본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%B9%98%EB%A3%8C%EC%A0%9C
최신순
조회순
근긴장이상증 음악가들에게 희망을
우리 대학 뇌인지과학과 김대수 교수는 지난 11월 19일 세계보건기구 (WHO, the World Health Organization) 후원으로 개최된 ‘근긴장이상증 음악가들을 위한 컨퍼런스’와 근긴장이상증 환자인 주앙 카를로스 마틴의 카네기 홀 공연에 참석하여 근긴장이상증 치료제 소식을 알렸다. 2022년 11월 19일 ‘기적의 콘서트’가 카네기 홀에서 열렸다. 피아니스트 주앙 카를로스 마틴(João Carlos Martins)은 70, 80년대 세계적인 피아니스트로 주목받았으나 갑자기 찾아온 손가락 근긴장이상증으로 음악을 접어야 했다. 2020년 산업 디자이너였던 바타 비자호 코스타(Ubiratã Bizarro Costa)가 개발한 바이오닉 글러브를 끼고 다시 노력한 결과 60년만에 82세의 나이로 카네기홀에 다시 서게 된 것이다. 당일 공연에 그는 NOVUS NY 오케스트라와 협연으로 바하의 음악을 지휘하였으며 이후 직접 피아노로 연주하여 관객들의 감동을 이끌어 냈다. 특히 공연 중간에 김대수 교수를 포함 근긴장이상증 연구를 하는 과학자들의 이름을 호명하는 등 희귀질환 음악가들을 위한 치료제 개발에 힘써 줄 것을 당부하였다. 음악가 근긴장이상증 (Musician's distonia)은 음악가의 1%에서 3%까지 영향을 미치는 것으로 간주되며, 모든 근긴장이상증의 5%를 차지한다. 근긴장이상증으로 연주가 불가능하게 된 음악가들은 스트레스와 우울증에 시달리며 극단적인 선택을 하게 되는 경우도 있다. 음악가들이 근긴장이상증에 취약한 원인으로는 악기연주를 위해 과도한 몰입과 연습, 그리고 완벽주의적 성격, 유전적 요인 등이 알려져 있다. 현재 보튤리넘 톡신 (보톡스)로 이상이 생긴 근육을 억제하는 방법이 쓰이고 있지만 근육기능을 차단하게 되면 결국 악기를 연주할 수 없게 된다. 주앙 카를로스 마틴 자신도 여러 번의 보톡스 시술과 세 번의 뇌수술 등을 받았으나 치료효과가 없었다. 새로운 치료제가 필요한 이유다. 김대수 교수 연구팀은 근긴장이상증이 과도한 스트레스에 의해 유발되는 것에 착안하여 근긴장이상증 치료제 NT-1을 개발하였다. NT-1은 근긴장 증상의 발병을 뇌에서 차단하여 환자들이 근육을 정상적으로 활용할 수 있게 된다. 김대수 교수 연구팀은 근긴장이상증 치료제 개발 연구성과를 2021년 `사이언스 어드밴시스(Science Advances)' 저널에 게재하였으며 이 논문을 보고 주앙 카를로스 마틴은 자신의 공연과 UN 컨퍼런스에 김대수 교수를 초청하였다. 2022년 11월 18일, 카네기홀 공연에 앞서 열린 희귀질환 극복을 위한 UN 컨퍼런스에서 세계보건기구 (WHO) 의 정신건강 및 약물 남용 연구소 책임자인 데보라 케스텔 박사는“근긴장이상증이 잘 알려지지 않았지만 이미 세계적으로 널리 퍼져 있는 질환으로서 사회적인 관심과 연구자들의 헌신을 필요로 한다”면서 컨퍼런스의 취지를 밝혔다. 김대수 교수는 “NT-1은 뇌에서 근긴장이상증 원인을 차단하는 약물로서 음악가들이 악기를 연주하는 것을 방해하지 않을 것이다. 2024년 까지 한국에서 임상허가를 받을 것으로 목표로 한다”고 발표했다. NT-1 약물은 현재 교원창업기업인 ㈜뉴로토브 (대표, 김대수)에서 개발 중이다. 임상테스트를 위한 약물 합성이 완료되었고 다양한 동물 실험결과 효능과 안전성이 우수하다는 결과를 얻었다. 병원에 가서 시술을 하고 며칠이 지나야 치료효과를 볼 수 있는 보톡스와 달리, NT-1 은 복용한지 1 시간 내에 치료효과를 보인다. 이른바 “먹는 보톡스”로서 다양한 긴장성 근육질환 및 통증에 효능을 보일 것으로 예상된다.
2022.12.27
조회수 1428
기계공학과 공경철, 화학과 임미희 교수-과기부 기초과학 리더연구자 선정
우리 대학 기계공학과 공경철 교수, 화학과 임미희 교수가 과학기술정보통신부가 주관한 ‘2022년도 기초연구사업의 리더연구자(12인)’부문에 선정됐다. 리더연구는 국내 최고 수준의 기초과학 연구자의 연구주제를 지원하는 프로그램으로, 선정된 연구자는 연간 8억원 규모로 최대 9년간 72억원까지 지원받는다. 기계공학과 공경철 교수는 로봇과 사람이 결합된 형태인 웨어러블 로봇의 제어 성능 향상, 동기화를 연구한다. 인간의 운동 제어이론, 인간-로봇 통합 시뮬레이션 인공지능 학습 등 연구 범위를 확장할 예정이다. 본 연구를 통해 더 다양한 종류의 보행장애를 극복하는 웨어러블 로봇 기술을 실현하는 것이 목표다. 공교수는 “충분한 기간 기초연구에 집중할 기회가 생긴 만큼 보행장애 완전 극복을 위한 발판을 다지겠다. 사람의 관점에서 웨어러블 로봇을 탐구하고 고민할 것”이라고 밝혔다. 화학과 임미희 교수는 기존에 밝혀지지 않은 금속과 뇌신경단백질 간의 다양한 상호작용을 밝히고, 이를 바탕으로 새로운 신경 퇴화를 유발하는 금속-뇌신경단백질 복합체를 발굴한다. 본 연구를 통해 치매 발병 원인을 규명하고 새로운 개념의 치료제·진단제를 개발하는 것이 목표다. 임교수는 “리더 연구과제에 선정되어 영광이다. 앞으로 연구에 더욱 정진하여 기초과학 중심의 치매 극복에 힘쓰겠다”라고 소감을 전했다. 과기부는 6월 중 선정된 신규 리더연구자에 지정서를 수여하고 연구에 착수하도록 본격 지원할 예정이다.
