본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%ED%95%98%EC%9D%B4%EB%93%9C%EB%A1%9C%EC%A0%A4
최신순
조회순
이제 골격근도 제작 가능하다
인체의 상당 부분을 차지하는 골격근을 이제 우리 연구진에 의해 랩온어칩과 같은 첨단 바이오 제조 기술을 적용해 안정적인 제작이 가능하게 됐다. 우리 대학 기계공학과 바이오미세유체 연구실 전성윤 교수 연구팀이 기계공학과 심기동 교수팀과 공동 연구를 통해, 체외 삼차원 환경에서 골격근 조직을 제작하는 바이오 미세유체시스템(Biomicrofluidic system)*을 개발했다고 27일 밝혔다. *바이오 미세유체시스템: 반도체 회로 제조 등에 사용되는 포토리소그래피(Photolithography) 공정 등을 기반으로 제작되는 마이크로 스케일의 시스템으로, 세포 및 생체조직 배양, 유동 생성 및 제어 등에 활용됨 연구팀은 해당 연구에서 자체 개발한 미세유체시스템을 사용해 골격근 조직 배양에 있어 큰 비중을 차지하는 하이드로겔의 구성 성분, 겔화 시간, 세포의 농도를 조절해 다양한 조건에서 삼차원 근육 밴드를 제작했다. 또한, 제작된 골격근 조직에 대해 근육의 수축력 및 반응 속도 측정과 함께 조직 형태, 기계적 특성, 골격근 성장 및 분화와 관련된 유전자 발현 비교 등 다양한 분석을 진행했다. 그리고 결과 분석을 통해 최적의 근육 조직 제작법을 확립했으며, 이러한 최적의 제작법으로 배양했을 때 견고한 골격근 조직이 제작된 것을 확인했다. 조직공학 및 배양 시스템 설계의 중요성을 강조한 이번 연구에서는, 하이드로젤 특성이 3D 근골격계 조직 발달에 미치는 영향을 조사했다. 주요 연구 결과에 따르면 하이드로젤의 기계적 특성은 세포 분화와 조직 기능을 높인다. 전성윤 교수는 “이번 연구는 인공 골격근 조직 배양에 있어 세포가 함유된 하이드로젤 제조에 대한 조건의 영향을 탐구함으로써 기존의 균일하지 못한 배양 방식에 가이드라인을 제시하고, 치료 응용 및 질병 모델링을 위한 조직 공학 최적화를 위한 필수 인사이트를 제공한다. 그리고 향후 골격근뿐 아니라 심장이나 골수와 같은 인공 생체 조직 제작에 도움을 주고 본 플랫폼은 노화나 우주 미세중력등에 의한 근감소증을 비롯한 여러 근골격계 질병 연구에 활용 될 것을 기대한다”고 말했다. 기계공학과 김재상 박사 및 김인우 박사과정 학생이 공동으로 진행한 이번 연구는, 국제 학술지인 ‘어드밴스드 펑셔널 머터리얼즈(Advanced functional materials)’에 2024년 10월 7일자로 게제됐다.(논문명 : Strategic Approaches in Generation of Robust Microphysiological 3D Musculoskeletal Tissue System. https://doi.org/10.1002/adfm.202410872) 한편 이번 연구는 한국연구재단 및 BK21 사업의 지원으로 수행되었다.
