-
그린수소 생산 촉매 수명 예측 세계 첫 성공
태양광, 풍력 등 재생에너지를 활용한 수소 생산 시스템에서는 에너지원의 특성상 전력 공급이 일정하지 않아, 수전해 장치*의 부하가 지속적으로 변화한다. KAIST 연구진이 이런 전력 부하의 변동이 불가피한 그린 수소 생산 환경에서, 전기 에너지 효율을 높이고 낮은 전압에서도 수소 생산 효율을 높이는 촉매의 열화(성능 저하)를 정량적으로 진단할 수 있는 세계 최초의 방법론을 제시했다.
*수전해 정치(Water Electrolyzer): 물을 전기 분해하여 수소와 산소를 생산하는 장치로 탄소 배출 없이 수소를 생산할 수 있어 그린 수소 생산의 핵심 기술로 주목받고 있음
우리 대학 생명화학공학과 정동영 교수 연구팀이 수전해 시스템에서 촉매의 실질적인 수명을 예측할 수 있는 새로운 평가 지표인 ‘운영 안정성 지수’를 개발했다.
연구팀은 수전해 시스템이 꺼지거나 낮은 부하로 운전될 때 발생할 수 있는 촉매 및 지지체의 열화 현상 촉매의 손상이나 성능 저하 현상을 규명하고, 이를 정량화할 수 있는 새로운 평가 지표인 ‘운영 안정성 지수(Operational Stability Factor, OSF)’를 제안했다.
운영 안정성 지수는 수전해 장비가 반복적으로 작동 및 정지(on/off)하는 과정에서 발생하는 촉매 열화 정도를 수치로 반영함으로써, 실제 운전 조건에서의 내구수명을 보다 정확하게 예측할 수 있도록 설계되었다.
예를 들어, 운영 안정성 지수가 100%이면 부하 변동 중에도 촉매가 전혀 손상되지 않는다는 뜻이고, 99%이면 매번 시스템이 꺼질 때마다 1%씩 촉매가 손상된다는 의미다.
향후 이 지표를 통해 내구성을 고려한 운전 조건의 최적화를 가능해지며, 장수명 수전해 시스템 운영 전략 수립에 중요한 기준으로 활용될 수 있다.
정동영 교수는 “운영 안정성 지수(OSF)는 수전해 촉매의 장기 수명을 수치로 예측할 수 있는 강력한 평가 기준으로, 향후 내구성 진단을 위한 국제 표준으로 발전할 가능성이 크다”고 밝혔다.
해당 논문은 생명화학공학과 박사과정 김진엽 연구원이 제1 저자로 에너지 분야 최고 권위지 중 하나인 ‘에이시에스 에너지 레터스(ACS Energy Letters, IF=19.3)’지에 5월 2일 자로 게재됐다.
※ 논문명: Operational Stability Factor: A Comprehensive Metric for Assessing Catalyst Durability in Dynamic Water Electrolyzer Conditions DOI: https://doi.org/10.1021/acsenergylett.5c00406
※ 저자정보:김진엽(KAIST 생명화학공학과 박사과정, 제1 저자), 노종수(KAIST 생명화학공학과 박사과정, 공저자), 정동영(KAIST 생명화학공학과, 교신저자)
한편, 이번 연구는 한국연구재단 소재 글로벌 영커넥트 사업, KAIST 도약과제의 지원을 받아 수행됐다.
2025.05.21
조회수 332
-
백금 효율 100배 높인 신개념 촉매 개발
플라스틱, 섬유, 자동차 부품, 전자제품 등 다양한 제품의 생산에 꼭 들어가는 프로필렌(propylene)은 석유화학 산업의 핵심 원료다. KAIST 연구진이 이 프로필렌을 저렴하고 효율적으로 생산할 수 있는 신개념 촉매를 개발했다. 기존보다 100배 이상 효율이 높은 백금 기반 촉매다.
우리 대학 생명화학공학과 최민기 교수 연구팀이 값싼 금속 갈륨(Ga)과 알루미나(Al2O3)를 기반으로, 백금은 극소량(100ppm, 0.01%)만 사용한 촉매를 개발했다. 이 촉매는 기존 고농도 백금(10,000ppm)을 사용한 상용 촉매보다 더 뛰어난 성능을 보였다.
프로필렌은 프로판(propane)에서 수소를 떼어내는 ‘프로판 탈수소화(PDH, propane dehydrogenation)’ 공정을 통해 생산할 수 있다. 이 공정에는 백금 촉매가 널리 사용되어 왔다. 백금은 탄소와 수소 사이의 결합을 끊고 수소를 제거하는 데 매우 효과적이다. 그러나 백금은 가격이 높고 반복 사용 시 성능이 저하되는 단점이 있었다.
연구팀은 갈륨과 알루미나를 기반으로 백금을 꼭 필요한 만큼만 넣은 촉매를 설계해 이러한 문제를 해결했다.
새로운 촉매의 핵심 원리는 다음과 같다. 갈륨은 프로판의 탄소-수소 결합을 활성화해 수소를 떼어내고 프로필렌을 생성하며, 백금은 표면에 남은 수소 원자들을 결합시켜 수소 기체(H2)로 전환, 촉매 표면에서 제거한다. 두 금속이 역할을 분담함으로써 백금 사용량을 줄이면서도 성능을 유지할 수 있게 했다.
특히 백금과 갈륨의 비율이 적절할 때 최적의 성능을 나타냈으며, 연구팀은 이 이상적인 조성 비율을 과학적으로 설명하고, 예측할 수 있는 정량적 지표도 제시했다.
또한, 기존 백금 촉매의 주요 약점이었던 반복 사용할수록 백금 입자가 뭉쳐 성능이 급격히 떨어지는‘소결(sintering)’현상 문제도 해결했다. 연구팀은 세륨(Ce)을 소량 첨가해 백금 입자의 뭉침을 억제하는 데 성공했다. 그 결과, 20회 이상 반응과 재생을 반복한 뒤에도 촉매 성능이 안정적으로 유지됐다.
