본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%B4%88%EC%A0%80%EC%A0%84%EB%A0%A5
최신순
조회순
99% 실시간 가스를 구별하는 초저전력 전자 코 기술 개발
우리 대학 기계공학과 박인규 교수, 윤국진 교수와 물리학과 조용훈 교수 공동 연구팀이 `초저전력, 상온 동작이 가능한 광원 일체형 마이크로 LED 가스 센서 기반의 전자 코 시스템'을 개발하는 데 성공했다고 14일 밝혔다. 공동 연구팀은 마이크로 크기의 초소형 LED가 집적된 광원 일체형 가스 센서를 제작한 이후 합성곱 신경망 (CNN) 알고리즘을 적용해 5가지의 미지의 가스를 실시간으로 가스 종류 판별 정확도 99.3%, 농도 값 예측 오차 13.8%의 높은 정확도로 선택적 판별하는 기술을 개발했다. 특히 마이크로 LED를 활용한 광활성 방식의 가스 감지 기술은 기존의 마이크로 히터 방식 대비 소모 전력을 100분의 1 수준으로 획기적으로 절감한 것이 특징이다. 이번 연구에서 개발된 초저전력 전자 코 기술은 어떠한 장소에서든지 배터리 구동 기반으로 장시간 동작할 수 있는 모바일 가스 센서로 활용될 것으로 기대된다. 타깃 가스의 유무에 따라 금속산화물 가스 감지 소재의 전기전도성이 변화하는 원리를 이용한 반도체식 가스 센서는 높은 민감도, 빠른 응답속도, 대량 생산 가능성 등 많은 장점이 있어 활발히 연구되고 있다. 금속산화물 감지 소재가 높은 민감도와 빠른 응답속도를 보이기 위해서는 외부에서 에너지 공급을 통한 활성화가 필요한데 기존에는 집적된 히터를 이용한 줄 히팅 방식이 많이 사용됐다. 고온 가열 방식의 반도체식 가스 센서는 높은 소모전력과 낮은 선택성 등의 한계점이 있었다. 한편, 이번 연구에서 연구팀은 자외선 파장대의 빛을 방출하는 마이크로 크기의 LED를 제작한 후 바로 위에 산화인듐(In2O3) 금속산화물을 집적함으로써 광활성 방식의 가스 센서를 개발했다. 광원과 감지 소재 사이의 거리를 최소화한 광원 일체형 센서 구조는 광 손실을 줄임으로써 μW(마이크로와트) 수준의 초저전력 가스 감지를 실현할 수 있었다. 또한, 연구진은 광 활성식 가스 센서의 반응성을 극대화하기 위해 금속산화물 표면에 금속 나노입자를 코팅해 국소 표면 플라즈몬 공명(Localized surface plasmon resonsance, LSPR)* 현상을 활용했고 이를 통해 센서의 응답도가 향상되는 것을 확인했다. * 국소표면 플라즈몬 공명에 의해 생성된 핫 전자들이 금속산화물로 이동(Hot electron transfer)해 타깃 가스와의 산화-환원 반응을 촉진하는 원리 그 후, 공동 연구팀은 앞서 설명한 반도체식 가스 센서의 낮은 선택성 문제를 해결하기 위해서 마이크로 LED 가스 센서에 서로 다른 감지 소재를 집적해 센서 어레이를 제작하고 합성곱 신경망의 딥러닝 알고리즘을 적용하여 각 타깃 가스가 만들어내는 고유한 금속산화물의 응답 패턴(저항 변화)을 포착하고 분석했다. 그 결과, 개발된 전자 코 시스템은 총 소모전력 0.38mW(밀리와트)의 초저전력으로 5가지 가스(일반 공기, 이산화질소, 에탄올, 아세톤, 메탄올)를 실시간으로 선택적 판별할 수 있었다. 연구책임자인 기계공학과 박인규 교수는 "마이크로 LED 기반의 광 활성식 가스 센서는 상온 동작이 가능하고 고온 가열 줄히팅을 하는 기존의 반도체식 가스 센서에 비해 소모전력이 100분의 1 수준으로 초저전력 구동이 가능해 대기오염 모니터링, 음식물 부패 관리 모니터링, 헬스케어 등 다양한 분야에서도 응용될 수 있는 기반 기술이 될 것ˮ이라고 연구의 의미를 설명했다. 