준 고해상도 이미징이 가능한 기술을 개발했다고 3일 밝혔다.
KI헬스사이언스연구소 이병권 박사가 제1 저자로 참여한 이번 연구 결과는 융합연구분야 선도 저널인 스몰(Small, JIF 15.153) 3월호에 게재됐다. (논문명: Wide-Field Three-Dimensional Depth-Invariant Cellular-Resolution Imaging of the Human Retina.)
망막은 안구의 렌즈를 통해 이미징해야 하기 때문에 안구 렌즈의 수차(예, 난시)로 인해 고해상도 이미징이 어렵다. 기존에는 이를 극복하기 위해 안구 렌즈의 수차를 측정하는 광학 하드웨어와 이를 보정해 이미징 광을 주사하는 광학 하드웨어를 사용하는 적응광학(adaptive optics) 방법이 개발돼왔다. 하지만, 이러한 방법은 복잡하고 가격이 비싼 추가의 광학 하드웨어가 필요할 뿐만 아니라, 단일 초점면에서만 고해상도 영상을 얻을 수 있어, 3차원 고해상도 이미지를 얻기 위해서는 초점 위치를 바꿔가며 여러 깊이에서 반복적으로 이미징을 수행해야만 했다.
오왕열 교수 연구팀은 간단한 일반적인 광학계를 사용해 3차원 망막 영상을 한 번에 얻고, 이 영상 데이터에 존재하는 수차와 초점에서 벗어난 부분에서 영상이 흐려지는 디포커싱(defocusing)을 계산을 통해 제거하는 기술을 개발함으로써 이러한 한계를 극복했다. 또한 연구팀은 초고속 위상안정 3차원 OCT(Optical Coherence Tomography: 광간섭 단층촬영) 시스템을 함께 개발해 전산적 수차 및 디포커싱 제거 기술의 실제 응용 현장에서의 유용성을 확보했다.
오왕열 교수는 “전산적 수차 및 디포커싱 제거 기술이 적용되려면, 망막의 3차원 각 위치에서 산란돼 나온 빛의 세기는 물론 위상 값도 모두 정확히 알아야 한다”며 “넓은 3차원 영역을 고해상도로 이미징하려면 영상 데이터의 양(이미지를 구성하는 픽셀 수)이 매우 커지기 때문에, 초고속으로 3차원 영상 데이터를 획득할 수 있는 기술이 필수적이며, 이에 따라 초고속 위상안정 3차원 이미징 시스템이 반드시 필요하다”고 말했다.
새로 개발된 OCT 이미징 시스템은 기존 OCT 기술들의 위상 불안정 문제를 해결하면서도, 현재 가장 빠른 상용 망막 OCT 시스템보다 20배 이상 빠른 이미징 속도를 제공해, 3mm x 3mm 에 걸친 사람 망막의 3차원 영역을 세포 수준으로 촘촘하게 이미징한 위상안정 영상 데이터(약 100억 개의 3차원 화소(픽셀)로 구성)를 2.3초 만에 획득할 수 있게 했다.
오왕열 교수는 “현재 병원에서 사용되는 망막 OCT 시스템과 동일한 간단한 광학계를 사용하면서도, 피험자 망막의 다양한 깊이 위치에 존재하는 망막 신경섬유층, 광수용세포층 등 여러 층의 미세구조를 모두 세포수준의 해상도로 보여줄 수 있어, 실제 망막질환 임상 및 연구 현장에서 매우 유용하게 사용될 것” 이라고 강한 기대를 보였으며, “전산적 수차 및 디포커싱 제거 기술뿐만 아니라, 이 기술 적용에 필수적인 초고속 위상안정 OCT 기술 개발에 주도적인 역할을 한 이병권 박사의 기여가 절대적이었다”라며 공을 돌렸다.
한편 이번 연구는 한국연구재단의 중견연구자지원사업의 지원을 받아 수행됐다.
2023.05.03
조회수 1270
-
엑스선 현미경 해상도 한계 극복
엑스선 현미경은 대부분 물질을 투과하는 장점이 있어 흉부 엑스선이나 CT 촬영을 통해 신체 내부 장기와 골격을 비침습적으로 관찰할 수 있다. 최근에는 반도체, 배터리의 내부 구조를 나노스케일에서 정밀하게 관찰하기 위해 엑스선 영상 기술의 해상도를 높이려는 연구들이 활발하게 진행되고 있다.
우리 대학 물리학과 박용근 교수 연구팀이 포항가속기연구소 임준 박사 연구팀과 공동연구를 통해 기존 엑스선 현미경의 해상도 한계를 극복할 수 있는 원천 기술 개발에 성공했다고 12일(수) 밝혔다.
물리학과 이겨레 박사가 제1 저자로 참여한 이번 연구는 광학 및 광자학의 세계적인 학술지인 `라이트: 사이언스 앤 어플리케이션 (Light: Science and Application)' 4월 7일 字에 출판됐다. (논문명: Direct high-resolution X-ray imaging exploiting pseudorandomness).
엑스선 나노 현미경은 굴절 렌즈가 없어 렌즈 대용으로 동심원 회절판(zone plate)이라 불리는 원형 모양의 격자를 사용한다. 동심원 회절판을 사용하여 얻어지는 영상의 해상도는 회절판 나노구조의 제작 품질에 의해 결정된다. 이러한 나노구조를 제작하고 유지하는 것은 여러 가지 어려움이 있으며, 이러한 한계가 엑스선 현미경의 해상도 한계를 결정했다.