최민기 교수는 “이번 연구는 백금 사용량을 기존 대비 1/100 수준으로 줄이면서도 성능을 유지하거나 오히려 향상시킬 수 있다는 가능성을 제시했다”며 “촉매 비용 절감, 교체 주기 감소, 폐촉매 감소 등 경제적·환경적 효과를 동시에 기대할 수 있다”고 설명했다.
이어 “향후 대규모 공정 실증과 상업화 가능성도 검토할 예정이며, 산업 현장에 적용될 경우 프로필렌 생산의 경제성과 효율성이 크게 향상될 것”이라고 덧붙였다.
이번 연구는 최민기 교수가 교신저자로, 박사과정 이수성 학생이 제1저자로 참여했으며, 연구 결과는 화학 및 화학공학 분야 최고 권위 학술지인 미국화학회지(Journal of the American Chemical Society, JACS) 2월 13일 자로 게재됐다.
※ 논문명: Ideal Bifunctional Catalysis for Propane Dehydrogenation over Pt-Promoted Gallia-Alumina and Minimized Use of Precious Elements
※ https://pubs.acs.org/doi/10.1021/jacs.4c13787.
본 연구는 한국연구재단과 한화솔루션㈜의 지원을 받아 수행됐다.
2025.05.12
조회수 549
-
고성능 촉매 개발, 반도체 핫전자 기술을 통해 해결하다
우리 대학 화학과 박정영 석좌교수, 신소재공학과 정연식 교수, 그리고 KIST 김동훈 박사 공동 연구팀이 반도체 기술을 활용하여 촉매 성능에 특정 변인이 미치는 영향을 정량적으로 분석할 수 있는 새로운 플랫폼을 성공적으로 구현했다. 이를 통해 대표적인 다경로 화학 반응인 메탄올 산화 반응에서 메틸 포르메이트 선택성을 크게 향상시켰으며, 이번 연구는 차세대 고성능 이종 촉매 개발을 앞당기는 데 기여할 것으로 기대된다고 1일 밝혔다.
다경로 화학 반응에서는 반응성과 선택성의 상충 관계로 인해 특정 생성물의 선택성을 높이는 것이 어려운 문제로 남아 있다. 특히, 메탄올 산화 반응에서는 이산화탄소와 더불어 고부가 가치 생성물인 메틸 포르메이트가 생성되므로, 메틸 포르메이트의 선택성을 극대화하는 것이 중요하다.
그러나 기존 불규칙적인 구조의 이종 촉매에서는 금속-산화물 계면 밀도를 비롯한 여러 변인이 동시에 촉매 성능에 영향을 미치기 때문에 특정 변수가 개별적으로 미치는 영향을 분석하는 것이 어렵다. 이에 KAIST-KIST 공동 연구팀은 균일하게 정렬된 금속산화물 나노 패턴을 구현할 수 있는 반도체 기술을 활용하여 이종 촉매 성능에 영향을 미칠 수 있는 다른 변인을 통제하고, 오로지 금속산화물의 물성만이 촉매 성능에 미치는 영향을 정량적으로 분석하였다. 구체적으로, 산소 공극 (Oxygen Vacancy)의 양을 조절하기 위해 다양한 환경에서 열처리한 세륨 산화물 (CeOx) 나노 패턴을 제작하고, 이를 백금(Pt) 박막 촉매 위에 전사하여 금속산화물의 산소 공극이 메틸 포르메이트 선택성에 미치는 영향을 분석했다.
연구 결과, 산소 공극이 가장 풍부하게 생성된 진공 환경에서 열처리한 CeOx-Pt 이종 촉매의 경우, 열처리를 하지 않은 CeO2-Pt 이종 촉매 대비 약 50% 향상된 메틸 포르메이트 선택성을 보였으며, 이는 반응 중 발생하는 핫 전자의 검출을 통해 실시간으로도 확인되었다. 또한, 연구팀은 양자역학 기반의 DFT 시뮬레이션을 통해 금속산화물 내부의 산소 공극이 이종 촉매의 성능에 미치는 영향을 이론적으로 규명하였다. 시뮬레이션 결과, 산소 공극은 금속/산화물 계면에 많은 양의 전자를 축적시키면서 반응 중간체 간 결합을 촉진하였고, 이로 인해 메틸 포르메이트 선택성이 향상됨을 확인하였다.
이에 대해 박정영 교수는 “이번에 개발한 반도체기반 플랫폼을 통해 핫전하와 촉매 선택성의 정량적 분석이 가능해짐에 따라 핫전하 기반의 광촉매 센서의 상용화 개발 및 핫전하 기반 광열촉매 시스템의 상용화 개발로 이어질 수 있다.”고 언급했다. 신소재공학과 정연식 교수는 “기존의 무작위 구조를 가진 촉매에서는 특정 변수의 영향을 정량적으로 분석하는 것이 어려웠으나, 반도체 기술을 활용한 이번 연구를 통해 보다 효율적인 이종 촉매 설계와 선택성 조절 전략을 제시할 수 있을 것으로 기대된다”고 밝혔다.
신소재공학과 이규락 박사, 화학과 송경재 박사, KIST 홍두선 박사가 공동 제 1 저자로 참여한 이번 연구는 국제학술지 ‘네이처 커뮤니케이션스 (Nature Communications)’에 3월 25일 자로 온라인 게재됐다. (논문 제목: Unraveling Oxygen Vacancy-Driven Catalytic Selectivity and Hot Electron Generation on Heterointerfaces using Nanostructured Platform)
이번 연구는 산업통상자원부 에너지혁신인재양성사업, 과학기술정보통신부 중견연구자지원사업, 그리고 과학기술정보통신부 국가전략기술소재개발사업 등의 지원을 받아 수행됐다.
2025.04.01
조회수 1853
-
피부에 부착할 수 있는 촉감 전달 패치 개발
기계공학과 경기욱 교수 연구팀이 피부에 부착하여 다양한 촉감을 전달할 수 있는 초경량의 얇고 유연한 인공근육기반 촉감 전달 패치를 개발했다. 최근 가상현실(virtual reality, VR)과 증강현실(augmented reality, AR)의 기술이 각광받으면서, 더욱 현실감을 증대시키기 위해서 시각과 청각뿐만 아니라 촉각을 전달하는 기술이 중요한 역할을 하고 있다. 또한 사용자가 로봇을 원격조종하여 세밀한 작업을 하기 위해서는, 세밀한 촉감 전달이 필요하다. 그러나 단순한 진동이나 압력을 넘어서, 세밀하고 다양한 촉감을 전달할 수 있는 기술은 여전히 큰 도전이다.