2022.06.07
조회수 2375
바이오혁신경영전문대학원, 전주시-전북대와 2022 세계 바이오 혁신 포럼 (WBIF) 개최
우리 대학 바이오혁신경영전문대학원이 6월 8일부터 10일까지 전주시, 전북대학교 지역혁신센터와 공동 주최하는‘2022 세계 바이오 혁신 포럼(World Bio Innovation Forum, 이하 WBIF)를 개최한다. 이번 포럼은 디지털 치료제, 반려동물 혁신 의약품, 비대면 진료 등 최근 주목받는 바이오 신시장의 국내·외 최신 동향과 정보를 교류하고자 추진됐다. 6월 8일부터 3일간 대표 주제별 2개의 세션을 운영하고 각 분야 전문가의 발표와 패널 토론을 진행한다. 포럼 1일차에는 디지털 치료제 대표 기업인 Limbix와 DTA, Welt, Life Semantics, Naver, 식약처가 운영사례와 치료 효과 등을 이야기한다. 디지털 치료제란 게임, 가상현실(VR), 증강현실(AR), 인공지능(AI) 등의 첨단 기술을 활용해 치매와 불면증, 우울증, ADHD 등의 질병을 예방, 치료, 관리하는 기술이다. 포럼 2일차에는 이광형 총장의 환영사를 시작으로 LABOKLIN과 Torigen, Vaxcell Bio, 대웅제약 등이 참여해 반려동물 헬스케어를 주제로 최신 개발 또는 개발 예정인 의약품 사례를 공유한다. 최근 반려동물 치료에 대한 수요가 증가함에도 치료법이 부족한 점에 중점을 두고 반려동물의 암, 관절염, 피부병 등에 대해 연구원, 전문가, 기업이 다양한 의견을 모을 예정이다. 포럼 3일차에는 Atrium Health와 VSee, 이지케어텍 등이 참여해 코로나19 이후 더욱 각광 받는 비대면 진료에 대해 논의한다. 특히 비대면 진료를 통해 사회적 취약계층의 의료 서비스를 개선하는 방법에 주안점을 두고 현장감 있는 토론을 진행할 계획이다. 이번 포럼을 주관한 채수찬 WBIF 대표 겸 우리 대학 기술경영학부 교수는 “2022 WBIF를 준비하며 전 세계의 바이오 네트워크를 활용해 최고의 전문가들을 섭외하고자 노력했다. 최신 정보와 전문적인 현장 경험을 전하며 그간 개최된 바이오 헬스 포럼들과의 차별화를 둘 것”이라고 밝혔다. 이광형 총장은 “WBIF가 세계를 선도하는 바이오 포럼이 되길 진심으로 기원한다. 각 분야의 전문가들이 자유롭게 논의하는 장이 되어 국내·외 바이오, 헬스 산업의 발전과 국민 건강 향상으로 이어지길 바란다”라고 전했다. 2022 WBIF는 코로나19 상황에 따라 비대면(Zoom)으로 진행되며 WBIIF유튜브를 통해 생중계될 예정이다. 관련 문의는 홈페이지(www.wbif.or.kr)와 이메일(wbif2021@gmail.com)을 통해 가능하다.
2022.06.03
조회수 2148
유전자 가위로 생체 내 정밀한 유전자 교정에 의한 면역 항암 치료
CRISPR/Cas9 시스템을 이용하여 유전자교정을 일으킴으로써 암의 면역 치료를 유도하는 기술이 우리 대학 연구진에 의해 개발됐다. 우리 대학 생명과학과 정현정 교수, 서울대학교 의과학과 정기훈 교수 공동연구팀이 CRISPR/Cas9 리보핵산단백질을 생체 내에 효과적으로 전달하는 나노복합체를 개발하여 면역 관문 유전자를 교정함으로써 항암 효과를 보이는데 성공했다고 밝혔다. 암은 현대인의 건강을 위협하는 대표적인 요인으로 꼽히고 있다. 암의 치료 방법 중 면역 항암 요법은 부작용이 적고 높은 치료 성적을 보여 다양한 암 유형에 적용할 수 있다. 기존에는 항체 기반 치료법이 주로 임상에서 사용되고 있으며 다양한 고형암의 치료에 승인되었으나, 일시적인 효과로 반복 투여가 필요하다. CRISPR/Cas9 시스템은 유전체의 서열을 직접 정밀하게 교정할 수 있으며, DNA 이중가닥을 절단하는 Cas9 제한효소와 특정 서열을 표적하는 단일 가이드 RNA로 이루어진다. 유전자교정 치료제의 경우 일반적으로 바이러스 기반 치료 방법을 이용했으나 돌연변이 유발, 비특이적 표적 효과 등으로 인해 한계가 있다. 비바이러스 치료제로 Cas9 단백질 및 단일가닥 RNA를 이용하면 바이러스 치료보다 안전성을 높일 수 있으나 낮은 세포내 전달 효과로 치료 효능이 떨어진다. 전달 효율을 높이기 위해 기존에 다양한 방법이 개발되고 연구됐으나, 일반적으로 과량의 전달체물질을 사용함으로써 생체 내 독성 문제가 나타나는 한계점이 있다. 이러한 문제점을 개선하기 위해 연구팀은 Cas9 단백질에 세포내 유입을 촉진하는 고분자를 접합시켜 극미량의 전달체물질로 고효율 전달이 가능한 Cas9 컨쥬게이트를 제작하여 활용했다. 연구팀은 이러한 Cas9 컨쥬게이트, 단일 가이드 RNA 및 변형된 데옥시뉴클레오타이드(DNA)를 추가해 나노조립된 리보핵단백질 복합체(이하 NanoRNP)를 개발했다. 이 복합체는 Cas9 컨쥬게이트, RNA 및 DNA의 상호작용으로 쉽게 제작할 수 있고, 유전자 교정 치료제로써 단일 요법에 의해 항암 치료가 가능하다는 점이 장점이다. 우리 대학 생명과학과 석박사통합과정 이주희 학생이 제1 저자로 참여한 이번 연구 결과는 재료화학 분야 국제학술지 `케미스트리 오브 머티리얼즈(Chemistry of Materials)'에 12월 20일 字 온라인 게재됐다. (논문명 : Nano-assembly of a Chemically Tailored Cas9 Ribonucleoprotein for In Vivo Gene Editing and Cancer Immunotherapy) NanoRNP의 경우 Cas9에 부착된 고분자가 강한 양이온성을 지녀 단일 가이드 RNA와 안정적으로 복합체를 형성시키며, 생체내 분해효소로부터 보호하여 활성을 향상시킨다. 본 연구팀은 NanoRNP를 피부암에서 많이 발현되는 프로그램된 세포사멸 리간드-1 (PD-L1) 유전자를 표적하는데 응용하였다. PD-L1은 면역 세포의 표면 수용체에 존재하는 프로그램된 세포사멸 수용체-1 (PD-1)과 상호작용하여 면역 세포의 반응을 억제해 암세포의 세포사멸 회피를 유도한다. 연구팀은 NanoRNP를 이용하여 PD-L1 유전자의 교정으로 유전자결손을 유도하여, 면역 세포들이 활성화되고 종양미세환경의 변화로 면역 세포에 의한 암세포 사멸이 유도됨을 확인했다. 연구팀은 이번 연구 결과를 응용해 향후 암 뿐만 아니라 유전 질환 등 다양한 질병에 적용함으로써 연구를 확대 및 발전시켜 나갈 수 있을 것으로 기대하고 있다. 한편 이번 연구는 한국연구재단 중견연구자지원사업, 범부처전주기의료기기연구개발사업 및 KAIST End Run 사업의 지원을 통해 이뤄졌다.