연구팀은 이 문제를 극복하기 위해 새로운 엑스선 나노 현미경 기술을 개발했다. 연구팀이 제안한 엑스선 렌즈는 얇은 텅스텐 필름에 수많은 구멍을 뚫은 형태로, 입사되는 엑스선을 회절시켜 무작위적인 회절 패턴을 생성한다. 연구팀은 역설적이게도 이러한 무작위적 회절 패턴 속에 시료의 고해상도 정보가 온전히 들어있음을 수학적으로 규명하였으며, 실제 그 시료 정보를 추출하여 영상화하는데 성공하였다.
이러한 무작위 회절의 수학적 성질을 활용한 영상기법은 지난 2016년 이겨레 박사와 박용근 교수가 세계 최초로 제안하고 가시광 대역에서 구현한 기술로서, 당시 네이처 커뮤니케이션즈紙 Lee, KyeoReh, and YongKeun Park. "Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor." Nature communications 7.1 (2016): 13359. 에 보고된 바 있다. 이번 연구는 해당 선행연구 결과를 엑스선 영역의 난제를 푸는 데 활용한 것이다.
구성된 시료의 영상의 해상도는 사용한 무작위 렌즈에 식각된 패턴의 크기와 직접적인 상관이 없다. 이러한 아이디어를 바탕으로 연구팀은 300 나노미터(nm) 지름의 원형 패턴으로 제작한 무작위 렌즈를 활용해 14 나노미터(nm) 해상도(대략 코로나 바이러스의 7분의 1 크기)의 영상을 취득하는 데 성공했다.
연구팀이 개발한 영상기술은 기존 동심원 회절판 제작상의 문제에 가로막혀 있던 엑스선 나노 현미경 해상도를 그 이상으로 끌어 올릴 수 있는 핵심 기반 기술이다.
제1 저자이자 공동교신저자인 우리 대학 물리학과 이겨레 박사는 “이번 연구에서는 14 나노미터(nm) 해상도에 그쳤지만, 차세대 엑스선 광원과 고성능 엑스선 검출기를 활용한다면, 기존 엑스선 나노 영상의 해상도를 넘어서 전자현미경의 해상도 수준인 1 나노미터 부근까지 근접할 수 있을 것이라 예상한다”라며“전자현미경과는 달리 엑스선은 시료를 훼손하지 않으면서 내부 구조를 관찰할 수 있으므로, 반도체 검수와 같은 비침습적 나노구조 관찰에 새로운 표준을 제시할 수 있을 것이다”라고 말했다.
공동교신저자인 포항가속기연구소 임준 박사는 “같은 맥락에서, 개발된 영상기술은 충북 오창에 신설되는 4세대 다목적방사광가속기에서 크게 성능이 증대될 수 있을 것으로 기대한다”라고 말했다.
이번 연구는 한국연구재단 리더연구사업과 세종과학펠로우십의 지원을 받아 수행됐다.
2023.04.12
조회수 1725
-
발열 40% 낮춘 초고해상도 마이크로 LED 기술 구현
디지털화된 현대인 생활 속에는 웨어러블, 롤러블 디스플레이 등 다양한 형태의 미래 디스플레이가 요구되는데 특히 증강현실 및 가상현실을 위한 스마트 글라스 등 디바이스의 경우에 완벽하게 유저들을 몰입시키는데 요구되는 4K 이상의 해상도가 필요하다. 하지만 디바이스에 요구되는 작은 소비전력 및 제한된 면적에 많은 픽셀을 구현해야 하는 기술적 한계에 봉착하여 완벽하게 구현되지 못하고 있는 실정이다.
우리 대학 전기및전자공학부 김상현 교수 연구팀이 소자의 크기가 마이크로미터(μm, 백만분의 1미터) 정도의 크기를 갖는 마이크로 LED의 소형화될 때 소자 효율이 저하되는 현상을 재규명하고 이를 에피택시 구조 변경으로 근본적인 해결이 가능함을 제시했다고 22일 밝혔다.
에피택시 기술이란 마이크로 LED로 사용되고 있는 초순수 규소 (Silicon) 혹은 사파이어 (Sapphire) 기판을 매개체로 삼아 그 위에 발광체로 쓰이는 질화갈륨 결정체를 쌓아 올리는 공정을 말한다.
마이크로 LED는 OLED 대비 우수한 밝기, 명암비, 수명이라는 장점이 있어 활발히 연구되고 있으며, 삼성전자는 지난 2018년에 ‘The Wall’이라는 마이크로 LED를 탑재한 제품을 상용화했고, 애플은 2025년에 마이크로 LED를 탑재한 제품이 상용화될 것이라는 전망이 있다.
마이크로 LED를 제작하기 위해선 웨이퍼 위에 성장된 에피택시 구조를 식각 공정을 통해 원기둥 혹은 직육면체의 모양으로 깎아서 픽셀들을 형성하는데, 이 식각 과정에는 플라즈마 기반의 공정이 동반된다. 그러나, 이러한 플라즈마들은 픽셀 형성 과정에서 픽셀의 측면에 결함들을 발생시킨다. 따라서, 픽셀 사이즈가 작아지고 해상도가 높아질수록 픽셀의 표면적 대 부피의 비율이 상승해 공정 중 발생하는 소자 측면 결함이 마이크로 LED의 소자 효율을 더 크게 감소시킨다. 이에 따라, 측면 결함을 완화 혹은 제거하는 것에 많이 연구가 진행됐지만 이러한 방식은 에피택시 구조를 성장한 뒤 후공정으로 진행해야 하는 만큼 개선의 정도에 한계가 존재한다.