개발된 촉감 구동기는 지름 6 mm, 두께 1.1 mm로 매우 작고 얇은 구조임에도 불구하고, 압력에서부터 고주파 진동까지 다양한 촉감을 전달할 수 있다. 또한 개발된 구동기는 32 mg 의 매우 가벼운 무게에도 불구하고 25 g의 추를 빠르게 밀어 올릴 수 있을 정도로 높은 출력밀도를 갖고 있다.
연구팀은 이 구동기를 손가락 끝 좁은 크기에 다수 배열하여 개별적으로 제어함으로써 다양한 촉감을 생성할 수 있는 햅틱 패치를 개발했다. 개발된 촉감 전달 패치는 얇고 유연하여 피부에 쉽게 부착되며, 가상 환경 속 물체의 3차원 형상과 표면질감을 정교하게 구현할 수 있다. 이 기술은 가상/증강 현실에서의 새로운 상호작용 방식을 제시하며, 차세대 촉감 전달 장치로서뿐만 아니라 초소형 로봇 등 다양한 분야에서도 활용될 것으로 기대된다.
본 연구는 졸업생 윤정환 박사의 박사학위 논문 연구로, 연구 결과는 지난 3월 국제학술지 ‘사이언스 어드벤시스(Science Advances)’ Vol.11(12)에 게재됐다. (논문명: Skin-attached haptic patch for versatile and augmented tactile interaction) 본 연구는 ETRI, UCLA와 공동으로 수행되었으며, 국가과학기술연구회(CRC23021-000) 및 한국전자통신연구원(24YB1700)의 지원을 받았다.
2025.03.28
조회수 1578
-
수소 경제 핵심, 세계 최고 수준 암모니아 촉매 개발
신재생 에너지를 이용한 수소 생산은 친환경 에너지 및 화학물질 생산의 핵심적인 기술이다. 하지만 이렇게 생산된 수소는 저장과 운송이 어렵기 때문에 탄소 배출이 없고, 액화가 쉬운 암모니아(NH3) 형태로 수소를 저장하려는 연구가 세계적으로 널리 진행되고 있다. 우리 연구진은 매우 낮은 온도와 압력에서도 에너지 손실 없이 암모니아를 합성할 수 있는 고성능 촉매를 개발했다.
우리 대학 생명화학공학과 최민기 교수 연구팀이 에너지 소비와 이산화탄소 배출량을 크게 줄이면서도 암모니아 생산성을 획기적으로 높일 수 있는 혁신적인 촉매 시스템을 개발했다고 11일 밝혔다.
현재 암모니아는 철(Fe) 기반 촉매를 이용해 하버-보슈 공정이라는 100년이 넘은 기술로 생산되고 있다. 하지만, 이 방식은 500℃ 이상의 고온과 100기압 이상의 고압이 필요해 엄청난 에너지를 소비하고, 세계 이산화탄소 배출량에서 상당한 비율을 차지하는 주범으로 지목됐다. 더구나 이렇게 생산된 암모니아는 대규모 공장에서 제조되기 때문에 유통 비용도 만만치 않다.
이에 대한 대안으로, 최근 물을 전기로 분해하는 기술인 수전해를 통해 생산된 그린 수소를 이용해 저온·저압(300도, 10기압)에서 암모니아를 합성하는 친환경 공정에 관한 관심이 급증하고 있다. 그러나 이러한 공정을 구현하려면 낮은 온도와 압력에서도 높은 암모니아 생산성을 확보할 수 있는 촉매 개발이 필수적이며, 현재의 기술로는 이 조건에서 암모니아 생산성이 낮아 이를 극복하는 것이 핵심 과제로 남아 있다.
연구팀은 루테늄(Ru) 촉매와 강한 염기성을 갖는 산화바륨(BaO) 입자를 전도성이 뛰어난 탄소 표면에 도입해 마치 ‘화학 축전지(chemical capacitor)*’처럼 작동하는 신개념 촉매를 개발했다.
*축전지: 전기 에너지를 +전하와 –전하로 나누어 저장하는 장치
암모니아 합성 반응 도중 수소 분자(H2)는 루테늄 촉매 위에서 수소 원자(H)로 분해 되며, 이 수소 원자는 양성자(H+)와 전자(e-) 쌍으로 한번 더 분해되게 된다. 산성을 띠는 양성자는 강한 염기성을 띠는 산화바륨에 저장되고 남은 전자는 루테늄과 탄소에 분리 저장되는 것으로 밝혀졌다.
이처럼 특이한 화학 축전 현상을 통해 전자가 풍부해진 루테늄 촉매는 암모니아 합성 반응의 핵심인 질소(N2) 분자의 분해 과정을 촉진해 촉매 활성을 비약적으로 증진시키는 것으로 밝혀졌다.
특히 이번 연구에서는 탄소의 나노구조를 조절함으로써 루테늄의 전자 밀도를 극대화해 촉매 활성을 증진시킬 수 있음을 발견했다. 이 촉매는 300도, 10기압인 온건한 조건에서 기존 최고 수준의 촉매와 비교하여 7배 이상 높은 암모니아 합성 성능을 나타냈다.
최민기 교수는 “이번 연구는 전기화학이 아닌 일반적인 열화학적 촉매 반응 과정에서도 촉매 내부의 전자 이동을 조절하면 촉매 활성을 크게 향상할 수 있음을 보여준 점에서 학계의 큰 주목을 받고 있다”고 밝혔다.
이어 “동시에 이번 연구를 통해 고성능 촉매를 활용하면 저온·저압 조건에서도 효율적인 암모니아 합성이 가능함이 확인되었다. 이를 통해 기존의 대규모 공장 중심 생산 방식에서 벗어나 분산형 소규모 암모니아 생산이 가능해지며, 친환경 수소 경제 시스템에 적합한 더욱 유연한 암모니아 생산·활용이 가능해질 것으로 기대된다.”라고 설명했다.