2021.12.24
조회수 3571
세로토닌 신호 억제를 통한 당뇨병 및 지방간 억제 효과 규명
우리 대학 의과학대학원 김하일 교수 연구팀이 분당서울대병원 내분비대사내과 최성희 교수 연구팀과 공동연구를 통해 지방조직의 *세로토닌 신호 억제로 당뇨병 개선 및 지방간 억제 효과를 규명했다고 8일 밝혔다. ☞ 세로토닌 : 신경전달물질 중 하나로 감정, 수면 등의 조절에 관여를 한다. 주로 위장관, 혈소판, 뇌, 중추신경계에서 볼 수 있으며 행복을 느끼는 데에 기여한다고 여겨진다. 공동연구팀은 지방조직의 세로토닌 수용체 2B 신호전달 억제를 통해 지방조직에서 분비되는 지방산을 조절하고 그 결과 혈중 지방산 수치를 낮추어 전신적인 대사 지표와 지방간을 개선하는 기작을 통해 지방간 치료제 연구 분야에 새로운 방향성을 제시하고 기존 대사질환 치료제 연구의 한계를 극복할 가능성을 제시해 주었다. 우리 대학 의과학대학원 최원근 박사, 최원석 박사 (현 화순전남대학교병원 내분비대사내과), 분당서울대병원 내분비대사내과 오태정 교수가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `임상연구저널 (Journal of Clinical Investigation)' 10월 7일 字 온라인판에 출판됐다. (논문명 : Inhibiting serotonin signaling through HTR2B in visceral adipose tissue improve obesity induced insulin resistance ) 세로토닌은 뇌에서의 역할과 달리 말초조직에서 비만, 당뇨 상황에서 다양한 에너지대사를 조절한다. 특히 간조직의 세로토닌 신호전달은 지방 합성을 촉진한다고 알려져 있으며, 이 신호를 억제하였을 때 지방간 형성이 개선되는 것을 확인한 바 있다. 이에 공동연구팀은 세로토닌의 내장지방에서의 역할을 확인해 보기로 하였고, 지방세포에서 세로토닌 2B 수용체의 신호를 억제하면 지방조직 내 염증반응이 감소하고, 지방간 억제 및 전신적 인슐린 감수성 증가 등 전반적인 대사 지표가 개선되는 효과를 확인하였다. 이는 세로토닌이 중추신경을 통해서가 아니라 직접적으로 지방조직에 작용한다는 것을 새롭게 발견한 것으로, 향후 새로운 당뇨병 및 지방간 치료제 개발의 표적을 제시하였다는 데에 의의가 있다. 세로토닌 신호 억제를 주요 표적으로 한 지방간 혹은 당뇨병 치료제 개발은 생물학적, 임상적으로 중요한 의미를 가진다. 기존에 개발된 치료제들과 달리 지방조직과 간조직을 동시에 표적으로 하는 세로토닌 신호 억제제는 향후 대사질환 치료제 개발 연구분야에서 괄목할만한 성과를 보일 것으로 기대된다. 비만이 당뇨병 및 지방간과 같은 만성질환을 유발하는 데에 내장지방의 양적 증가와 대사 변화가 중요할 것이라는 점은 학계에서 널리 받아들여지고 있는 현상이다. 본 연구는 세로토닌 2B 수용체가 비만과 같은 인슐린 저항성이 유발되는 상황에서 내장지방 특이적으로 발현이 증가한다는 관찰에서 시작되었으며, 사람의 지방조직 및 다양한 마우스 모델을 이용하여 다학제적 접근으로 임상적인 의미를 잘 파고든 연구라는 점에서 높은 가치를 지닌다. 공동 제1 저자인 우리 대학 최원근 박사는 "이번 연구를 통해 세로토닌 수용체를 표적으로 한 약물이 지방간을 포함한 다양한 대사질환 치료에 새로운 지평을 열 것으로 사료된다"고 말했다. 또한 공동교신저자인 김하일 교수는 "최근 의과학 연구분야에 있어 기초연구자와 임상의사의 협업의 중요성이 강조되는 가운데 KAIST와 분당서울대병원의 공동연구를 통해 의미있는 결론이 도출되어 기쁘다"고 말했다. 이어 공동 교신저자인 분당서울대병원 최성희 교수는 “이번 연구결과를 바탕으로 세로토닌 2B 수용체 신호를 효과적으로 억제할 수 있는 치료법 개발을 통해, 지방세포에도 직접적으로 작용할 수 있는 새로운 인슐린 저항성 약물을 개발할 수 있을 것”이라고 덧붙였다. 한편 이번 연구는 한국연구재단 바이오·의료기술개발사업과 중견연구자지원사업의 지원을 받아 수행됐다.