연구팀은 마이크로 LED 소자 동작 시 에피택시 구조에 따라 마이크로 LED의 측벽으로 이동하는 전류의 차이가 발생한다는 것을 규명했고, 이를 기반으로 측벽 결함에 민감하지 않는 구조를 설계하여 마이크로 LED 소자 소형화에 따른 효율 저하 문제를 해결하였다. 또한, 제시된 구조는 디스플레이 구동 시 발생하게 되는 열을 기존 대비 40% 정도 낮출 수 있어 초고해상도 마이크로 LED 디스플레이 상용화를 위한 연구로써 큰 의미를 갖는다.
우리 대학 전기및전자공학부 김상현 교수 연구팀의 백우진 박사과정이 제 1 저자로 주도하고 김상현 교수와 충북대학교 금대명 교수(KAIST 박사 후 연구원 재직 당시) 가 교신저자로 지도한 이번 연구는 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 3월 17일 字 출판됐다 (논문명: Ultra-Low-Current Driven InGaN Blue Micro Light-Emitting Diodes for Electrically Efficient and Self-Heating Relaxed Microdisplay).
김상현 교수는 “이번 기술 개발은 마이크로LED의 소형화의 걸림돌이었던 효율 저하의 원인을 규명하고 이를 에피택시 구조의 설계로 해결한 데에 큰 의미가 있고 앞으로 초고해상도 디스플레이에 활용될 것이 기대된다”라고 말했다.
한편 이번 연구는 삼성미래기술육성센터의 지원을 받아 수행됐다.
2023.03.22
조회수 2240
-
머리카락 굵기의 1/100보다 작은 초고해상도 디스플레이 픽셀 구현 기술 개발
초고해상도 디스플레이는 가상 현실(VR), 증강 현실(AR), 스마트 워치 등의 차세대 전자제품 개발에 필수적인 요소로, 헤드 마운트 디스플레이 방식 뿐 아니라 스마트 글라스, 스마트 렌즈 등에도 적용이 가능하다. 이번 연구를 통해 개발된 기술은 이러한 차세대 초고해상도 디스플레이나 다양한 초소형 광전자 소자를 만드는 데 활용될 수 있을 것으로 기대된다.
우리 대학 물리학과 조용훈 교수 연구팀이 집속 이온 빔을 이용하여 평균 머리카락 굵기(약 100 마이크론)의 100분의 1보다도 작은 0.5 마이크론 스케일의 픽셀을 구현할 수 있는 초고해상도 발광 다이오드 (LED) 디스플레이 핵심 기술을 개발했다고 22일 밝혔다.
현재 초고해상도 LED 디스플레이의 픽셀화는 보통 픽셀 주변의 영역을 물리적으로 깎아내는 식각 방법을 사용하는데, 주변에 여러 결함이 발생하여 픽셀이 작아질수록 누설전류가 증가하고 발광 효율이 떨어지는 부작용이 있다. 또한 픽셀화를 위한 패터닝 및 누설전류를 막기 위한 후공정 과정 등 여러 복합한 공정이 필요하다.
조용훈 교수 연구팀은 집속 이온 빔을 이용해 복잡한 전, 후 공정 없이도 마이크로 스케일 이하의 크기까지 픽셀을 만들 수 있는 기술을 개발했다. 해당 방법은 집속 이온 빔을 약하게 제어하여 물질 표면에 어떤 구조적 변형을 일으키지 않고, 발광하는 픽셀 모양을 자유자재로 설정할 수 있다는 장점이 있다.
집속 이온 빔 기술은 재료공학이나 생물학 등의 분야에서 초고배율 이미징이나 나노 구조체 제작 등에 널리 쓰여 왔다. 그러나, LED와 같은 발광체 위에 집속 이온 빔을 사용하면 빔을 맞은 부분과 그 주변 영역의 발광이 급격히 감소하기 때문에 나노 발광 구조를 제작하는 데 장벽으로 작용되어 왔다. 이에 조용훈 교수 연구팀은 이러한 문제들을 역발상으로 이용하게 되면 서브 마이크론 (sub-micron) 스케일의 초미세 픽셀화 방식에 활용할 수 있다는 점을 착안했다.
연구팀은 표면이 깎이지 않을 정도로 세기가 약화된 집속 이온 빔을 사용했는데, 집속 이온 빔을 맞은 부분에 발광이 급격히 줄어들 뿐만 아니라 국소적인 저항도 크게 증가함을 알아내었다. 이로 인해 LED 표면을 평평하게 유지되면서도 집속 이온 빔을 맞은 부분은 광학적 및 전기적으로 격리가 되어 개별적으로 작동을 할 수 있는 픽셀화가 가능하게 된다.
연구를 주도한 조용훈 교수는 “집속 이온 빔을 이용해 복잡한 공정이 없이도 서브 마이크론 스케일의 초소형 픽셀을 만들 수 있는 기술을 새롭게 개발했고, 이는 차세대 초고해상도 디스플레이와 나노 광전소자에 응용될 수 있는 기반 기술이 될 것” 이라고 말했다.