2024.11.27
조회수 1391
피부 모니터링부터 뇌심부 해석까지 쉽게 가능
실시간으로 심박수를 측정할 수 있는 스마트 워치, 심장 박동수를 조절하는 페이스메이커 등 생체신호를 지속적으로 측정해 다양한 병을 진단하거나 치료할 수 있는 전자소자인 생체전자소자에 관한 연구가 활발히 진행되고 있다. KAIST 연구진이 생체조직 접촉 시 손상을 최소화하고 3D 마이크로니들 구조로 조직표면부터 심부까지 측정할 수 있는 전도성 하이드로젤 소재를 개발해 화제다. 우리 대학 신소재공학과 스티브 박 교수, 바이오및뇌공학과 박성준 교수 공동연구팀이 3D 프린팅을 통해 다양한 형태의 생체전자소자를 쉽고 빠르게 제작할 수 있는 전도성 고분자 기반 전극 물질을 개발했다고 7일 밝혔다. 이번 연구를 통해 기존 2D 전극 패터닝 기술로 접근하기 어려웠던 한계점을 극복해, 원하는 위치 및 심부 영역의 뇌 신경세포를 자극 및 측정할 수 있어, 뇌의 심부 영역에서 뇌의 활성화 원리를 정확하게 해석할 수 있을 것으로 기대된다. 또한 3D 프린팅을 통해 이 기술은 피부에 부착하는 헬스케어 모니터링 소자부터 생체 삽입형 소자에 이르기까지 광범위하게 활용할 수 있을 것으로 기대된다. 기존 생체전자소자에 사용됐던 금속 물질은 단단한 물성으로 인해 연약한 생체조직에 상처를 입힐 수 있다는 문제점이 있었다. 또한, 이 문제를 보완하기 위해 개발됐던 전도성 하이드로젤 소재는 낮은 전기전도성을 가지고, 생체적합성을 개선하기 위해 소자 제작 후 24시간 이상의 독성 제거 공정을 진행해야 한다는 문제점이 있었다. 또한, 2D 구조의 전극 패터닝만 가능하다는 한계점 때문에 다양한 형태의 소자를 제작하기 어려웠다. 박 교수 연구팀은 전도성 고분자를 나노미터 크기의 콜로이드 형태로 가공해 유화 작용을 유도함으로써 잉크의 유변학적 특징*을 개선하고, 생체적합성에 악영향을 미치는 독성 물질을 원심분리 공정을 통해 제거함으로써 3D 프린팅이 가능하면서 후처리 공정이 필요 없는 고전도성 하이드로젤 잉크를 개발했다. *유변학적 특성: 잉크의 유동성과 그에 따른 변형, 그 응답인 응력 등의 특성을 말하며 특성이 높을수록 잉크의 압출 직후 인쇄된 형태를 유지할 수 있으며, 낮으면 압출 직후 인쇄된 형태를 유지하기 어렵다. 이 재료는 선행연구 대비 약 1.5배(286 S/cm)의 전기전도도를 가지며, 고해상도 패터닝(~50μm), 전방위 3D 전극 패터닝이 가능하다는 장점을 가진다. 또한 생체조직과 비슷한 물성(영 계수 750kPa)를 가져, 생체조직과의 접촉 시 손상을 최소화할 수 있다. 연구팀은 개발한 신소재 전극을 기반으로 심전도 측정(ECG) 및 근전도 측정(EMG) 측정 타투, 뇌 피질전도도(ECoG) 측정소자, 3D 뇌 탐침 측정 소자를 개발해 기능성을 검증했다. 또한 높은 전하 저장 능력을 활용, 낮은 전압(60mV)으로 쥐의 좌골 신경을 자극하는 소자를 개발해 생체 자극 소자로서의 성능을 확인했다. 더불어 복잡한 3D 회로를 필요한 적용 분야에 맞추어 제작할 수 있고 3D 마이크로니들 구조로 전극을 패터닝해 조직 표면에 있는 생체신호뿐만 아니라 조직 심부에 있는 뉴럴 인터페이스의 제작이 가능해졌다. 연구를 주도한 스티브 박 교수는 "기존 3D 프린팅 기술을 이용해 제작되는 전자소자의 경우 전도성 및 생체적합성을 개선하기 위해 장시간 및 복잡한 형태의 후처리가 필요해 래피드 프로토타이핑(Rapid prototyping)을 장점으로 가져갈 수 있는 3D 프린팅 기술의 모든 장점을 이용할 수 없었다”며, “이번 연구에서는 이러한 단점을 해결해 향후 환자 맞춤형 바이오 전자소자 및 다양한 3D 회로 응용 분야에 활용될 수 있을 것으로 기대된다ˮ라고 말했다. 신소재공학과 오병국 박사과정과 백승혁 석사, 바이오및뇌공학과 남금석 석박사통합과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)'에 7월 11일 게재됐다. (논문명 : 3D printable and biocompatible PEDOT:PSS-ionic liquid colloids with high conductivity for rapid on-demand fabrication of 3D bioelectronics) 이번 연구는 한국연구재단 나노 및 소재기술개발사업, 중견 사업 및 ETRI의 지원을 받아 수행됐다.