우리 대학 기계공학과 이기철 박사과정 학생이 제1 저자로 참여하고 한국연구재단의 지원으로 수행된 이번 연구 결과는 나노 과학 분야의 저명한 국제 학술지 `ACS 나노 (ACS Nano)'에 2023년 1월 10일 字 정식 게재됐다. (논문명: Ultra-Low-Power E-Nose System Based on Multi-Micro-LED-Integrated, Nanostructured Gas Sensors and Deep Learning)
2023.02.14
조회수 3138
언제 어디서든 사람을 살리는 상시 동작형 유해가스 감지 센서 개발
밀폐된 공간에서 유해가스를 감지해 안전사고를 사전에 방지할 수 있는 초 저전력 유해가스 감지 센서가 우리 연구진에 의해 개발됐다. 우리 대학 전기및전자공학부 윤준보 교수 연구팀은 독자 기술로 개발한 나노 소재 *'나노린'을 통해 상시 동작이 가능한 초 저전력 유해가스 감지 센서를 개발했다고 1일 밝혔다. ☞ 나노린(Nanolene): 완벽하게 정렬된 나노와이어 다발들이 공중에 떠 있는 구조를 지칭하는 용어. 나노와이어의 Nanoline과 그래핀과 같은 2차원 나노 재료의 접미사 –ene을 합성해 탄생한 단어다. 일산화탄소 등의 유해가스에 의한 안타까운 인명 사고는 과거로부터 현재까지 끊임없이 반복되고 있다. 이에 따라 유해가스를 실시간으로 감지하는 예방 기술에 대한 대중의 관심과 수요가 꾸준히 증가하는 추세인데 학계에서도 유해가스 감지 센서 개발을 위한 연구가 활발하다. 금속산화물을 기반으로 하는 가스 센서는 소형화에 유리하고, 생산 단가가 저렴해서 관련 산업에 활용이 가능한 가스 감지 기술로 주목받아 왔다. 가스 센서는 수백 도 씨(℃) 내외의 고온에서 동작하기 때문에 히터를 통한 열에너지 공급이 필수적이다. 이때 주변으로 방출되는 다량의 열과 히터의 높은 소비 전력 때문에 스마트폰과 같은 휴대용기기에 적용 가능한 실시간 가스 센서를 개발하기는 쉽지 않다. 윤준보 교수팀이 개발한 유해가스 감지 센서는 독자적인 나노 공정 기술을 통해 개발한 나노 소재 `나노린'을 활용해 초 저전력으로 언제, 어디서든 항상 사용이 가능한 게 큰 특징이다. 나노 소재는 독특한 전기적, 화학적 특성 때문에 미래 센서 기술의 핵심 구성 요소로 주목받고 있지만, 제조 방법상 크기를 제어하기가 쉽지 않고 원하는 위치에 정렬된 형태로 구현하는 것 또한 어렵다. 윤 교수 연구팀은 나노린을 통해 이런 문제점을 해결했다. 윤 교수팀이 개발한 이 기술은 기존의 나노 소재 제작 방법과는 다른, 일반적인 반도체 공정을 기반으로 제작하기 때문에 양산성이 뛰어나고(대량생산이 가능) 산업적 활용 가치 또한 매우 높다고 평가받고 있다. 연구팀은 우선 나노린을 초 저전력 나노 히터에 활용했다. 시험과정에서 나노 소재가 지닌 고유의 열 고립 효과를 통해 기존 마이크로히터의 물리적 한계를 뛰어넘는 초 저전력 고온 구동을 실현하는 데 성공했다. 이와 함께 나노 히터에 완벽하게 정렬된 형태의 금속산화물 나노와이어를 일체형으로 집적해 가스 센서로 응용했는데 스마트폰 내장에 적합한 수준의 낮은 소비 전력으로 일산화탄소 가스 검출에 성공했다. 과거 광부들은 유해가스로부터 생명을 지키기 위해 탄광에 들어갈 때마다 카나리아라는 새를 데리고 들어갔다. 카나리아는 메탄, 일산화탄소 가스에 매우 민감해 유해가스에 소량만 노출돼도 죽는다. 광부들은 카나리아의 노래가 들리면 안심하고 채굴했고 카나리아가 노래를 부르지 않을 땐 탄광에서 뛰쳐나와 스스로 생명을 지킬 수 있었다. 