물리학과 문지환 석사와 김바울 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 한국연구재단의 중견연구자지원사업 및 정보통신기획평가원의 지원을 받아 수행됐으며, 재료 과학 분야의 세계적 학술지인 ‘어드밴스드 머터리얼즈(Advanced Materials)’에 2월 13일 字에 온라인 출간되었고, 다음 오프라인 출간호의 내부 표지로도 선정됐다. (논문명: Electrically Driven Sub-Micron Light-Emitting Diode Arrays Using Maskless and Etching-Free Pixelation)
2023.02.22
조회수 2155
-
무한대 화소 수준의 초고해상도 AR/VR 디스플레이 기술 개발
우리 대학 전기및전자공학부 김상현 교수 연구팀이 *모놀리식 3차원 집적의 장점을 활용한 1,600PPI*에 상응하는 마이크로LED 디스플레이를 구현하는 데 성공했다고 29일 밝혔다. 1,600 PPI는 초고해상도 증강현실(AR)/가상현실(VR) 디스플레이에 적용 가능한 해상도로써 2020년 출시된 오큘러스(Oculus) 社(現 메타(Meta))의 메타 퀘스트 2(Meta quest 2, 442 PPI)의 3.6배에 해당하는 디스플레이 해상도다.
☞ 모놀리식 3차원 집적: 하부 소자 공정 후, 상부의 박막층을 형성하고 상부 소자 공정을 순차적으로 진행함으로써 상하부 소자 간의 정렬도를 극대화할 수 있는 기술로 궁극적 3차원 집적 기술로 불린다.
☞ PPI: Pixel per Inch. 디스플레이에서 1인치에 포함되는 픽셀의 갯수
전기및전자공학부 박주혁 박사과정과 금대명 박사가 제1 저자로 주도하고 백우진 박사과정과 대만의 제스퍼 디스플레이(Jasper Display)의 존슨 쉬(Johnson Shieh) 박사와 협업으로 진행한 이번 연구는 반도체 올림픽이라 불리는 하와이 호놀롤루에서 열린 `VLSI 기술 & 회로 심포지엄 (2022 IEEE Symposium on VLSI Technology & Circuits)'에서 지난 6월 16일에 발표됐다. (논문명 : Monolithic 3D sequential integration realizing 1600-PPI red micro-LED display on Si CMOS driver IC)
VLSI 기술 심포지엄은 국제전자소자학회(International Electron Device Meetings, IEDM)와 더불어 대학 논문의 채택 비율이 25%가 되지 않는 저명한 반도체 소자 분야 최고 권위 학회다.
최근 디스플레이 분야는 각종 TV, 모니터 및 모바일 기기뿐만 아니라 스마트 워치, 스마트 글라스 등의 웨어러블 디바이스까지 그 응용처가 크게 확장됐다. 이처럼 디스플레이의 활용이 점차 다양화되고 고도화됨에 따라 요구되는 픽셀의 크기가 점점 작아지고 있는데, 특히 증강현실(AR)/가상현실(VR) 스마트 글라스 등과 같이 사람의 눈과 매우 가까운 거리를 유지하는 디스플레이의 경우 *픽셀화가 없는 완벽한 이미지의 구현을 위해서는 4K 이상의 고해상도가 요구된다.
☞ 픽셀화(Pixelation): 컴퓨터 그래픽에서 비트맵을 구성하는 작은 단색 정사각형 디스플레이 요소인 개별 픽셀이 보이는 현상.
앞서 언급한 초고해상도 디스플레이를 구현하기 위한 차세대 디스플레이 소자로서 무기물 기반의 인듐갈륨나이트라이드/갈륨나이트라이드(InGaN/GaN), 혹은 알루미늄 갈륨 인듐 인화물/갈륨 인듐 인화물(AlGaInP/GaInP)로 대표되는 3-5(III-V)족 화합물 반도체를 활용한 마이크로 LED 소자가 핵심 소재 및 부품으로써 주목받고 있다. 마이크로 LED는 현재 TV, 모바일 기기에 많이 사용되고 있는 OLED, LCD 디스플레이에 비해 높은 휘도와 명암비, 긴 픽셀 수명 등의 장점이 있어 차세대 디스플레이 소자로서 장점이 뚜렷하다.
☞ III-V 화합물 반도체: 주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체로 전하 수송 특성 및 광 특성이 매우 우수한 소재.
하지만 무기물 기반 마이크로 LED를 활용해 디스플레이를 제작하기 위해서는 적색, 청색, 녹색의 각 색상의 픽셀을 각각의 기판에서 분리해 디스플레이 패널로 옮기는 패키징 작업이 필수적이다.
기존에 사용돼온 픽앤플레이스(Pick-and-place) 방법은 각각의 픽셀을 일일이 기계적으로 옮겨서 디스플레이 패널에 결합하는 방법으로 픽셀의 크기가 수십 마이크로미터 미만 수준으로 작아지게 되면 기계적인 정렬 정밀도가 저하되고 전사 수율이 감소해 초고해상도 디스플레이에는 적용이 어려울 것이라는 평가를 받고 있다.
연구팀은 이러한 문제의 해결을 위해 디스플레이 구동용 규소 상보적 금속산화물 반도체(이하 Si CMOS) 회로 기판 위에 적색 발광용 LED를 모놀리식 3차원 집적하는 방식을 적용했다. 위 방식은 Si CMOS 회로 위에 마이크로 LED 필름층을 먼저 웨이퍼 본딩을 통해 전사한 뒤, 포토리소그래피 공정으로 픽셀을 구현하는 방법으로, 기계적 픽셀 전사 공정이 제외된다. 이후 연구팀은 Si CMOS 회로상에서 상단에서 하단 방향으로(Top-down) 연속적인 반도체 공정 과정을 통해 고해상도 디스플레이 데모에 성공했다.