생명화학공학과 최민기 교수가 교신저자, 백예준 박사과정 학생이 제 1 저자로 연구에 참여하였으며, 연구 결과는 촉매 화학 분야에서 권위적인 국제 학술지인 ‘네이처 카탈리시스(Nature Catalysis)’에 지난 2월 24일 게재됐다.
(논문명 : Electron and proton storage on separate Ru and BaO domains mediated by conductive low-work-function carbon to accelerate ammonia synthesis, https://doi.org/10.1038/s41929-025-01302-z)
한편, 이 연구는 한국에너지기술연구원과 한국연구재단의 지원을 받아 수행되었다.
2025.03.11
조회수 2854
-
비오는 날 터치 걱정 끝! KAIST, 인간 촉각 수준 감지
최근 개발된 로봇들은 계란을 섬세하게 집는 수준에 이르렀는데, 이같은 결과는 손 끝에 집적된 압력 센서가 촉각 정보를 제공했기 때문이다. 그러나, 이러한 세계 최고 수준의 로봇들조차도 물 속, 굽힘, 전자기 간섭과 같은 복잡한 외부 간섭 요소들이 존재하는 환경에서 압력을 정확히 감지하는 것은 아직 어렵다. 우리 연구진이 물기가 묻은 스마트폰 화면과 같은 환경에서도 외부 간섭 없이 안정적으로 작동하며, 인간의 촉각 수준에 근접한 압력 센서를 개발하는 데 성공했다.
우리 대학 전기및전자공학부 윤준보 교수 연구팀이 비가 오거나 샤워 후 스마트폰 화면에 물이 묻으면, 터치가 엉뚱하게 인식되는 '고스트 터치'와 같은 외부 간섭의 영향을 받지 않으면서도 높은 해상도로 압력을 감지할 수 있는 압력 센서를 개발했다고 10일 밝혔다.
흔히 터치 시스템으로 사용되고 있는 정전용량 방식 압력 센서는 구조가 간단하고 내구성이 뛰어나 스마트폰, 웨어러블 기기, 로봇 등의 휴먼-머신 인터페이스(Human-Machine Interface) 기술에 널리 활용되고 있다. 그러나 물방울이나 전자기 간섭, 굴곡으로 인한 굽힘 등 외부 간섭 요소에 의해 오작동이 발생하는 치명적인 문제가 있었다.
연구팀은 이와 같은 문제를 해결하기 위해 우선 정전용량 방식 압력 센서에서 발생하는 간섭의 원인을 정확히 파악하고자 했다. 그 결과, 센서 가장자리에서 발생하는 ‘프린지 필드(Fringe Field)'가 외부 간섭에 극도로 취약한 것을 확인했다.
이를 근본적으로 해결하기 위해서는 문제의 원인인 프린지 필드를 억제해야 한다는 결론에 이르렀다. 따라서, 연구팀은 이론적 접근을 통해 프린지 필드에 영향을 미치는 구조적 변수들에 대해 집중적으로 탐구했고 전극 간격을 수백 나노미터(nm) 수준으로 좁힐 경우 센서에서 발생하는 프린지 필드를 수 퍼센트 이하로 억제할 수 있음을 확인했다고 밝혔다.
연구팀은 독자적인 마이크로/나노 구조 공정 기술을 활용해 앞서 설계한 900나노미터(nm) 수준의 전극 간격을 갖는 나노 갭 압력 센서를 개발했다. 개발된 센서는 압력을 가하는 물질에 관계없이 압력만을 신뢰적으로 감지했으며 굽힘이나 전자기 간섭에도 감지 성능에 영향이 없는 것을 검증했다.
또한, 연구팀은 개발한 센서의 특성을 활용해 인공 촉각 시스템을 구현했다. 인간의 피부에는 메르켈 원반(Merkel's disc)라는 압력 수용기가 있어 압력을 감지하는데, 이를 모사하기 위해서는 외부 간섭에는 반응하지 않고 오직 압력에만 반응하는 압력 센서 기술이 필요했지만 기존 기술들로는 이러한 조건을 만족시키기가 어려웠다.
윤준보 교수 연구팀이 개발한 센서는 이러한 제약을 모두 극복했으며, 밀도 또한 메르켈 원반 수준에 도달해 무선으로 정밀한 압력 감지가 가능한 인공 촉각 시스템을 구현하는 데 성공했다.
더 나아가, 다양한 전자기기로의 응용 가능성을 확인하기 위해 포스 터치 패드 시스템 역시 개발해 압력의 크기와 분포를 간섭 없이 높은 해상도로 얻을 수 있음을 검증했다고 밝혔다.
윤준보 교수는 “이번 나노 갭 압력 센서는 비 오는 날이나 땀이 나는 상황에서도 기존 압력 센서처럼 오작동하지 않고 안정적으로 동작한다. 많은 사람들이 일상에서 겪어온 불편을 해소할 수 있을 것으로 기대한다.”라고 말했다.
전기및전자공학부 양재순 박사, 정명근 박사과정 그리고 성균관대 반도체융합공학과 유재영 조교수(KAIST 박사 졸업)가 제1 저자로 수행한 이번 연구는 저명 국제 학술지 `네이처 커뮤니케이션즈 (Nature Communications)'에 2025년 2월 27일 출판됐다.
(논문 제목: Interference-Free Nanogap Pressure Sensor Array with High Spatial Resolution for Wireless Human-Machine Interfaces Applications, https://doi.org/10.1038/s41467-025-57232-8)
한편, 이번 연구는 한국연구재단의 중견연구지원사업과 선도연구센터지원사업의 지원을 받아 수행됐다.
2025.03.10
조회수 2330
-
고활성 수소연료전지 촉매 개발, ‘백금 사용량 1/3 저감, 내구성 2배 향상’
우리 대학 신소재공학과 조은애 교수 연구팀이 인하대학교 함형철 교수 연구팀과 공동연구를 통해 수소연료전지의 핵심 소재인 전극에 들어가는 백금의 사용량 저감에 성공하였으며, 내구성이 향상된 촉매 소재를 개발했다고 7일 밝혔다.