윤준보 교수는 "상시 동작형 가스 센서는 언제 어디서나 유해가스의 위험을 알려주는 '스마트폰 속 카나리아'로 활용이 기대된다ˮ고 연구결과를 소개했다. 제1 저자인 전기및전자공학부 최광욱 박사는 이를 휴대용기기에 내장하기 적합한 초 저전력 가스 센서 기술이라고 설명하면서 "이 기술이 가스 사고를 사전에 차단하고 인명 사고를 막는 데 활용되길 기대한다ˮ고 말했다. KAIST UP 프로그램과 한국연구재단의 중견연구자 지원사업을 통해 수행된 이번 연구결과는 국제 학술지 '어드밴스드 펑셔널 머터리얼즈 (Advanced Functional Materials)' 8월 12일 字에 온라인으로 게재되는 한편 연구 내용의 우수성을 인정받아 오프라인 저널의 후면 표지논문으로 선정됐다. (논문명: Perfectly Aligned, Air-Suspended Nanowire Array Heater and Its Application in an Always-On Gas Sensor)
2020.09.01
조회수 24293
사물인터넷(IoT)을 위한 무전원 인터넷 연결 기술 개발
우리 대학 연구진이 초저전력, 저비용으로 우리 생활의 모든 사물을 연결하는 사물인터넷(IoT, Internet of Things) 서비스를 광범위하게 제공하는 핵심 기술을 개발해 초연결 사회 구현을 한층 앞당길 수 있을 것으로 기대된다. 사물인터넷이란 각종 사물이 센서와 통신기기를 통해 서로 연결돼 양방향으로 소통함으로써 개별 객체로는 제공하지 못했던 서비스를 제공하는 기술이다. 전기및전자공학부 김성민, 이융 교수와 정진환 박사과정, 한국뉴욕주립대 류지훈 교수(컴퓨터과학과)가 참여한 공동 연구팀은 후방산란(Backscattering) 기술을 이용한 무전원 사물인터넷 게이트웨이 개발에 성공했다고 13일 밝혔다. 후방산란 기술이란 기기의 무선 신호를 직접 만들어내지 않고, 공중에 존재하는 방사된 신호를 반사해 정보를 전달하는 방식의 기술이다. 무선 신호를 생성하는데 전력을 소모하지 않아 초저전력으로 통신을 가능케 하는 기술이다. 김성민 교수 연구팀은 이러한 초저전력 후방산란 기술을 이용해 사물인터넷 기기들이 방사하는 무선 사물인터넷 신호가 와이파이(WiFi) 신호로 공중에서 변조되도록 설계했다. 후방산란 기술 기반의 무전원 게이트웨이를 이용하면 사물인터넷 기기를 와이파이 네트워크에 쉽게 연결할 수 있기 때문에 인터넷 연결성의 범위가 크게 확장될 것으로 기대된다. 전기및전자공학부 정진환 박사과정이 제1 저자로 참여한 이번 연구는 지난 6월 캐나다 토론토에서 열린 모바일 컴퓨팅 분야의 최고 권위 학술대회 `ACM 모비시스(ACM MobiSys) 2020'에서 발표됐다. (논문명 : Gateway over the air: Towards Pervasive Internet Connectivity for Commodity IoT). 5G 네트워크의 핵심 구성요소 중 하나인 사물인터넷은 각종 사물인터넷 기기들이 인터넷에 연결돼야만 다양한 서비스를 제공할 수 있는 구조로 돼 있다. 사물인터넷 기기들을 인터넷에 연결하기 위해서는 사물인터넷 게이트웨이라는 다수의 무선 송수신 장치를 장착하고 있는 기기가 꼭 필요하다. 사물인터넷 게이트웨이는 다수의 무선 송수신 장치에서 발생하는 전력소모량이 크기 때문에 유선 전원공급장치가 필요하다. 따라서 자유로운 설치가 제한될 수밖에 없어 광범위한 인터넷 연결성을 제공하는데 많은 제약이 따른다. 