이 과정에서 연구팀은 조명용으로 활용돼왔던 무기물 기반 LED 반도체가 아닌 디스플레이용 LED 반도체층을 설계해 발광을 위한 활성층의 두께를 기존의 1/3로 감소시켜, 픽셀 형성에 필요한 식각 공정의 난도를 크게 낮추어 이번 연구성과를 얻어냈다.
또한, 연구팀은 하부 디스플레이 구동 회로의 성능 저하 방지를 위해 350oC 이하에서 상부 III-V 소자를 집적하는 웨이퍼 본딩 등의 초저온 공정을 활용해 상부 소자 집적 후에도 하부 드라이버 IC(Driver IC)의 성능을 그대로 유지할 수 있었다.
이번 연구 결과는 적색 마이크로 LED를 3차원 적층 방식으로 집적해 세계적인 수준의 해상도인 1,600 PPI 구현에 성공한 연구로서 연구에서 활용된 모놀리식 3차원 집적에 관한 연구 결과는 차세대 초고해상도 디스플레이 구현을 위한 좋은 가이드가 될 것으로 예상된다.
김상현 교수는 "향후 유사 공정을 확대 적용해 적색, 녹색, 청색이 모두 포함된 풀 컬러 디스플레이 제작도 가능할 것으로 생각한다ˮ라고 말했다.
한편 이번 연구는 삼성 미래기술육성센터의 지원을 받아 수행했다.
2022.07.29
조회수 3570
-
한컴인스페이스와 지구관측 위성 영상 분석 인공지능 기술 협력
우리 대학 전기및전자공학부 김문철 교수 연구팀이 지난 5월 26일 국내 최초 민간 초소형 위성인 세종 1호를 발사한 한글과컴퓨터그룹의 계열사인 한컴인스페이스(대표이사 최명진)와 위성 영상정보제공 서비스 향상을 위한 협력 연구체계를 구축하는 협약을 19일 체결했다.
전기및전자공학부 김문철 교수는 세계 최고 수준의 위성 영상 해상도 향상(초해상화)기술을 보유하고 있어, 한컴인스페이스와 기술협력체계를 구축하고 세종 1호의 해상도를 2배 이상 향상할 수 있는 기술 개발에 착수한다.
민간 초소형 위성인 세종 1호 위성은 5m 해상도의 다중밴드 위성으로 농업, 산림 등 다양한 분야에서 위성영상 및 분석정보를 제공할 수 있다. 한컴인스페이스는 더 나아가 고화질 영상정보가 필요한 응용을 위해 인공지능 기술로 영상의 해상도 품질을 향상시킨다.
초해상화 기술은 영상정보를 촬영하는 플랫폼의 하드웨어적 한계를 극복하고 컴퓨터비전, 인공지능 기술을 이용해 원본영상의 품질을 향상할 수 있는 기술이다. 해외의 대표적인 상업위성정보 서비스 업체인 `플래닛 랩스(Planet Labs)'는 다수의 초소형 위성을 운영하고 있으며, 초소형 위성의 한계로 제한된 관측정보의 해상도 향상을 위해 초해상화 기술을 적용해 서비스 중이다.
최명진 한컴인스페이스 대표는 "이번 기술협력은 세종 1호 뿐만 아니라 향후 발사 예정인 후속 위성의 영상 품질이 향상될 것ˮ이라며 "이를 통해 최초 사업 목표였던 농림, 산림분야 뿐만 아니라, 초고해상도의 위성정보가 필요한 다양한 사용자를 대상으로 서비스영역을 확장할 예정ˮ이라고 밝혔다. 또한 "김문철 교수가 보유한 최고 수준의 전천후 관측 영상 레이더(이하 SAR) 위성영상 객체 탐지 분석 기술을 적용해 민간뿐만 아니라 군의 수요를 만족할 수 있는 다종영상정보의 분석, 서비스 체계의 완비를 목표로 한다ˮ고 강조했다.
김문철 교수는 "지난 6월 누리호 발사 성공으로 향후 많은 초소형 위성들이 우리 기술로 발사돼 지구궤도를 돌며 엄청난 양의 지상 영상 정보를 획득할 것ˮ이라며 "이번 기술협력을 통해 지금까지 연구해왔던 세계 최고 수준의 위성 영상 초해상도 및 SAR 영상 분석을 위한 인공지능 기술 등을 상용화하는 데 최선을 다할 것ˮ이라고 밝혔다. 또한 “최근 우리나라 인접국들에서 위성 광학/SAR 영상 분석 관련 인공지능 기술들이 매우 빠른 속도로 개발되고 있고, 우리나라는 이들 국가를 능가하는 세계 최고 수준의 기술 개발을 통해 지피지기(知彼知己)할 수 있는 능력을 확보해 주변국들의 위협에 대비할 수 있는 힘을 키워야 한다ˮ고 강조했다.
김문철 교수는 세계 최고 인공지능/컴퓨터비전 국제학술대회인 국제 컴퓨터비전 및 패턴인식 학술대회(CVPR) 및 국제 컴퓨터비전 학회(ICCV)의 메인 프로그램에서 약 3% 내외 수준에서 선별하는 우수 구두 논문으로 발표된 위성 및 자연 영상 영상 초해상화 기술들을 보유하고 있으며, SAR 영상 표적 탐지 및 식별을 위한 딥러닝 기술, SAR 영상 표적 자세 추정 딥러닝 기술, SAR 영상을 광학 영상으로 변환하는 딥러닝 기술 등을 해당 분야 최고 국제 저널에 관련 연구성과들을 발표해 오고 있어 기술력을 인정받고 있다.