수소차의 동력원으로 사용되는 양성자 교환막 연료전지(proton exchange membrane fuel cell, PEMFC)는 값비싼 백금 촉매 소재를 사용한다. 따라서, 백금 사용량 저감 및 반응 중 안정적인 활성을 갖는 촉매 소재 개발이 양성자 교환막 연료전지 기술 개발에 있어 중요한 부분을 차지한다.
연료전지는 백금 촉매의 성능을 높여 백금 사용량을 줄이려는 전략으로 상대적으로 값싼 비귀금속과의 합금화를 주로 사용한다. 그러나, 일반적인 합금 촉매의 경우 비귀금속이 반응 중 녹아 나올 수 있으며, 녹아 나온 비귀금속에 의해 연료전지가 손상되는 추가 문제를 유발할 수 있다.
이를 해결하기 위한 전략으로, 녹아 나온 상태에서도 연료전지에 손상을 주지 않는 것으로 알려진 아연을 촉매 개발에 이용하였다. 하지만, 다른 비귀금속에 비해 아연의 낮은 *환원 전위로 인해 백금-아연 촉매를 제작하는 데에 또 다른 어려움이 있다.
(*환원 전위: 주로 금속 원소의 환원 반응이 일어나는 기준이 되는 평형 전위 값을 의미하며, 해당 값이 클수록 금속으로 환원되려는 성질이 강함)
공동연구팀은 백금과 비귀금속을 반응기 내부에서 동시에 환원시켜 제조하는 일반적인 방법이 아닌, 아연 단일원자 구조를 포함한 탄소 *담지체를 먼저 제조한 후 담지체에 존재하는 원자 단위로 분산된 아연을 이용하는 방법을 적용하였다.
(*담지체: 전기화학촉매의 분산성, 안정성을 높이기 위해 촉매와 함께 사용되는 물질. 일반적으로 탄소 기반 물질이 사용됨)
구체적인 전략으로는, 제조된 아연 단일원자 구조를 포함한 탄소 담지체 위에 백금 나노입자를 합성하였다. 그 후, 고온 열처리를 통해 담지체에 존재하는 아연 원자가 백금 나노입자로 이동하면서 원자 수준에서 정렬된 구조를 갖는 백금-아연 나노입자 구조로 전환되었다.
합성된 백금-아연 나노입자 촉매는 일반적인 방법에 비해 아연을 효과적으로 도입할 수 있었으며, 고온 열처리 과정에서 입자끼리 뭉치는 현상을 억제하여 나노입자가 갖는 넓은 표면적을 효과적으로 사용하는 데에 긍정적인 영향을 주었다.
또한, 무질서한 배열인 합금 구조가 아닌 원자 수준에서 정렬된 구조의 백금-아연 나노입자의 촉매를 제조하여, 향상된 성능과 내구성을 보일 수 있었다.
동일 백금 사용량 기준으로 촉매의 성능을 비교한 결과, 상용 백금 나노입자 촉매 대비 백금-아연 나노입자에서 3배의 성능 향상을 보였다.
더불어, 연료전지 구동 환경 모사 실험의 전과 후의 성능 비교를 통해 내구성 평가를 진행하였으며, 상용 백금 나노입자 촉매 대비 공동연구팀이 개발한 백금-아연 나노입자 촉매에서 2배의 내구성 향상을 보였다.
공동연구팀은 우수한 내구성을 뒷받침하기 위해 밀도범함수 이론 기반 연산을 이용하였다. 백금-아연 나노입자와 아연 단일원자 담지체 사이에서 강한 결합력을 확인하였으며, 이를 바탕으로 백금-아연 나노입자 촉매의 우수한 내구성을 설명했다.
조은애 교수는 “일반적인 방법으로는 구현이 어려운 백금-아연 나노입자 촉매를 아연 단일원자 구조 담지체를 이용하여 합성할 수 있었다”고 설명하며, “저렴하고 매장량이 풍부한 금속인 아연을 활용하여 백금 사용량을 기존 상용 촉매 대비 1/3 수준으로 줄일 수 있었으며, 내구성 또한 향상된 촉매를 개발할 수 있었다”고 평가했다.
우리 대학 신소재공학과 이광호 박사과정이 제1저자로 참여한 이번 연구 결과는 화학 공학 분야 국제 학술지 ‘케미컬 엔지니어링 저널(Chemical Engineering Journal)’ 2025년 2월 1일자 온라인판에 게재됐다. (논문명 : Anchoring ordered PtZn nanoparticles on MOF-derived carbon support for efficient oxygen reduction reaction in proton exchange membrane fuel cells)
한편, 이번 연구는 과학기술정보통신부 한국연구재단의 지원을 받아 수행됐다.
2025.02.07
조회수 2739
-
백금 1/10 줄인 촉매로 수전해 셀 생산 성공
수전해 셀은 물을 전기화학적으로 분해해 수소를 생산하는 기술로, 탄소 중립 시대를 위한 필수적인 에너지 변환 기술이지만 산업적 활용을 위해서는 고가의 백금 사용량이 크게 요구되는 한계가 있었다. 한국 연구진이 백금 사용량을 1/10로 줄여 수전해 셀의 경제성을 높이는데 성공했다. 이번 연구에서 측정한 수전해 셀 성능은 미국 에너지부(Department of Energy, DOE)가 제시한 수전해 셀 성능 및 귀금속 사용량의 2026년 목표치를 유일하게 충족시켰다고 평가받았다.
우리 대학 생명화학공학과 이진우 교수 연구팀이 화학과 김형준 교수 연구팀과 공동연구를 통해 음이온 교환막 기반 수전해 셀의 성능과 안정성을 획기적으로 높이는 고성능 고안정성 귀금속 단일 원자 촉매를 개발했다고 31일 밝혔다.
연구팀은 귀금속 촉매의 열화 메커니즘을 역이용하는 ‘자가조립원조 귀금속 동적배치’전략을 개발했다. 이 방법은 1,000℃ 이상의 고온에서 귀금속이 자발적이고 선택적으로 탄화물 지지체에 단일원자로 분해돼 안정적으로 담지되는 합성 기술이다. 이를 통해, 상용 백금 촉매 대비 1/10 수준의 백금 사용량으로도 더 높은 성능과 안정성을 구현했다.