2021.10.08
조회수 3208
약물 가상 스크리닝 기술로 코로나19 치료제 후보 발굴
우리 대학 생명화학공학과 이상엽 특훈교수(연구부총장)와 한국파스퇴르연구소 김승택 박사 공동연구팀이 ‘약물 가상 스크리닝 기술을 이용한 코로나19 치료제 개발’에 성공했다고 8일 밝혔다. 이번 연구 결과는 국제 학술지인 ‘미국국립과학원회보(PNAS)'에 7월 7일 字 온라인 게재됐다. ※ 논문명 : Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay ※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 김승택(한국파스퇴르연구소, 교신저자), 장우대(한국과학기술원, 제1저자), 전상은(한국파스퇴르연구소, 제2저자), 포함 총 4명 코로나바이러스감염증-19(이하 코로나19)는 글로벌 팬데믹으로 전개되고 있으며 현재 인류 보건을 심각하게 위협하는 상황이다. 코로나19 치료 목적으로 미국식품의약국(FDA)에서 정식 승인을 받은 렘데시비르(상품명 베클러리)가 현재 임상에서 사용 중이지만, 사망률은 감소시키지 못하고 회복 기간을 5일 정도 단축함으로써 치료 효과가 기대에 미치지 못하는 것으로 알려졌다. 또한 렘데시비르는 정맥 주사제여서 의료기관에서 입원을 통해 수일 동안 투여받아야 하므로 팬데믹 상황에 적합하지 않은 약물이다. 따라서 코로나19로 인한 사망률을 획기적으로 감소시키고, 치료 기간을 단축시키는 경구용 치료제 개발이 시급한 상황이었다. 이에 이상엽 특훈교수와 한국파스퇴르연구소 김승택 박사 공동연구팀은 약물 가상 스크리닝 기술을 이용한 약물 재창출 전략으로 코로나19 치료제 개발 연구를 수행했다. 연구팀은 팬데믹 상황에 대응한 신속한 치료제 개발을 위해 가상 스크리닝 기술을 이용한 약물 재창출 전략을 수립했다. 약물 재창출은 이미 안전성이 검증된 FDA 승인 약물 또는 임상 진행 중인 약물을 대상으로 새로운 적응증을 찾는 방식이다. 이 전략은 신약 개발 과정에 소요되는 시간을 단축시킬 수 있어 코로나19와 같은 팬데믹 상황에 적합한 신약 개발 전략이다. 우리 대학 생명화학공학과 장우대 박사는 우선 FDA 승인 약물 또는 임상 진행 중인 약물을 데이터베이스에서 수집해 6,218종의 약물 가상 라이브러리를 구축했다. 실험으로 이 약물들을 모두 검증하기에는 시간과 비용이 많이 소요되기 때문에 바이러스 치료제로 가능성이 있는 약물만 신속하게 선별할 수 있는 컴퓨터 기반 가상 스크리닝 기술을 도입했다. 기존의 도킹 시뮬레이션 기반의 가상 스크리닝 기술은 높은 위양성률(false positive rate)로 인해 유효물질 도출 비율(hit rate)이 매우 낮은 것이 문제점인 상황이었다. 연구팀은 구조 유사도 분석 모듈과 상호작용 유사도 분석 모듈을 도킹 전후에 도입하여 가상 스크리닝의 정확도를 높이는 데 성공했다. 이번 연구를 통해 개발된 가상 스크리닝 기술은 단백질-약물 복합체 구조 정보를 이용하여 다양한 후보 약물을 빠르고 정확하게 스크리닝할 수 있는 것이 특징이다. 연구팀은 또한 바이러스 치료제로 주로 사용되는 핵산 유사체(nucleotide analogues) 기반 전구약물(prodrug)의 활성형 구조를 자동으로 생성하는 알고리즘을 개발했다. 전구약물은 그 자체로는 약효가 없고 체내 대사를 통해 활성형 구조로 변환되어야만 약효를 나타낸다. 따라서 전구약물은 활성형으로 구조변환 후, 도킹 시뮬레이션을 수행하는 것이 중요하다. 연구팀은 렘데시비르를 포함한 여러 핵산유사체 기반 전구약물들의 활성형 구조를 자동으로 생성하는 데 성공하였고, 도킹 시뮬레이션의 정확도를 향상시킬 수 있었다. 연구팀은 가상 스크리닝 플랫폼으로 사스-코로나바이러스-2(SARS-CoV-2)의 복제와 증식에 필수적인 역할을 하는 단백질 가수분해 효소(3CL hydrolase, Mpro)와 RNA 중합효소(RNA-dependent RNA polymerase, RdRp)를 저해할 수 있는 후보 화합물을 15종과 23종으로 각각 선별했다. 그 후, 가상 스크리닝으로 선별된 38종의 약물에 대해 한국파스퇴르연구소의 생물안전 3등급(BSL-3) 실험실에서 세포 이미지 기반 항바이러스 활성 분석 플랫폼을 활용해 약효를 검증했다. 먼저 사스-코로나바이러스-2를 감염시킨 원숭이 신장세포(Vero cell)를 이용한 시험관 내(in vitro) 실험을 수행한 결과, 38종의 약물 중 7종의 약물에서 항바이러스 활성이 확인됐다. 또한, 검증된 7종의 약물에 대해 인간 폐 세포(Calu-3 cell)에서 추가적인 검증 실험을 수행했고, 3종의 약물에서 항바이러스 활성이 확인됐다. 후보 약물에는 암 및 특발성 폐섬유증(idiopathic pulmonary fibrosis)으로 임상이 진행 중인 오미팔리십(omipalisib), 암 및 조로증(progeria)으로 임상이 진행 중인 티피파닙(tipifarnib), 식물 추출물로써 항암제로 임상이 진행 중인 에모딘(emodin)이 있다. 특히 오미팔리십은 현재 코로나19 표준 치료제인 렘데시비르 대비 항바이러스 활성이 약 200배 이상 높은 것으로 확인됐고, 티피파닙은 렘데시비르와 유사한 수준으로 항바이러스 활성이 확인됐다. 세포 수준에서 항바이러스 효과가 확인된 약물은 바이러스 감염 동물모델을 이용한 전임상시험이 필요하다. 이에 연구팀은 과기정통부의 코로나 치료제 전임상 지원사업을 통해 후보 약물 중 하나의 약물에 대해 약효를 평가했다. 그러나 이 과정에서 동물에 대한 약물 독성이 나타났다. 약물의 독성을 최소화하면서 치료 유효 농도에 도달할 수 있는 최적의 약물 농도를 찾기 위해 추가적인 전임상시험을 진행할 예정이다. 또한, 나머지 후보 약물들에 대해서도 전임상시험을 계획 중이다. 연구팀 관계자는 이번 연구를 통해 예측 성능이 우수한 약물 가상 스크리닝 플랫폼을 구축했고, 이를 통해 코로나19 치료제로 유망한 후보물질을 단기간에 발견할 수 있었다고 설명했다. 이상엽 특훈교수는 “이번 연구를 통해 신종 바이러스 출현 시 신속하게 대응할 수 있는 기반 기술을 마련했다는 데에 의의가 있으며, 이를 통해 향후 코로나바이러스 계열의 유사한 바이러스나 신종 바이러스 출현 시에도 적용할 수 있는 기술을 개발하고자 한다”라고 밝혔다. 한편 이번 연구는 과기정통부가 지원하는 KAIST 코로나대응 과학기술 뉴딜사업과 바이오·의료기술개발사업의 지원을 받아 수행됐다.