2022.07.21
조회수 2510
-
해상도 높인 초박형 4D 카메라 개발
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 금속 나노 광 흡수층을 통해 고해상도 4D 영상 구현이 가능한 초박형 라이트필드 카메라를 개발했다고 4일 밝혔다.
`라이트필드 카메라'는 곤충의 시각 구조에서 발견되는 형태에 착안해 미세렌즈와 대물렌즈를 결합한 진보된 형태의 카메라다. 한 번의 2차원 촬영으로 빛의 공간 뿐만 아니라 방향까지 4차원 정보를 동시에 획득한다. 그러나 기존 라이트필드 카메라는 미세렌즈 배열의 *광학 크로스토크(Optical crosstalk)로 인한 해상도 저하와 대물렌즈의 위치로 인한 크기의 한계가 존재한다.
☞ 광학 크로스토크(Optical Crosstalk): 어떤 통신회선의 전기 신호가 다른 통신회선과 전자기적으로 결합해 혼선을 일으키는 통신 용어를 크로스토크라고 하며, 광학에서는 한 렌즈를 통과한 빛이 다른 렌즈로부터 들어온 빛과 겹쳐 생기는 현상으로 영상이 중첩되어 촬영되는 것을 의미한다.
연구팀이 개발한 `4D 카메라'는 나노 두께의 광 흡수 구조를 미세렌즈 배열(Microlens arrays) 사이에 삽입해 대비도 및 해상도를 높였으며, 기존의 카메라가 가지는 외부 광원, 추가 센서 부착의 한계를 극복할 수 있다. 이러한 특징을 이용해 의료영상, 생체인식, 모바일 카메라 또는 다양한 가상현실/증강현실 카메라 분야에 적용 가능할 것으로 기대된다.
연구팀은 미세렌즈 배열의 광학 크로스토크를 제거하기 위해 200나노미터(nm) 두께 수준의 금속-유전체-금속 박막으로 이루어진 광 흡수층을 렌즈 사이에 배치하고, 대물렌즈와 미세렌즈 사이의 간격을 일정 수준으로 줄여 초박형 라이트필드 카메라를 개발하는 데 성공했다.
높은 광학적 손실성과 낮은 분산성을 갖는 크로뮴(Cr) 금속과 높은 투과율을 갖는 유리층을 나노미터 두께로 적층한 구조(Cr–SiO2–Cr)는 가시광선 영역의 빛을 완전히 흡수할 수 있다. 나노 광 흡수층을 미세렌즈 배열 사이에 배치해 미세렌즈들 사이의 광학 크로스토크를 제거하고 고 대비 및 고해상도 3차원 영상을 획득하는 데 도움을 준다.
연구팀은 광 흡수 구조를 갖는 미세렌즈 배열을 포토리소그래피(Photolithography), 리프트 오프(Lift-off), 열 재유동(Thermal reflow) 공정을 통해 양산 제작했다. 또한, 라이트필드 카메라의 전체 두께를 최소화하기 위해 미세렌즈의 방향을 이미지센서 방향의 역방향으로 배치하고 대물렌즈와 미세렌즈 사이 거리를 2.1mm 수준으로 줄여, 전체 5.1mm의 두께를 갖는다. 이는 현재까지 개발된 라이트필드 카메라 중 가장 얇은 두께다.
나노 광 흡수 구조를 갖는 미세렌즈에 의해 이미지센서에 기록되는 원시 영상은 기존 미세렌즈를 통한 영상에 비해 높은 대비도와 해상도를 가지며, 연구팀은 이를 영상처리 기법을 통해 시점 영상 및 3차원 영상으로 재구성했을 때 향상된 정확도를 가짐을 확인했다.
정기훈 교수는 "초박형이면서 고해상도의 라이트필드 카메라를 제작하는 새로운 방법을 제시했다ˮ며 "이 카메라는 생체인식, 의료 내시경, 휴대폰 카메라와 같이 다시점(Multi-view), 재초점(Refocusing)을 요구하는 초소형 영상장치로 통합돼, 초소형 4D 카메라의 새로운 플랫폼으로 활용될 것ˮ이라고 말했다.
우리 대학 바이오및뇌공학과 배상인 박사과정이 주도한 이번 연구 결과는 국제 학술지 `어드밴스드 옵티컬 머티리얼즈(Advanced Optical Materials)'에 1월 20일 字 게재됐다. (논문명: High Contrast Ultrathin Light-field Camera using inverted Microlens arrays with Metal-Insulator-Metal Optical Absorber)
한편 이번 연구는 과학기술정보통신부의 개인연구지원사업, 산업 통산 자원부의 기술혁신프로그램, 보건복지부의 보건의료기술연구개발사업으로 수행됐다.
2021.02.04
조회수 72913
-
100배 이상 해상도 높인 차세대 퀀텀닷 프린팅 기술 개발
우리 대학 신소재공학과 정연식 교수 · 전덕영 명예교수 공동 연구팀이 차세대 퀀텀닷 LED(QLED) 기반 디스플레이 실현에 핵심적인 기술인 풀 컬러(적·녹·청) 퀀텀닷 패터닝 프린팅 기술 개발에 성공했다고 6일 밝혔다.
퀀텀닷이란 별도의 장치가 없어도 크기와 전압에 따라 스스로 다양한 빛을 내는 수 나노미터(1 나노미터는 100만분의 1 밀리미터) 크기의 반도체 입자다.