연구팀은 문제 해결을 위해 후방산란 기술을 활용해 사물인터넷 기기들이 주로 사용하는 지그비(ZigBee, 저전력 무선망 기술) 또는 BLE(Bluetooth Low Energy, 저전력 블루투스 기술) 통신 규격을 따르는 무선 신호를 최적의 패턴으로 반사해 와이파이 신호로 변조시키는 기술을 개발했다. 이 기술을 이용해 사물인터넷 기기들을 사용자 주변에 흔히 볼 수 있는 와이파이 기기에 연결함으로써 인터넷 연결성을 제공하는 무전원 사물인터넷 게이트웨이를 제작했다. 연구팀이 개발한 무전원 사물인터넷 게이트웨이 기술은 후방산란 기술을 활용해 에너지 수확(Energy harvesting)을 통해 무전원으로 동작할 수 있어 설치비용과 유지·보수 비용을 크게 줄일 수 있다. 또 후방산란의 특성상 공중에 방사된 무선 신호를 반사하면서 물리적으로 변조하므로 동일한 통신 규격을 사용하는 모든 사물인터넷 기기에 보편적으로 적용할 수 있다는 장점이 있다. 연구팀은 저전력 통신 규격인 지그비와 BLE 신호를 무전원 사물인터넷 게이트웨이를 통해 와이파이 신호로 변조해 상용 노트북에서 수신됨을 확인했다. 이와 함께 다양한 제작사에서 판매하는 상용 스마트홈 기기(스마트 전구, 스마트 스피커 등)가 사물인터넷 게이트웨이를 통해 와이파이 기기에 상호 연결되는 현상을 실험을 통해 입증함으로써 통합형 사물인터넷 게이트웨이로서의 가능성도 확인했다. 제1 저자인 정진환 연구원은 "후방산란이라는 초저전력 통신 기술을 통해 상용 사물인터넷 기기들이 매우 적은 비용으로 와이파이를 통해 인터넷에 연결될 수 있다는 점을 확인했다ˮ면서 "값비싸고 전력소모량이 큰 기존의 사물인터넷 게이트웨이의 한계를 무전원 사물인터넷 게이트웨이로 극복할 수 있다는 점을 확인한 게 이번 연구의 성과ˮ라고 설명했다. 정 연구원은 이어 "향후 끊임없이 규모가 커질 사물인터넷에 대해 효율적으로 인터넷 연결성을 확대, 제공하는 방향으로 활용이 가능할 것으로 기대가 크다ˮ고 말했다. 한편 이번 연구는 한국연구재단과 정보통신기획평가원의 지원을 받아 수행됐다.
2020.07.13
조회수 17845
유승협 교수, 초저전력 심박 및 산소포화도 센서 구현
〈 유승협 교수, 이현우 박사과정〉 우리 대학 전기및전자공학부 유승협 교수 연구팀이 유기발광다이오드(OLED)와 유기포토다이오드(OPD)를 이용해 초저전력 심박 및 산소포화도 센서 구현에 성공했다. 전기및전자공학부 유회준 교수 연구팀과의 협력을 통해 이뤄진 것으로 이 기술을 통해 심박 및 산소포화도 센서가 다양한 웨어러블 기기에 적용될 수 있는 계기가 될 것으로 기대된다. 이현우 박사과정이 1저자로 참여한 이번 연구는 ‘사이언스 어드밴스 (Science Advances)’11월 9일자 온라인 판에 게재됐다. (논문명 : Toward all-day wearable health monitoring: An ultralow-power, reflective organic pulse oximetry sensing patch) 심박 및 산소포화도 센서는 신체의 건강 상태를 나타내는 가장 중요한 생체 신호의 하나인 심장 박동과 혈액 내 산소와 결합한 헤모글로빈의 농도로서 신체 내 원활한 산소 공급 여부를 가늠할 수 있는 산소포화도를 측정하는 기기이다. 심박 및 산소포화도 센서에는 일반적으로 LED와 포토다이오드로 구성된 광학적 방법이 이용된다. 이 기술은 간단하고 소형화가 용이한 비 침습적 방법이면서 주요 생체신호의 모니터링이 가능하다는 이점이 있어 병원용 기기뿐 아니라 스마트 워치 등 웨어러블 기기에도 탑재되는 경우가 많다. 이러한 센서는 배터리 용량이 매우 제한적인 웨어러블 기기의 특성상 센서의 전력소모를 줄이는 것이 매우 중요하다. 