2021.07.08
조회수 6444
사람 3D 폐포 배양 기술로 코로나19 감염 기전을 규명하는 데 성공
우리 대학 연구진 포함 국내 연구진이 실험실에서 3차원으로 키운 사람의 폐포(허파꽈리)에 코로나19 바이러스를 배양해 감염 기전과 치료제 개발에 적용이 가능한 기술 개발에 성공했다. 국제 통계 사이트 월드오미터에 따르면 전 세계 누적 코로나바이러스감염증-19(이하 코로나19) 확진자 수는 25일 기준 4,331만 8,941명으로 지난 18일(4,030만 1,609명) 4,000만 명을 넘어선 후 일주일 만에 4,331만을 돌파하는 2차 대유행이 점차 현실화돼 가고 있다. 우리 대학 의과학대학원 주영석 교수 연구팀은 인간의 폐포 세포를 실험실에서 구현하는 3D 미니 장기기술을 개발하고 이를 활용해 코로나19 바이러스가 인간의 폐 세포를 파괴하는 과정을 정밀하게 규명하는 데 성공했다고 26일 밝혔다. 이번 연구는 영국 케임브리지대학 이주현 박사를 비롯해 국립보건연구원 국립감염병연구소 최병선 과장·기초과학연구원(IBS) 고규영 혈관연구단장(우리 대학 의과학대학원 교수)·서울대병원 김영태 교수와 우리 대학 교원창업기업인 ㈜지놈인사이트와 공동으로 진행됐다. 공동연구팀의 이번 연구 결과는 줄기세포 분야 세계적인 학술지 `Cell Stem Cell' 10월 22일 字 온라인판에 실렸다. (논문명: Three-dimensional human alveolar stem cell culture models reveal infection response to SARS-CoV-2) 정확한 질병 기전의 이해를 기반으로 치료제를 효과적으로 개발하기 위해서는 실험실에서 사용 가능한 인체를 모사한 모델 사용이 필수적이다. 코로나19 바이러스는 생쥐 모델에 감염시키기가 어렵고, 특히 실험실에서 사용할 수 있는 폐 세포 모델은 존재하지 않기 때문에 직접적인 감염 연구의 한계가 존재해왔다. 공동연구팀은 이런 문제를 해소하기 위해 지속적으로 배양이 가능한 3차원 인간 폐포 모델을 새롭게 정립했다. 이를 이용하면 실험실에서 사람의 폐 세포를 이용해 코로나19 바이러스 등 각종 호흡기 바이러스의 질병 기전을 연구할 수 있기 때문이다. 더 나가서 3차원 인간 폐포 모델은 약물 스크리닝 등 치료법 개발에도 직접적으로 응용할 수 있다는 장점이 있다. 공동연구팀은 폐암 등 사람의 수술 검사재료에서 확보되는 사람 폐 조직을 장기간 안정적으로 3차원 배양할 수 있는 조건을 알아내는 데 성공했다. 실험 결과, 3D 폐포는 코로나19 바이러스에 노출되면 6시간 내 급속한 바이러스 증식이 일어나 세포 감염이 완료됐으나, 이를 막기 위한 폐 세포의 선천 면역 반응 활성화에는 약 3일가량의 시간이 걸렸다. 이와 함께 하나의 코로나19 바이러스 입자는 하나의 세포를 감염시키는 데 충분하다는 사실을 알아냈다. 감염 3일째 공동연구팀은 세포 가운데 일부분이 고유의 기능을 급격히 상실한다는 사실도 확인했다. 공동 교신저자인 주영석 교수는 "이번에 개발한 3차원 인체 폐 배양 모델 규모를 확대한다면 코로나19 바이러스를 포함한 다양한 호흡기 바이러스의 감염 연구에 유용하게 사용될 것ˮ이라고 말했다. 주 교수는 이어 "동물이나 다른 장기 유래의 세포가 아닌 호흡기 바이러스의 표적 세포인 사람의 폐 세포를 직접적으로 질병 연구에 응용함으로써 효율적이고 정확한 기전 규명은 물론 치료제 개발에도 이용할 수 있다ˮ고 강조했다. 코로나19 바이러스 대응 기술개발을 위해서는 다양한 기관의 지원과 관련 연구자들의 협력 연구가 필수적이다. 공동연구팀의 이번 연구는 한국연구재단·질병관리청·기초과학연구원(IBS)·서울대학교 의과대학·유럽연구이사회(ERC)·서경배과학재단·휴먼프론티어과학재단의 지원을 받아 수행됐다.
2020.10.26
조회수 22529
알츠하이머 치료제 개발을 위한 새로운 가능성 제시
우리 연구진이 알츠하이머 발병 원인을 동시다발적으로 억제 가능한 치료제 개발 원리를 증명하고 또 동물실험에서 효능을 입증하는 등 알츠하이머병에 관한 새로운 치료제 개발에 대한 가능성을 제시함으로써 많은 주목을 받고 있다. 우리 대학 화학과 임미희 교수 연구팀이 알츠하이머 발병의 원인으로 알려진 ‘활성 산소종’과 ‘아밀로이드 베타’, ‘금속 이온’ 등을 손쉽고도 동시다발적으로 억제할 수 있는 치료제 개발 원리를 새롭게 증명하고 알츠하이머 질환에 걸린 동물 모델(실험용 쥐) 치료를 통해 이를 입증하는 데 성공했다고 11일 밝혔다. 이번 연구에는 KAIST 백무현 교수와 서울아산병원 이주영 교수도 함께 참여했으며 저명 국제 학술지인 미국 화학회지(Journal of the American Chemical Society) 4월 1일 字에 게재됐다. 이 논문은 특히 4월 26일 字 ‘편집장 선정 우수 논문(Editors’Choice Paper)’으로 꼽혀 많은 주목을 받고 있다. (논문명 : Minimalistic Principles for Designing Small Molecules with Multiple Reactivities against Pathological Factors in Dementia) 알츠하이머병은 치매를 일으키는 대표적인 뇌 질환이다. 이 질환의 원인으로 다양한 요소들이 제시됐지만, 원인 인자들 사이의 원리들은 아직도 명확하게 밝혀지지 않고 있다. 알츠하이머병을 일으키는 대표적인 원인 인자로는, 활성 산소종과 아밀로이드 베타, 금속 이온이 알려져 있다. 