연구팀은 풀 컬러 퀀텀닷 배열의 해상도를 최대 14,000ppi(인치당 픽셀 수) 까지 구현하는데 성공했다. 이 해상도는 현재 8K 디스플레이의 해상도인 117ppi 보다 약 100배 이상에 달한다. 연구팀은 또 기존 퀀텀닷 나노 패턴 구현 방법과는 원리가 다른 초 저압 전사 프린팅 방법을 세계 최초로 개발해, 패턴의 해상도와 프린팅 수율 및 퀀텀닷 발광소자 성능을 극대화하는 데도 성공했다.
우리 대학 신소재공학과 남태원 박사과정이 제1 저자로, 김무현 박사과정이 제2 저자로 참여한 이번 연구는 국제학술지 `네이처 커뮤니케이션스 (Nature Communications)' 6월 16일 字 온라인판에 게재됐다. (논문명: Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution)
작년 10월 삼성디스플레이가 퀀텀닷 중심의 차세대 디스플레이 양산라인 구축 및 기술개발에 2025년까지 약 13조 원 규모의 투자계획을 발표하는 등 이제 퀀텀닷 소재는 디스플레이용 핵심 소재로 부상하고 있다. 하지만 퀀텀닷 소재는 OLED 발광 소재와는 달리 용매에 녹아 분산돼 있는 형태로 존재하기 때문에 기존 디스플레이 패터닝 기술을 적용하기 어려웠다. 이를 해결하기 위해 잉크젯 프린팅이나 리소그래피와 같은 공정을 적용하고 있지만, 양산성 및 해상도 측면에서 제한적이거나 공정 과정 중에 퀀텀닷의 효율이 크게 떨어지는 문제가 발생한다.
연구팀은 이런 문제해결을 위해 퀀텀닷의 용매 성분을 미세하게 조절해 수 나노미터에서 수천 나노미터급 주형에 선택적으로 스스로 조립하는 원리에 착안해 적용했다. 또한 조립된 퀀텀닷 미세 패턴을 분리한 후, 초 저압 방식으로 프린팅하는 기술을 개발해 풀 컬러 나노미터급 패턴을 100%에 달하는 수율로 구현했다. 특히 QLED용 퀀텀닷 패턴은 극도로 얇아서 외부 압력에 매우 민감하기 때문에 초 저압 전사 프린팅 기술을 활용해 패턴의 손상을 방지했는데 그 결과 QLED 소자의 성능이 기존 전사 프린팅 방식 대비 약 7배나 증가하는 결과를 확인했다.
연구팀 관계자는 "이번 연구 결과를 활용할 경우 적·녹·청 퀀텀닷 픽셀이 개별적으로 발광할 수 있는 초고해상도를 지닌 차세대 능동형 퀀텀닷 LED (Active Matrix QLED) 디스플레이 구현도 가능할 것ˮ이라고 내다봤다. 정연식 교수는 특히 "단일 퀀텀닷 크기를 갖는 극한 해상도 수준의 패턴도 구현이 가능해서 차세대 디스플레이 분야만 아니라 높은 민감도를 갖는 센서나 광학 소자로의 응용까지 기대된다ˮ라고 말했다.
한편, 이번 연구는 과학기술정보통신부 한국연구재단이 추진하는 미래 소재 디스커버리 사업(단장 최성율)의 지원을 받아 수행됐다.
2020.07.06
조회수 15126
-
초저조도/초고조도 환경에서도 모션 블러 없는 고화질 및 고해상도 영상 생성이 가능한 알고리즘 개발
우리 대학 기계공학과 윤국진 교수 연구팀이 영국 임페리얼 칼리지 김태균 교수 연구팀과 GIST 최종현 교수 공동 연구팀과의 2건의 공동 연구를 통해 이벤트 카메라를 활용한 고화질 및 고해상도 영상 생성 알고리즘들을 개발했다.
연구팀은 이번에 개발한 알고리즘들을 통해 기존의 RGB 기반 카메라가 영상을 획득하지 못하는 초저조도/초고조도 환경에서도 이벤트 카메라(Event Camera)를 활용하여 고화질 및 고해상도 영상을 생성할 수 있고, 특히 이벤트 카메라의 장점을 살려 초고속의 움직임에도 모션 블러(motion blur, 빠른 움직임에 의한 영상 열화) 없는 고프레임율의 영상을 생성할 수 있다고 밝혔다.
이벤트 카메라는 카메라 각 화소에 입사하는 빛의 세기의 변화에 반응하여 광역동적범위(High Dynamic Range)에서 매우 짧은 지연 시간을 갖는 비동기적 이벤트 데이터를 영상 정보로 제공하기 때문에, 기존 RGB 카메라가 영상을 획득할 수 없었던 고조도/저조도 환경에서도 영상 데이터 획득이 가능하고 또한 초고속 움직임을 갖는 피사체에 대한 영상 데이터 획득이 가능하다는 장점이 있다.
하지만 기존의 영상과는 다른 형태의 영상 정보를 제공하기 때문에 기존의 영상 이해 기술을 접목시키기 어렵고 또한 센서의 제약으로 인해 영상의 해상도가 낮다는 단점이 있다. 연구팀은 이벤트 카메라의 장점을 유지하면서 이와 같은 문제를 해결하기 위해 이벤트 데이터로부터 고화질의 초고해상도의 영상을 생성해 내기 위한 최적화된 심층 신경망과 학습 알고리즘들을 제안하였다. 제안된 알고리즘들은 이벤트 카메라로부터 획득된 이벤트 데이터를 일정 시간 동안 누적하여 딥러닝 기반의 합성곱 신경망을 통해 영상을 생성하는 방식으로, 두 공동 연구에서 각각 교사 학습/비교사 학습 기반의 알고리즘을 제안하였는데, 제안된 두 알고리즘들 모두 이벤트 카메라의 장점을 유지할 수 있어 초당 최대 100만 프레임의 영상 생성이 가능하여 조명의 변화가 극심한 환경이나 고속 움직임에 대한 분석이 필요한 다양한 분야에 적용 가능할 것으로 기대된다.