단일 원자 촉매는 금속 원자가 지지체 표면에 고립된 형태로 담지돼 높은 귀금속당 촉매 효율을 나타내지만, 기존 저온 환원법에서는 촉매 성능 및 안정성 확보에 한계가 있었다.
연구팀은 귀금속 전구체와 고분자 사이의 분자적 상호작용 및 귀금속-지지체 사이의 상호작용을 응용해 자가조립원조 귀금속 동적배치라는 새로운 단일 원자 촉매합성 메커니즘을 제시했다. 또한, 연구팀은 이 합성 기술을 통해 백금뿐만 아니라 이리듐, 팔라듐, 로듐 등 다양한 귀금속 단일 원자 촉매에도 적용 가능성을 입증했다.
개발된 백금 단일 원자 촉매의 경우, 염기 조건 수소 생성반응에서 높은 안정성을 가지며 높은 밀도의 귀금속 활성점을 통해 우수한 수소 생산 성능을 보였다. 이 결과 상용 백금 촉매 대비 5배 높은 귀금속당 수소 생산 성능을 구현할 수 있었다.
연구팀은 개발 촉매의 상용성 평가를 위해 음이온 교환막 기반 수전해 셀에 적용했다. 개발된 백금 단일 원자 촉매는 상용 백금 촉매 대비 1/10 백금 사용량에도 불구하고 그를 능가하는 3.38A/cm2 (@ 1.8 V)의 높은 성능을 기록했으며, 1A/cm2의 산업용 전류밀도에서도 우수한 안정성을 나타냈다. 특히 이 성능은 미국 에너지부(Department of Energy, DOE)가 제시한 수전해 셀 성능 및 귀금속 사용량의 2026년 목표치를 충족시키는 유일한 음이온 교환막 기반 수전해 셀 성능으로 평가받는다.
제1 저자인 김성빈 연구교수는 "이번 기술은 수전해 셀의 원가를 크게 절감시키며 이번 연구에서 제시된 자가조립원조 귀금속 동적배치 전략은 수전해 셀뿐만 아니라 다양한 귀금속 기반 촉매 공정에도 응용할 수 있어 산업적 파급력이 클 것으로 보인다“고 말했다.
생명화학공학과 김성빈 연구교수가 주도하고, UNIST 에너지화학공학과 신승재 교수, KIST 수소연료전지센터 김호영 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `에너지 인바이론멘탈 사이언스 (Energy & Environmental Science)' 1월 18권에 출판됐으며, 후면 표지논문(inside back cover)으로 선정됐다.
(논문명 : Self-assembly-assisted dynamic placement of noble metals selectively on multifunctional carbide supports for alkaline hydrogen electrocatalysis) DOI: 10.1039/D4EE04660A
한편 이번 연구는 한국연구재단의 나노미래소재원천기술개발사업, 중견연구자지원사업, 미래소재디스커버리사업 및 한국슈퍼컴퓨팅센터의 지원을 받아 수행됐다.
2025.02.03
조회수 2179
-
버려지는 이산화탄소를 되살릴 수 있다면
세계적으로 기후 변화와 탄소 배출 문제의 심각성이 대두되면서 이산화탄소(CO2)를 화학 연료와 화합물 등의 자원으로 전환해서 활용하는 기술이 절실한 상황이다. 우리 대학 화학과 박정영 교수 연구팀이 한국재료연구원 나노재료연구본부 박다희 박사 연구팀과 공동연구를 통해 이산화탄소(CO2) 전환 효율을 크게 향상하는 촉매 기술을 개발했다.
기존의 이산화탄소(CO2) 전환 기술은 높은 에너지를 소비하는 것에 비해 효율은 낮아 상용화가 어렵다. 특히, 단원자 촉매(SACs)는 촉매 합성이 복잡하고, 금속 산화물 지지체(촉매 입자를 안정적으로 유지하거나 내구성을 높이는 역할)와 결합 안정성을 유지하기 어려워 촉매 성능이 떨어졌다.
이러한 한계를 극복하기 위해 연구팀은 단일 및 이중 단원자 촉매 기술을 개발하고 간단한 공정으로 촉매 효율을 높이는 기술을 선보였다. 본 성과는 이중 단원자 촉매(DSACs)로 금속 간 전자 상호작용을 적극 활용해 기존보다 50% 이상 높은 전환율과 우수한 선택성(촉매가 원하는 생성물을 많이 생성할 수 있도록 유도하는 능력)을 구현했다.
본 기술은 금속 산화물 지지체 내 산소 공공(Oxygen Vacancy)과 결함 구조를 정밀하게 제어해 이산화탄소(CO2) 전환 반응의 효율과 선택성을 획기적으로 높이는 촉매 설계 기술이다. 산소 공공이 촉매 표면에 이산화탄소가 잘 흡착되도록 돕고, 단원자 및 이중 단원자는 수소(H2)가 흡착되도록 돕는다. 산소 공공과 단원자 및 이중 단원자가 함께 작용하면서 이산화탄소(CO2)가 수소(H2)와 만나 원하는 화합물로 쉽게 전환되는 것이다. 특히, 이중 단원자 촉매(DSACs)는 두 금속 원자 간의 전자 상호작용을 적극 활용해 반응 경로를 조절하고 효율을 극대화했다.
연구팀은 에어로졸 분무 열분해법(Aerosol-Assisted Spray Pyrolysis)을 적용해 간단한 공정으로 촉매를 합성하고 대량 생산 가능성도 확보했다. 이는 복잡한 중간 과정 없이 액체 상태의 재료를 에어로졸(안개 같은 작은 입자)로 만든 후 뜨거운 챔버에 보내면 촉매가 완성되는 간단한 공정 방식이다. 해당 방식은 금속 산화물 지지체 내부에 금속 원자를 균일하게 분산시키고, 결함 구조를 정밀하게 조절할 수 있도록 돕는다. 이처럼 금속 산화물 지지체의 결함 구조를 정밀하게 제어함으로써 단일 및 이중 단원자 촉매를 안정적으로 형성하고 이중 단원자 촉매(DSACs)를 활용해 기존 단일 원자 촉매 사용량을 약 50% 줄이면서도 이산화탄소(CO2) 전환 효율을 기존 대비 약 두 배 이상 향상시키고, 99% 이상의 높은 선택성을 구현했다.