이 요인들은 개별적으로 질병을 유발할 뿐만 아니라, 상호 작용을 통해 뇌 질환을 더욱 악화시킬 수 있다. 예를 들어, 금속 이온들은 아밀로이드 베타와 결합해 아밀로이드 베타의 응집 속도를 촉진시킬 뿐만 아니라, 활성 산소종들을 과다하게 생성하여 신경독성을 유발할 수 있다. 따라서 이처럼 복잡하게 얽힌 여러 원인 인자들을 동시에 겨냥할 수 있는 새로운 알츠하이머병 치료제 개발이 필요하다. 임 교수 연구팀은 단순한 저분자 화합물의 산화 환원 반응을 이용해 알츠하이머병의 원인 인자들을 손쉽게 조절할 수 있음을 증명했다. 임 교수팀은 산화되는 정도가 다른 화합물들의 합리적 설계를 통해 쉽게 산화되는 화합물들은 알츠하이머 질병의 여러 원인 인자들을 한꺼번에 조절할 수 있다는 사실을 확인했다. 연구 결과, 임 교수 연구팀은 저분자 화합물의 산화 환원 반응으로 활성 산소종에 대한 항산화 작용의 가능성을 확인했을 뿐만 아니라 아밀로이드 베타 또는 금속-아밀로이드 베타의 응집 및 섬유 형성 정도 또한 확연히 감소되는 것을 실험적으로 증명했다. 이 밖에 알츠하이머병에 걸린 동물 모델(실험용 쥐)에 체외 반응성이 좋고 바이오 응용에 적합한 성질을 가지고 있는 대표 저분자 화합물을 주입한 한 결과, 뇌 속에 축적된 아밀로이드 베타의 양이 크게 줄어드는 현상과 함께 알츠하이머 동물 모델의 손상된 인지 능력과 기억력이 향상되는 결과를 확인했다. 이번 연구가 크게 주목받는 이유는 알츠하이머병을 치료하기 위한 화합물을 개발하는 데 있어 아주 단순한 방향족 저분자 화합물의 구조변화를 통해 산화 환원 정도를 조절하여 여러 원인 인자들을 동시에 조절할 수 있고 이러한 간단한 원리를 통해 누구나 손쉽게 치료제를 디자인할 수 있기 때문이다. 임미희 교수는“이번 연구는 아주 단순한 방향족 저분자 화합물의 산화 정도의 차이를 이용해 여러 원인 인자들과의 반응성 유무를 확연히 구분할 수 있다는 점을 증명한 데 의미가 있다”며, “이 방법을 신약 개발의 디자인 방법으로 사용한다면, 비용과 시간을 훨씬 단축시켜 최대의 효과를 가질 수 있다”고 덧붙였다. 임 교수는 이와 함께 “제시된 치료제의 디자인 방법은 다양한 퇴행성 뇌 질환 치료제들의 개발 성공 가능성을 높일 것으로 기대된다”라고 강조했다. 한편 이번 연구는 한국연구재단, 기초과학연구원과 서울아산병원 등의 지원을 받아 수행됐다.
2020.05.11
조회수 8423
김학성 교수, 세포 내 단백질 전달 효율 높이는 DNA 기반 나노구조체 개발
우리 대학 생명과학과 김학성 교수, 류이슬 박사 연구팀이 강원대 이중재 교수, 한국원자력연구원 강정애 박사와의 공동 연구를 통해 DNA를 기반으로 나노 구조체를 개발해 세포 속으로의 단백질 전달 효율을 높이는 기술을 개발했다. 이번 연구 결과는 국제 학술지 ‘스몰(Small)’에 2018년 12월 28일일자 표지논문으로 게재됐다. 단백질 치료제는 저분자 화합물에 비해 반응 부위를 구별해내는 특이성이 우수해 차세대 의약품으로 활발히 개발되고 있다. 단백질 치료제가 탁월한 효과를 내기 위해서는 치료용 단백질이 세포 내로 효율적으로 전달되는 기술이 선행돼야 한다. 지금까지는 화학적 합성법 등으로 단백질 전달체를 제작해 왔지만 생체 독성, 낮은 전달 효율, 복잡한 제조공정과 효과가 일관적이지 않은 재현성 등이 해결돼야 할 과제로 남아있다. 연구팀은 생체 분자인 DNA를 기반으로 나노 구조체를 제작해 생체 친화적이면서 특정 세포로의 높은 전달 효율을 보였다. 특히 다양한 단백질을 전달할 수 있는 범용적인 기술로서 폐암 동물 모델에서도 항암 물질을 전달해 높은 항암 효과를 입증했다. 제조공정도 복잡하지 않다. 먼저 금 나노입자 표면에 DNA를 부착한다. 다음으로 징크 핑거를 이용해 각 DNA 가닥에 암세포를 표적하는 생체 분자와 항암 단백질을 결합해 제작했다. DNA와 징크 핑거 간의 상호작용을 이용하므로 DNA 서열과 길이를 조절해 나노 구조체에 탑재되는 단백질의 양을 손쉽게 조절할 수 있다. 김학성 교수는 “생체 적합한 소재인 DNA와 단백질의 상호작용을 이용해 세포 내로 단백질을 효율적으로 전달하는 새로운 나노 구조체를 개발한 것이다”라며, “세포 내 단백질 치료제의 전달뿐 아니라 동반 진단용으로 광범위하게 활용될 것으로 기대된다”라고 말했다. 이번 연구 성과는 과학기술정보통신부‧한국연구재단 기초연구사업(글로벌연구실, 중견연구, 생애첫연구) 지원으로 수행됐다. □ 그림 설명 그림1. small 표지 그림2. 나노 구조체 제조 과정 모식도 그림3. 나노 구조체의 세포 내 단백질 전달 효과 그림4. 나노 구조체의 현미경 관찰 사진
2019.01.21
조회수 6659
김필한 교수 교원창업기업, 3차원 생체현미경 IVM-CM 출시