윤국진 교수는 “본 기술은 이벤트 카메라를 활용한 영상 기반 상황 인식을 위한 기술로서, 기존 RGB 카메라로는 검출이 어려운 조명 변화가 극심한 상황에서 사용될 수 있고, 초고속 움직임에 대한 분석이 가능하기 때문에 자율주행 자동차, 드론, 로봇 등에 다양하게 활용될 것으로 기대한다.”고 말했다.
Mohammad Mostafavi 박사과정(GIST)이 1저자로 참여한 공동 연구와 Wang Lin 박사과정(KAIST)이 1저자로 참여한 공동 연구 논문들은 오는 6월에 개최 예정인 컴퓨터 비전/기계학습 분야의 국제 학술대회인 ‘IEEE Conference on Computer Vision and Pattern Recognition (CVPR)에 각각 구술/포스터 논문으로 발표될 예정이다. (논문명: (1) Learning to Super Resolve Intensity Images from Events, 이벤트를 활용한 초고해상도 이미지 생성 학습법, (2) EventSR: From Asynchronous Events to Image Reconstruction, Restoration, and Super-Resolution via End-to-End Adversarial Learning, 적대적 신경망 학습을 통한 비동기적 이벤트의 이미지로의 재구성, 복원 및 초해상도 연구)
한편, 이번 연구는 한국연구재단 중견연구자지원사업(NRF-2018R1A2B3008640)과 차세대정보・컴퓨팅기술개발사업(NRF-2017M3C4A7069369)의 지원을 받아 수행됐다.
2020.05.12
조회수 7126
-
해상도 높인 곤충 눈 구조 초박형 카메라 개발
바이오및뇌공학과 정기훈 교수 연구팀이 고해상도 이미징을 위한 곤충 눈 구조의 초박형 카메라를 개발했다. 이 카메라는 독특한 시각 구조를 가진 제노스 페키(Xenos peckii)라는 곤충의 눈을 모사해 개발돼, 상용 카메라보다 더 얇은 렌즈 두께와 넓은 광시야각을 갖는다. 이러한 특징을 이용해 모바일, 감시 및 정찰 장비, 의료영상 기기 등 다양한 소형 카메라가 필요한 분야에 적용 가능할 것으로 기대된다.
김기수 박사과정이 주도한 이번 연구결과는 국제 학술지 ‘빛 : 과학과 응용 (Light : Science & Applications)’ 2월 27일 자 온라인판에 게재됐다. (논문명: 고대비 고해상도 이미징을 위한 생체모사 초박형 카메라, Biologically Inspired Ultrathin Arrayed Camera for High Contrast and High Resolution Imaging)
최근 초소형 및 초박형 스마트 기기의 개발로 소형화된 이미징 시스템의 수요가 커지고 있다. 그러나 기존의 카메라는 물체의 상이 일그러지거나 흐려지는 현상인 수차를 줄이기 위해 다층 렌즈 구조를 활용하기 때문에 렌즈 두께를 감소하는 데 한계가 있다. 또한, 기존의 곤충 눈을 모사한 미세렌즈 배열(Microlens arrays)은 렌즈 사이의 광학 크로스토크(Optical crosstalk)로 인해 해상도가 저해되는 단점이 있다.
연구팀은 문제 해결을 위해 제노스 페키 곤충의 시각 구조를 모사한 렌즈를 제작했고 이를 이미지 센서와 결합해 초박형 카메라를 개발했다. 곤충의 눈은 렌즈와 렌즈 사이의 빛을 차단하는 색소 세포(pigment cells)가 존재해 각 렌즈에서 결상(어떤 물체에서 나온 광선 등이 반사 굴절한 다음 다시 모여 그 물체와 닮은꼴의 상을 만드는 현상)되는 영상들 간의 간섭을 막는다. 이러한 구조는 렌즈들 사이의 광학 크로스토크를 막아 고 대비 및 고해상도 영상을 획득하는 데 도움을 준다.
연구팀은 이러한 광 차단 구조를 포토리소그래피(Photolithography) 공정으로 매우 얇게 제작해 렌즈들 사이의 광학 크로스토크를 효율적으로 차단했다. 렌즈의 두께를 최소화하기 위해 렌즈의 방향을 이미지 센서 방향인 역방향으로 배치했으며, 이를 통해 최종 개발된 카메라 렌즈의 두께는 0.74mm로 이는 10원짜리 동전 절반 정도의 두께이다. 연구팀은 카메라의 원거리에 있는 물체를 모든 렌즈에서 같은 시야각을 통해 동일한 영상을 획득하고, 이 배열 영상들은 해상도를 하나의 이미지로 합성했다. 합성된 영상은 합성 전 단일 채널 영상보다 향상된 해상도를 가짐을 확인했다.
정기훈 교수는 “실질적으로 상용화 가능한 초박형 카메라를 제작하는 방법을 개발했다”라며 “이 카메라는 영상획득이 필요한 장치에 통합돼 장치 소형화에 크게 기여할 것으로 확신한다”라고 말했다.
2020.03.23
조회수 11209