본 기술은 화학 연료 합성, 수소 생산, 청정에너지 산업 등 다양한 분야에 활용할 수 있다. 또한, 촉매 합성법(에어로졸 분무 열분해법)이 간단하고 생산 효율도 높아서 상용화될 가능성이 매우 크다.
연구책임자인 박다희 선임연구원은 "본 기술은 이산화탄소(CO2) 전환 촉매의 성능을 획기적으로 향상하는 동시에 간단한 공정을 통해 상용화를 가능하게 한 중요한 성과”라며, "탄소중립 실현을 위한 핵심 기술로 활용될 수 있을 것으로 기대된다.”라고 밝혔다. 또한 박정영 교수는 “본 연구는 새로운 종류의 단원자 촉매를 상대적으로 쉽게 합성할 수 있어 다양한 화학 반응에 쓰일 수 있고, 온실가스로 인한 지구온난화 문제 해결에 가장 시급한 연구 분야인 이산화탄소 분해/활용 촉매개발에 중요한 단초를 제공한다.”라고 언급했다.
본 연구는 한국재료연구원의 주요사업과 과학기술정보통신부, 산업통상자원부, 국가과학기술연구회의 지원을 받아 수행되었다. 연구 결과는 촉매 및 에너지 분야에서 권위 있는 저널인 어플라이드 카탈러시스 비: 인바이런멘탈 앤 에너지(Applied Catalysis B: Environmental and Energy(JCR 상위 1%, IF 20.3))에 온라인 게재됐다.
*논문(Applied Catalysis B: Environmental and Energy)
DOI 주소 https://doi.org/10.1016/j.apcatb.2024.124987
2025.01.23
조회수 2513
-
강이연 산업디자인학과 조교수, 외교부 공공외교위원회 민간위원 위촉
우리 대학 산업디자인학과 강이연 조교수가 ‘외교부 공공외교위원회 신임 민간위원’으로 위촉되었다. ‘공공외교위원회’는 대한민국 외교부 장관을 위원장으로 하고 공공외교 정책의 종합적이고 체계적인 추진을 위한 주요 사항을 심의·조정하는 기구이다. 위원회는 매년 공공외교 기본계획에 따라 중앙행정기관과 지방자치단체가 수립한 시행계획을 통합하여 종합시행계획을 수립하고, 대한민국의 공공외교 활동을 체계적으로 추진한다.
이 기관은 정부 부처와 민간 전문가들로 구성되어 있으며, 민간위원은 총 다섯 명의 각 분야 전문인으로 구성된다. 우리 대학 강이연 산업디자인학과 조교수는 올해 11월에 신임 민간 위원으로 위촉되어 2년 임기로 활동하게 됐다. 그 시작으로 최근 개최된 제9차 공공외교위원회에 참석했다.
‘공공외교위원회’ 회의에서는 2025년도 공공외교 종합 시행 계획이 심의·의결되었으며, 우리 국가 위상 제고, 공공 외교의 지역적 다변화, 차세대와의 미래 협력 등 다양한 사업을 충실히 추잔하기 위한 안들이 논의되었다. 강 교수는 앞으로 공공외교위원회 민간위원으로서 대한민국의 국제적 위상 제고와 글로벌 중추 국가로서의 비전 실현에 이바지할 예정이다.
한편, 강이연 산업디자인학과 조교수는 영국 왕립예술학교에서 박사학위를 취득한 후 우리 대학에서 객원교수로 활동하였고 영국왕립예술학회의 펠로우이다. 2022년부터 우리 대학 산업디자인학과에 재직 중이다. 동시에 아티스트로서 국제적으로 활동하며 ‘뉴미디어 아트와 경험디자인’ 분야를 주로 연구하고 있다. 구글, 나사와 협업한 전시를 세계기후협약 COP28 두바이에서 선보였으며, 디자인 최고 권위상인 Reddot award, iF award를 수상한 바 있다. 강 교수의 작품은 영국의 Victoria and Albert 뮤지엄에 소장되어 있다.
2024.12.26
조회수 2739
-
62% 향상 수명연장 수소 연료전지 촉매 개발
수소 연료전지는 미래의 친환경 에너지 시스템으로 주목받고 있지만 귀금속인 백금이 다량 사용되고 연료전지 구동 과정에서 탄소 지지체가 부식돼 백금 입자끼리 뭉치면서 연료전지 성능이 저하되는 문제를 가지고 있다. KAIST 연구진이 개발한 수소 연료전지 촉매로 고강도 내구성 평가 이후에도 기존 상용 촉매 대비 약 62% 이상의 전류 밀도를 유지시켜 수소 연료전지 수명을 획기적으로 연장시키는데 성공했다.
우리 대학 신소재공학과 정연식 교수, 조은애 교수 공동연구팀이 수소전기차의 핵심 부품인 연료전지 장치에 활용될 수 있는 고내구성 촉매 소재를 개발했다고 4일 밝혔다.
이번에 개발된 촉매는 실제 구동 환경에서 수천 시간에 맞먹는 강도의 2만 사이클 내구성 평가를 거친 후에도 초기 성능에 가까운 수준을 유지할 만큼 높은 내구성을 갖추고 있어 기존 연료전지에서 가장 큰 걸림돌로 지적됐던 수명 문제를 해결하는 성과로 평가된다.
연구팀은 ‘3차원 자이로이드 나노구조체 기반 촉매 플랫폼’을 개발하는 데 성공했다. 자이로이드 나노구조체는 3차원적으로 길게 연결된 구조로 인해 전기적 연결성이 우수하고 이온이나 기체의 이동이 이동할 수 있는 빈 통로가 많은 장점이 있어 차세대 에너지 소재로 유망하다.
연구팀은 자기조립 특성이 있는 고분자를 활용해 3차원 자이로이드를 합성하고 백금 입자를 강한 결합으로 탑재해 연료전지 구동 시에도 백금 입자의 이동을 원천 차단하고자 했다.