〈김필한 교수, 아이빔테크놀로지 김인선 CEO〉 우리 대학 나노과학기술대학원/의과학대학원 김필한 교수 연구팀이 소속된 교원창업기업 아이빔테크놀로지(IVIM Technology, Inc)가 3차원 올인원 생체 현미경 ‘IVM-CM’과 ‘IVM-C’를 개발했다. 이는 김필한 교수 연구팀의 혁신적 생체현미경(IntraVital Microscopy, IVM) 원천기술을 토대로 개발한 것으로 미래 글로벌 바이오헬스 시장에 활용될 예정이다. 세계적 현미경 제조사들의 기술을 넘어 혁신적 원천 기술을 기반으로 개발된 ‘IVM-C’와 ‘IVM-CM’은 여러 인간 질환의 복잡한 발생 과정을 밝히기 위한 기초 의․생명 연구의 차세대 첨단 영상장비가 될 것으로 기대된다. 생체현미경은 바이오제약 분야에서 크게 주목받고 있다. 최근 바이오제약 산업은 단순 합성약물개발보다 생체의 미세 구성단위인 세포 수준에서 복합적으로 작용하는 면역치료제, 세포치료제, 유전자치료제, 항체치료제 등 새로운 개념의 바이오의약품 개발에 집중하고 있기 때문이다. 인체는 수없이 많은 세포들이 복잡한 상호작용을 통해 동작한다. 그러나 현재 신약개발 전임상 단계에서는 시험관 내(in-vitro)와 생체 외(ex-vivo) 실험처럼 상호작용이 일어나지 않는 방식의 연구가 주로 수행되고 있다. 이러한 실험 결과들로만 얻은 결과로 임상시험에 진입한다면 오류와 실패의 가능성이 높아진다. 따라서 신약개발을 위한 임상시험 전 마지막 단계에서 반드시 살아있는 동물에서의 생체 내(in-vivo) 실험으로 효능 분석이 진행돼야 한다. 생체현미경 기술은 바로 이 과정에서 살아있는 동물 내부의 목표로 하는 세포, 단백질과 주입된 물질의 움직임을 동시에 3차원 고해상도 영상으로 직접 관찰할 수 있어 시험 결과의 오류, 시간, 비용을 현저히 줄일 수 있다. 기존 현미경 기술을 살아있는 생체에 적용하려면 영상획득 과정 동안 생체를 유지하기 위한 여러 추가적인 장비가 필요하다. 또한 영상 속도와 해상도의 한계로 인해 생체 내부의 세포를 직접 관찰하기 어려웠다. 아이빔테크놀로지의 ‘IVM-C’와 ‘IVM-CM’모델은 최초의 올인원 3차원 생체현미경 제품으로 살아있는 생체 내부조직을 구성하는 세포들을 고해상도로 직접 관찰할 수 있다. 기존 MRI나 CT 등으로 불가능했던 신체의 다양한 장기 내부에서 움직이는 세포들을 하나하나 구별해 관찰하는 것이 가능하다. 이를 통해 다양한 질병이 몸속에서 발생하는 과정에 대해 자세한 세포단위 영상 정보를 제공할 수 있다. 특히 ‘IVM-C’와 ‘IVM-CM’모델은 독보적인 초고속 레이저스캐닝 기술을 이용해 기존 기술수준을 크게 뛰어넘는 고해상도와 정밀도로 살아있는 생체 내부의 다양한 세포 및 주변 미세 환경과 단백질 등의 분자를 동시에 영상화하는 것이 가능하다. ‘IVM-C’모델은 살아있는 생체 내부의 고해상도 공초점 영상을 총 4가지 색으로 동시에 획득할 수 있으며, ‘IVM-CM’모델은 공초점 영상과 더불어 고속펄스레이저를 이용한 다중광자 영상까지 획득할 수 있다. 최고기술책임자(CTO) 김필한 교수는 “‘IVM-C’와 ‘IVM-CM’은 세포치료제, 면역치료제, 신약 및 선도물질 효능 분석 시 다양한 세포들이 존재하는 생체 내 환경에서 단일 세포 단위의 정밀한 효능 분석이 가능한 유일한 장비로 생명 현상을 보다 정밀하게 종합 분석하기 위한 혁신적 원천 기술로 급성장할 글로벌 바이오헬스 시장을 개척할 수 있는 차세대 의료, 의약 기술 발전을 가속화할 핵심 기술이 될 것이다”고 말했다. 아이빔테크놀로지는 시장성과 성장 가능성을 높게 평가받아 창업 후 3개월 만인 작년 9월 30억 원의 투자 유치를 달성한 바 있다. 대표이사는 김인선 전 제넥신 경영지원본부장, 최고기술책임자는 김필한 교수, 영업 및 마케팅 총괄은 독일 광학 기업인 칼자이스에서 14년간 경험을 쌓은 박수진 이사가 맡고 있다. 또한 우리 대학 박사 출신들로 구성된 기술개발팀과 연구서비스팀이 차세대 후속 장비 개발과 글로벌 바이오헬스 시장 활성화를 위해 노력하고 있다. 김필한 교수 연구팀은 창업원 엔드-런(End-Run) 사업화도약과제에 참여했으며, 아이빔테크놀로지는 창업원의 지원을 받아 설립됐다. □ 사진 설명 사진1. IVM-CM 장비사진 사진2. IVM-CM 생체영상결과 사진 사진3. IVM-CM 생체 내부 세포 추적 사진
2018.09.05
조회수 7576
2018 KAIST 핵심 특허기술 이전 설명회 개최
KAIST(총장 신성철)가 환자의 면역반응을 활성화시켜 인체 본연의 면역 시스템이 암세포를 사멸시키도록 유도하는 ‘면역 활성화 항암치료제’와 실시간 AI(딥러닝) 기술을 활용해 저해상도 영상을 고해상도 영상(4K UHD)으로 즉시 변환시키는 ‘초고화질 영상변환 하드웨어기술’ 등 당장 사업화 가능성이 높은 6개의 핵심 특허기술을 소개한다. KAIST는 10일 오후 1시부터 서울 삼성동 코엑스에서 산학협력단(단장 최경철) 주관으로 ‘2018 KAIST 핵심 특허기술 이전 설명회’를 개최한다고 3일 밝혔다. 이 설명회는 KAIST 연구진이 보유한 우수 기술을 기업에게 이전해 일자리 창출은 물론 기업 경쟁력을 높이는 산학협력 모델을 조성키 위해 마련됐다. 산학협력단 관계자는 “지난 3월 KAIST가 오는 2031년까지 세계 10위권 선도대학으로의 진입을 선포한 ‘KAIST 비전 2031’의 5대 혁신분야 중 하나인 기술사업화 혁신방안의 일환으로 이번 설명회를 준비했다”며 “핵심 특허기술을 선정해 기업에게 이전하는 설명회를 매년 개최할 방침”이라고 밝혔다. KAIST는 선정된 기술을 이전받는 기업들에게는 기술보증기금과 협력을 통해 기업금융연계 지원서비스를 제공할 계획이다. 이들 기업은 또 KAIST로부터 비즈니스 모델 개발과 특허-R&D 연계 전략분석, 국내·외 마케팅 우선 추진 등 다양한 서비스를 지원을 받게 된다. 올해 KAIST가 선보이는 기술은 4차 산업혁명의 중심이 되는 바이오, 나노, 인공지능, 반도체 분야의 핵심 특허기술로 ①새로운 방식의 나노 패터닝 플랫폼 기술(정희태 교수·생명화학공학과) ②면역 활성화 항암치료제후보 물질 확보(최병석 교수·화학과) ③미생물을 이용해 바이오연료 등을 대량생산할 수 있는 기술(이상엽 특훈교수·생명화학공학과) 등 이다. 