2024.08.07
조회수 2699
하이드로젤 기반 유연성 뇌-기계 인터페이스 개발
우리 대학 바이오및뇌공학과 박성준 교수 연구팀이 메사추세츠 공과대학(MIT) 폴리나 아니키바(Polina Anikeeva) 교수, 쏸허 자오(Xuanhe Zhao) 교수, 육현우 박사 공동 연구팀과 함께 *하이드로젤 기반의 유연성 뇌-기계 인터페이스를 개발하는 데 성공했다고 21일 밝혔다. ☞ 하이드로젤: 물과 젤리가 합쳐진 합성어이며 주로 필러, 보톡스, 화장품에 쓰이는 반고체 상태의 물질이다. 인공적인 인체 조직을 만드는 원료로 적합해 의학적으로도 널리 쓰인다. 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)'에 2021년 6월 8일 字로 출판됐다. (논문명: Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity) 뇌 구조를 연구하거나 뇌 신경 질환의 메커니즘을 파악, 치료하기 위해서는, 실시간으로 뇌를 자극하고 신호를 측정할 수 있는 인터페이스의 개발이 필수적이다. 그러나 기존의 신경 인터페이스는 기계적, 화학적 특성이 뇌 조직과 너무 달라서 일어나는 이물 반응(foreign body response) 때문에, 주변에 절연세포층이 형성돼 그 수명이 매우 짧아진다는 문제점을 가지고 있었다. 연구팀은 해당 문제의 해결을 위해, 직접 제작한 다기능성 파이버 다발을 하이드로젤 몸체에 넣는 방법을 이용해 `뇌 모사형 신경 인터페이스'를 제작했다. 해당 장치는 빛으로 특정 신경세포종만을 자극할 수 있는 광유전학 기술을 적용하기 위한 광섬유뿐만 아니라, 뇌에서 신호를 읽을 수 있는 전극 다발, 약물을 뇌 속으로 전달할 수 있는 미세 유체 채널을 모두 보유하고 있다. 해당 인터페이스는 하이드로젤 몸체를 건조시킨 상태에서는 단단한 성질이 고분자와 유사해 몸체에 삽입하기가 쉽다. 하지만 몸에 들어가면 체내의 수분을 빠르게 흡수해. 부드럽고 수분이 풍부한 주변 조직과 유사한 상태가 되므로 이물 반응을 최소화할 수 있다. 연구팀은 이러한 특성을 가진 장치를 동물 모델에 직접 적용해, 기존의 기록을 훨씬 뛰어넘는 삽입 후 6개월까지도 뇌 신호를 측정할 수 있음을 보였다. 또한 자유롭게 움직이는 쥐를 대상으로 초장기간 광유전학 실험, 행동 실험 등이 가능하며, 이물 반응에 의한 아교세포 및 면역세포의 발현이 기존 장치보다 현저히 줄어듦을 증명했다. 박성준 교수는 "이번 연구는 최초로 하이드로젤을 다기능 신경 인터페이스의 구성물질로 사용해 그 수명을 대폭 상승시켰다는 데에 의의가 있으며, 해당 연구를 통해 향후 알츠하이머병, 파킨슨병 등 초장기간 관찰이 필요한 뇌 신경 질환 연구가 더욱 발전할 수 있을 것으로 기대된다ˮ 라고 말했다. 한편 이번 연구는 한국연구재단 신진연구사업, 범부처의료기기개발 사업, 나노소재원천기술개발사업, 차세대 지능형 반도체 개발사업, KK-JRC 스마트 프로젝트, 카이스트 글로벌 이니셔티브 프로그램, 포스트 인공지능(Post-AI) 프로젝트 사업의 지원을 받아 수행됐다.