또한, 자이로이드 내부에 증기압을 발생시켜 자이로이드 내부 공간까지 비움으로써 전해질이 더 원활하게 출입할 수 있도록 설계했다.
이를 통해, 내부가 차 있는 일반 자이로이드 구조체 대비 약 3.6배 넓은 촉매 표면적을 확보했다. 그뿐만 아니라 자기조립 고분자에 자체 포함된 피리딘을 이용한 질소 도핑을 통해, 우수한 전기전도성, 촉매 활성도 및 내구성 역시 확보할 수 있었다.
실제 연료전지 구동 환경과 유사한 환경에서 2만 사이클의 고강도 내구성 평가 이후 상용 촉매 대비 약 62% 이상의 출력 밀도 향상을 보였다.
정연식 교수는 “이번 연구는 정밀한 고분자 자기조립 제어 기술을 기반으로 기계적, 화학적으로 견고하고 물질 전달 능력이 탁월한 신규 지지체 소재를 설계해, 촉매의 수명과 활성도를 획기적으로 개선할 수 있음을 입증한 성과”라고 말했으며, “이 기술은 차세대 에너지 전환 기술에 있어 귀금속 촉매 지지체 소재 개발 방향성을 제시하는 중요한 역할을 할 것으로 기대된다”라고 덧붙였다.
신소재공학과 최성수 박사과정 학생, 양현우 박사과정 학생, 이건호 박사 등이 공동 제1 저자로 참여한 이번 연구는 국제학술지‘어드밴스드 머티리얼즈 (Advanced Materials)’11월 21일 字 온라인판에 게재됐다. (논문명: Self-assembled Hollow Gyroids with Bicontinuous Mesostructures: A Highly Robust Electrocatalyst Fixation Platform)
DOI: https://doi.org/10.1002/adma.202412525
한편 이번 연구는 한국 정부(산업통상자원부)가 지원하는 한국에너지기술평가원(KETEP)의 지원 및 과학기술정보통신부가 지원하는 한국연구재단(NRF)의 나노-소재기술개발사업의 지원을 받아 수행되었다.
2024.12.04
조회수 3904
-
AI가 그린수소와 배터리 미래 신소재 찾아낸다
그린수소 또는 배터리 분야 등 청정 에너지의 성능을 높이는데 가장 큰 영향을 미치는 소재 중 하나는 전극이다. 한국 연구진이 차세대 전극 및 촉매로 활용될 수 있는 신소재를 효율적으로 설계하는 인공지능 기술을 개발했다. 이 기술을 통해 친환경 에너지 사회를 촉진하는데 중요한 역할을 할 것으로 기대된다.
우리 대학 기계공학과 이강택 교수 연구팀의 주도로 한국에너지기술연구원 (원장 이창근), 한국지질자원연구원 (원장 이평구), KAIST 신소재공학과 공동 연구팀들과 함께, 인공지능(AI)과 계산화학을 결합해 그린수소 및 배터리에 활용될 수 있는 스피넬 산화물 신소재를 설계하고, 성능과 안정성을 예측할 수 있는 새로운 지표를 개발하는 데 성공했다고 21일 밝혔다.
스피넬 산화물(AB2O4)은 그린수소 또는 배터리 분야의 차세대 촉매 및 전극 물질로 활용되어 산소 환원 반응(ORR)과 산소 발생 반응(OER)의 속도를 향상시킬 수 있는 잠재력이 높은 물질이다. 하지만, 수천 개 이상의 후보군을 일일이 실험으로 성능을 확인하기 위해서는 많은 시간과 노력이 소요된다.
연구팀은 이를 해결하기 위해 AI와 계산화학을 동시에 사용해 1,240개의 스피넬 산화물 후보 물질을 체계적으로 선별하고, 그중 기존 촉매보다 뛰어난 성능을 보일 촉매 물질들을 찾는 데 성공했다.
그뿐만 아니라, 연구팀은 이번 연구를 통해서 전공 서적에서 손쉽게 찾아볼 수 있는 원자들의 전기음성도를 바탕으로 스피넬 촉매의 안정성과 성능을 예측할 수 있는 지표를 개발했다.
이로써 기존의 실험 방식에 비해 촉매 설계 과정을 훨씬 더 빠르고 효율적으로 진행할 수 있게 되었다. 또한, 연구팀은 스피넬 산화물에서 산소 이온이 움직일 수 있는 3차원 확산 경로를 발견해, 촉매의 성능을 더욱 향상할 수 있는 메커니즘을 처음으로 규명했다.
이강택 교수는 “이번 연구는 인공지능을 통해 신소재의 성능을 빠르고 정확하게 예측할 수 있는 새로운 방법을 제시했다”며, “특히, 이를 통해 그린수소와 배터리 분야에 활용될 수 있는 촉매 및 전극의 개발을 가속화해, 고성능의 친환경 에너지 기술의 발전에 기여할 것”이라고 전했다.
연구팀이 제시한 예측 방법은 기존 실험 방식에 비해 신소재 개발의 효율성을 70배 이상 크게 높였으며, 이러한 성과가 차세대 에너지 변환 및 저장 장치를 위한 소재 개발 연구에 핵심 기술로 자리 잡을 가능성을 높게 보고 있다.
한국에너지기술연구원 이찬우 박사가 공동 교신 저자로 참여하였으며, 한국지질자원연구원 정인철 박사, KAIST 신소재공학과 심윤수 박사가 공동 제1 저자로 참여하고, KAIST 신소재공학과 육종민 교수, 한국지질자원연구원 노기민 박사가 공동 저자로 참여한 이번 연구 결과는 세계적인 학술지‘어드밴스드 에너지 머터리얼즈, Advanced Energy Materials (IF:24.4)’에 중요한 연구 결과임을 인정받아 표지(Inside Front cover) 에 선정됐으며, 24년 10월 21일에 게재됐다. (논문명: A Machine Learning-Enhanced Framework for the Accelerated Development of Spinel Oxide Electrocatalysts)
한편, 이번 연구는 과학기술정보통신부의 개인기초 연구사업, 집단기초연구사업, 그리고 국가과학기술연구회 창의형 융합연구사업의 지원을 받아 수행됐다.
2024.11.21
조회수 4333