이밖에 ④컴팩트한 싱글샷 초분광 카메라 기술(김민혁 교수·전산학부) ⑤AI(딥러닝) 기반 고속 초고해상도 업스케일링 기술(김문철 교수·전기및전자공학부) ⑥방사선에 강인한 모스펫 소자(이희철 교수·전기및전자공학부)도 6개 핵심 특허기술에 포함됐다. 특히, 김문철 교수와 김민혁 교수의 특허기술은 지난 8월 31일부터 9월 5일까지 독일 베를린에서 열린‘국제 가전 박람회(IFA 2018)’에서도 전시, 소개돼 참가자들로부터 많은 주목을 받은 기술이다. KAIST가 올해 선정한 6개 핵심기술은 산업계에 파급 효과가 큰 기술로 향후 다양한 분야로의 응용 가능성과 시장규모·기술혁신성 등을 고려해 선정됐다. KAIST는 이를 위해 지난 4월부터 교수들이 직접 연구·개발해 특허를 보유한 교내 우수 기술을 대상으로 공모를 진행하고 접수된 특허기술을 대상으로 변리사·벤처 투자자·사업화 전문가 등 15명 내외로 구성된 심사단의 자문과 평가를 거쳤다. 9월 10일 진행되는 설명회에는 기술개발 및 기술이전을 포함한 상호 협력방안을 논의하기 위해 기업 관계자 및 투자자 등 200여 명이 초청될 예정이다. 연구자인 이상엽 특훈 교수 등 교수 6인도 모두 참석해 각 특허기술별로 15분씩 발표와 함께 현장에서 기술이전에 관한 상담 등도 진행한다. 이와 함께 신성철 총장을 비롯해 강낙규 기술보증기금 이사장 직무대행, 이준표 한국소프트뱅크 대표이사, 차기철 KAIST 동문회장 등 내·외빈이 참석해 4차 산업혁명 시대를 맞아 대학이 보유 중인 첨단기술에 관한 기술사업화의 중요성을 강조할 계획이다. 최경철 KAIST 산학협력단장은“이번 기술이전 설명회를 계기로 KAIST가 보유한 핵심 특허기술을 기업에게 적극적으로 소개하고, 양질의 일자리 창출과 함께 글로벌화 등 기업발전의 기회가 될 수 있는 산학협력의 성공적인 모델로 발전시켜 나갈 것”이라고 말했다. 최 단장은 이어“아직 발굴되지 않은 핵심 특허기술과 각종 사업추진 관련 아이디어 등을 지속적으로 발굴해 대학의 핵심기술을 활용한 기술사업화를 활성화하고 산학협력 사업을 적극적으로 추진해나갈 계획”이라고 밝혔다.
2018.09.03
조회수 7538
김준 교수, 난치성 유전질환인 섬모병증 치료제 후보 발굴
〈 김준 교수, 김용준 박사과정 〉 우리 대학 의과학대학원 김준 교수가 연세대학교 생명공학과 권호정 교수 연구팀과의 공동 연구를 통해 난치성 유전질환인 섬모병증의 치료제 후보를 개발했다. 이번 연구 결과는 섬모병증 치료제 개발을 위한 기반이 될 것으로 기대되며 유사한 난치성 유전질환에 대한 저분자 화합물 약물 개발 플랫폼으로도 활용 가능할 것으로 예상된다. 김용준 박사과정이 1저자로 참여하고 정인지, 김성수, 정유주 연구원이 공동 저자로 참여한 이번 연구는 의, 과학 분야 국제 학술지 ‘저널 오브 클리니컬 인베스티게이션(Journal of Clinical Investigation)’ 7월 23일자 온라인 판에 게재됐다.(논문명 Eupatilin rescues ciliary transition zone defects to ameliorate ciliopathy-related phenotypes) 세포 소기관인 일차섬모는 배아가 발생하는 과정에서 세포 간 신호전달에 관여하고 망막 광수용체 세포가 기능하는 역할을 하는 등 인체에 중요한 기관이다. 섬모병증은 이러한 섬모의 형성에 필수적인 유전자들의 돌연변이로 인해 발생되며 소뇌발달 및 신장 이상, 망막 퇴행 등의 증상을 보인다. 현재 섬모병증을 치료하는 약물은 개발되지 않았다. 섬모병증 뿐 아니라 기능손실 유전자 돌연변이가 원인이 되는 대부분의 희귀유전질환은 유전자 치료를 제외하고는 치료 약물의 개발이 이뤄지지 않았다. 연구팀은 문제 해결을 위해 섬모병증 원인의 하나인 CEP290 유전자 돌연변이를 유전자 편집기법으로 모사한 세포를 구축한 뒤 화합물 라이브러리 스크리닝 기법을 통해 섬모병증에서 나타나는 섬모형성 부진 현상을 극복할 수 있는 천연 저분자 화합물을 발굴했다. 발굴된 화합물은 CEP290 단백질과 복합체를 이뤄 섬모형성과 기능에 관여하는 단백질(NPHP5)에 작용하는 것으로 밝혀졌다. CEP290 단백질이 유전자 돌연변이로 인해 만들어지지 않는 경우 NPHP5 단백질도 정상적으로 작용하지 못하는데 이 화합물은 NPHP5의 기능을 정상화시켜 복합체가 담당하던 기능의 일부를 회복함을 확인했다. 또한 연구팀은 발굴한 화합물을 섬모병증 증상을 갖는 동물 모델에 주입했고 망막 퇴행 현상을 지연시키는 효과를 입증했다. 1저자인 김용준 박사과정은 “이번 연구는 기능손실 유전자 돌연변이로 인해 발생하는 유전질환도 저분자 화합물 약물로 치료가 가능함을 규명했다는 의미를 갖는다”고 말했다. 김준 교수는 “발굴된 후보약물의 효과를 동물실험을 통해 확인했기 때문에 인체에서의 효과 또한 증명하는 후속 연구를 진행할 예정이다”고 말했다. 이번 연구는 보건복지부 희귀질환연구센터지원사업, 한국연구재단 바이오의료기술개발사업, 글로벌연구실 사업의 지원으로 수행됐다. □ 그림 설명 그림1.섬모형성 이상을 회복시키는 약물 발굴 그림2. 발굴된 약물에 의해 섬모병증 모델 생쥐의 망막퇴행이 지연되는 효과 확인
2018.07.30
조회수 8168
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2