그러나 현재 상용 심박 및 산소포화도 센서는 이산소자들의 배열로 구성돼 피부에서 산란으로 인해 전방위로 전달되는 빛을 효율적으로 감지하기 어렵다. 이러한 이유로 좀 더 강한 빛을 필요로 하기 때문에 장기간 실시간 모니터링에는 한계가 있다. 연구팀은 문제 해결을 위해 광원의 발광 파장에 따른 피부에서의 빛의 전달 형태를 실험과 피부 모델 시뮬레이션을 통해 검토했다. 유기소자의 경우 자유로운 패턴 구현이 용이한 점을 최대한 이용해 유기포토다이오드가 유기발광다이오드를 동심원 형태로 감싸 피부에서 전방위로 분포되는 빛을 효율적으로 감지하는 최적 구조를 갖는 유연 심박 및 산소포화도 센서를 구현했다. 이를 통해 평균소비전력 약 0.03밀리와트(mW)만으로도 심박 및 산소포화도를 측정할 수 있었다. 이는 LED와 PD가 일렬로 배치된 상용 센서가 갖는 통상 전력소모 양의 약 수십 분의 일에 해당하는 매우 작은 값으로 24시간 동작에도 1밀리와트시(mWh)가 채 되지 않는 양이다. 이 기술은 매우 낮은 전력 소모 외에도 유기소자가 갖는 유연 소자의 형태적 자유도도 그대로 갖는다. 따라서 스마트 워치부터 작게는 무선 이어폰, 스마트 반지, 인체 부착형 패치 등의 웨어러블 기기에서 배터리로 인한 제한을 최소화하면서 일상에 지장 없이 지속적인 생체 신호 모니터링을 가능하게 할 것으로 기대된다. 유승협 교수는 “생체 신호의 지속적인 모니터링은 건강의 이상 신호를 상시 검출 할 수 있게 할 뿐 아니라 향후 빅데이터 등과 연계하면 이들 생체신호의 특정 패턴과 질병 간의 상호 관계를 알아내는 등에도 활용될 수 있다.”고 말했다. 이번 연구는 과학기술정보통신부 한국연구재단-나노·소재원천기술개발사업 및 선도연구센터 사업의 지원을 받아 수행됐다. □ 사진 설명 사진1. 연구팀이 개발한 센서
2018.11.12
조회수 8922
초소형 스마트 침 시스템 개발
- 작고 가벼우면서 성능은 훨씬 뛰어나지만 가격은 1/100도 안돼 -- 지능형 컴퓨터 칩이 달린 침으로 과학적인 치료 가능 - 편리하고 과학적인 ‘초소형 스마트 침 시스템’이 KAIST 연구진에 의해 개발됐다. 우리 학교 전기 및 전자공학과 유회준 교수 연구팀이 크기는 동전만큼 작으면서도 환자의 상태를 실시간 모니터링 할 수 있는 "초소형 스마트 침 시스템‘을 개발했다고 8일 밝혔다. 유 교수팀이 개발한 전기침 치료기는 한의원에서 사용 중인 기존 침보다는 훨씬 작고 가벼우면서도 더 뛰어난 성능을 갖고 있지만 가격은 1/100도 안 된다. 전기침은 질병치료 등 의료분야 뿐만 아니라 지방분해 등 비의료 분야에서도 널리 사용되고 있다. 전기침 치료기는 전선이 연결된 커다란 집게를 침에 연결해 전기 자극을 주는 방식이다. 따라서 환자가 움직이거나 선에 힘이 실리게 되면 침이 구부러지거나 뽑히는 등 불안정한 상태로 치료해야만 했다. 연구팀이 개발한 ‘스마트 침 시스템’은 자체 개발한 직물형 인쇄회로 기판(Planar Fashionable Circuit Board, P-FCB)을 이용해 몸에 직접 붙이는 패치형으로 만들어 초소형화를 실현하면서 복잡한 선 연결을 없앴다. 특히 지능형IC를 갖춰 치료 중 생체 신호를 감지해 환자의 상태를 모니터링 할 수 있는 점이 큰 특징이다. 기존의 전기침 자극은 환자의 상태 및 치료 효과를 판단하는 데 육안 혹은 환자의 느낌 등의 주관적인 요소가 강했다. 그러나 이 시스템은 전기침 치료를 하면서 사용자의 근전도 및 체온 등을 감지해 환자의 상태를 파악하면서 다중 생체 신호도 감지해 치료 효과를 보다 객관적으로 검증할 수 있다. 