2021.06.21
조회수 29954
신소재공학과 박찬범 교수, 자기조립기술 이용 다양한 색상 가진 바이오 나노튜브 개발
- 재료분야 저명 국제학술지 어드밴스드 머티리얼스지 최근호 게재 신소재공학과 박찬범(朴燦範, 40세, 바이오신소재 국가지정연구실) 교수 연구팀이 자연계의 자기조립기술을 이용, 빨강(R), 녹색(G), 파랑(B) 등 ‘다양한 형광 색상을 구현할 수 있는’ 나노튜브 소재를 세계최초로 개발했다. 관련 논문은 재료분야 저명 국제학술지인 어드밴스드 머티리얼스(Advanced Materials)지 최근호(4월 27일자)에 게재됐으며, 나노기술과 생명과학분야의 창의적인 융합을 통하여 새로운 나노소재를 개발하는데 크게 기여했다는 평가를 받았다. 특히, 이 학술지는 朴 교수 연구팀 연구결과의 중요성과 응용성에 주목하여 “Advances in Advance”에 저널 대표논문들(상위 10%이내) 중 하나로 선정하였다. 朴 교수 연구팀은 두 개의 아미노산으로 구성된 매우 단순한 펩타이드 (peptide)를 수만 개 이상 스스로 조립시켜 머리카락의 약 천분의 일 정도 두께를 가진 긴 나노튜브 구조를 형성하였는데, 이러한 자기조립 과정에서 다양한 광감응현상(photosensitization)을 크게 증폭할 수 있음을 밝혔다. 이를 통해 각종 디스플레이기기 등에서 사용하는 RGB의 모든 색상을 구현할 수 있는 바이오기술 기반의 나노소재를 개발하였다(아래 그림). 화학물질들이 레고(Lego) 장난감처럼 스스로 조립하여 3차원 구조체를 만드는 것은 모든 생명현상의 근간이 될 뿐만 아니라, 최근 들어서는 나노소재를 개발하는 주요기술들 중의 하나로 각광받고 있다. 특히 朴 교수팀의 연구에서 사용한 펩타이드는 알츠하이머병과 밀접한 관계가 있는 아밀로이드(amyloid)라는 단백질 플라크(plaque)로부터 유래했기 때문에 퇴행성 신경질환 현상을 응용하여 새로운 기능성 나노소재를 개발하였다는 점에서 과학기술계의 주목을 받고 있다. 이번에 개발된 자기조립형 형광 나노소재는 바이오센서/칩, 각종 약물의 세포전달체, 의료용 하이드로젤, 차세대 디스플레이기기 등에 응용이 가능할 것으로 예상되며, 향후 나노-바이오 융합분야에서 국가 과학기술 경쟁력 제고에 기여할 것으로 기대된다. 朴 교수팀은 2008년도부터 교육과학기술부의 ‘국가지정연구실사업’으로부터 지원을 받아 새로운 바이오소재를 개발하기 위한 연구를 수행해 왔으며, 해외 저명학술지들로부터 크게 주목받는 연구 성과를 발표하고 있다. <용어설명> 자기조립(self-assembly): 구성물질 간의 약한 비공유결합성 상호작용에 의해 스스로 일정한 구조나 패턴을 형성하는 현상을 가리키는 용어로 최근 전 세계적으로 가장 널리 연구되고 있는 분야 중 하나다. <박찬범 교수 프로필> ■ 학 력 1987-1999: 포스텍 화학공학과 학사(1기), 석사, 박사 1999-2002: UC Berkeley, 박사후연구원 ■ 주요경력 2008-현재: 교육과학기술부 국가지정연구실 Director 2006-현재: KAIST 신소재공학과 부교수 2002-2006: 미국 애리조나주립대학교 조교수 ■ 주요 연구분야 - 자기조립형 바이오소재(Self-Assembled Biomaterials) - 유기/무기 하이브리드 소재(Organic and Inorganic Hybrid Materials) - 인공광합성 소재(Materials for Artificial Photosynthesis)
2009.04.29
조회수 19809
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1