이와 함께 안정적인 자극을 위해 초저전력으로 제작돼 코인 배터리만으로 연속 1시간 이상 동작이 가능해 치료에 충분한 동작시간을 확보했다. 유회준 교수의 지도아래 송기석 박사과정 학생이 개발한 ‘초소형 스마트 침 시스템’은 지난달 말 세계적인 반도체학술대회인 국제고체회로설계학회(International Solid-State Circuits Conference)에서 발표돼 국내․외 관련분야 학자들로부터 많은 관심을 받았다. 유회준 교수는 “이 시스템이 각광을 받고 있는 이유는 간편하고 과학적으로 치료할 수 있는 전기침 자극 시스템이 현재까지 개발된 적이 없었기 때문”이라며 “불편하고 비과학적이라고 인식 되었던 전기침 치료가 편리하고 과학적인 치료로 새롭게 거듭나는 계기가 될 것”이라고 말했다. 더불어 “개발된 생체 피드백 전기침 자극 시스템을 통해 그동안 풀리지 않았던 한의학의 과학화에 한걸음 다가갈 수 있다는 가능성을 제시했다는 점에서 매우 큰 의미를 갖는다”고 강조했다. [그림 1,2] 스마트 전기침 시스템『스마트 전기침 시스템』은 전기침 패치, 침, 그리고 전도성 실로 구성된다. 전기침 패치는 동전 500원 정도의 크기로 패치 안에 코인 배터리와 지능형 IC를 탑재하고 있다. 지능형 전기 자극 IC는 0.13㎛ 공정으로 설계가 되어 있으며 12.5㎟의 아주 작은 면적을 갖기 때문에 작은 패치 위에 쉽게 구현될 수 있다. 또한 전력 소모 역시 최대 6.8mW로 매우 낮기 때문에 탑재된 코인 배터리로 1시간 이상의 치료 시간을 보장할 수 있다. [그림 3] 스마트 전기침 패치 구조『스마트 전기침 시스템』의 패치는 크게 3개의 계층으로 구성이 된다. 1) 표면 전극층, 2) 전원층, 3) 회로층이다. 3) 회로층에는 전기 자극 IC와 코인 배터리가 탑재되고 전기 자극 IC와 침은 전도성 부직포와 전도성 실을 통해서 편리하고 안정적으로 연결이 될 수 있다. [그림 4] 스마트 전기침 패치 구조『스마트 전기침 시스템』을 사용하여 전기 자극을 하는 방식을 사용하는 침의 개수에 따라 2가지로 나눌 수 있다. 1) 단일 지점 전기 자극 방식 : 하나의 침과 전기침 패치의 표면 전극 사이에 전류 자극을 하는 방식, 2) 양 지점 전기 자극 방식 : 두 개의 침 사이에 전류 자극을 하는 방식이다. [그림 5] 기존 전기침과 스마트 전기침 시스템의 비교『스마트 전기침 시스템』은 500원짜리 동전 정도의 크기로 매우 작으며 직물위에 회로를 직접 인쇄하는 P-FCB 기술을 이용하여 이물감이 거의 느껴지지 않을 정도로 가볍게 제작되었다. 그리고 기존의 전기침과는 달리 복잡한 전선의 연결이 필요 없어 환자가 움직이는데 제약이 없다. 스마트 전기침 시스템은 전기 자극을 하면서 전기침 패치의 표면 전극을 통해 환자의 근전도 및 체온 정보를 수집/전송하여 환자의 상태에 따라 전기 자극 강도를 자동으로 조절할 수 있다. [그림 6] 스마트 전기침 시스템 구성도스마트 전기침 시스템의 IC는 크게 4부분으로 구성된다. 1) 전기 자극부는 1~500Hz의 40uA~1mA의 자극 전류 펄스를 만들어 낸다. 2) 다중 모드 센서부는 전기 자극 중 근전도와 온도를 매우 낮은 소모 전력으로 감지한다. 3) 감지된 근전도와 온도 정보는 SoC 제어부의 on-chip 메모리에 저장이 된다. 4) 이후 저장된 근전도와 온도 정보는 인체 매질 통신부를 통해서 외부로 전송이 되어 시술자 및 사용자에게 나타나게 된다.
2012.03.08
조회수 17700
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1