-
암 발생 현상 등 유전자 발현 조절 원리 규명
다양한 암 발생과 암전이 현상, 줄기세포로부터의 조직 분화 및 발생, 신경 세포의 활성화 과정 등을 근본적으로 일으키는 유전자 발현 조절 단백질의 핵심 유전자 발현 네트워크를 발견했다. 우리 연구진은 이 발견을 기초로 하여 혁신적인 치료 기술 개발에 활용 가능성을 높였다.
우리 대학 생명과학과 김세윤 교수, 이광록 교수, 조원기 교수 공동연구팀이 동물 세포의 유전자 발현을 조절하는 핵심적인 원리를 규명했다고 22일 밝혔다.
이노시톨 대사 효소에 의해 만들어지는 이노시톨 인산 대사체는 진핵 세포의 신호전달 시스템에 필요한 다양한 이차 신호전달물질로 작용하며 암, 비만, 당뇨, 신경계 질환들에 폭넓게 관여한다.
연구팀은 이노시톨 대사 시스템의 핵심 효소인 IPMK 단백질이 동물 세포의 핵심 유전자 발현 네트워크의 중요한 전사 활성화 인자로 작용함을 규명했다.
포도당과 유사한 영양소로 알려진 이노시톨의 대사 반응에 핵심적으로 작용하는 효소인 IPMK 단백질(inositol polyphosphate multikinase)은 유전자 발현을 직접적으로 조절하는 기능을 가지고 있다. 특히 IPMK 효소는 동물 세포의 대표적인 전사 인자(transcription factor)인 혈청 반응 인자(serum response factor, 이하 SRF)에 의한 유전자 전사 과정에 중요하다고 보고된 바 있으나 작용하는 기전에 대하여 알려진 바는 없었다.
SRF 전사 인자는 최소 200~300여 개의 유전자 발현을 직접적으로 조절하는 단백질로서, 동물 세포의 성장과 증식, 세포 사멸, 세포의 이동성 등을 조절하며 심장과 같은 장기 발생에 필수적이다.
연구팀은 IPMK 단백질이 SRF 전사 인자와 직접적으로 결합한다는 사실을 발견하고 이를 통해 SRF 전사 인자의 3차원적 단백질 구조를 변화시킨다는 것을 밝혔다.
연구팀은 IPMK 효소에 의하여 활성화된 SRF 전사 인자를 통해 다양한 유전자들의 전사 과정이 촉진된다는 것을 밝혔다. 즉, IPMK 단백질은 SRF 전사 인자의 단백질 활성을 높이는 데 반드시 필요한 조절 스위치와 같은 역할을 수행하는 것임을 연구팀은 규명했다.
연구팀은 IPMK 효소와 SRF 전사 인자 사이의 직접적인 결합에 문제가 발생할 경우, SRF 전사 인자의 기능과 활성이 낮아져 유전자 발현에 심각한 장애가 발생한다는 점을 최종적으로 검증하였다.
특히 SRF 전사 인자가 가지고 있는 비정형 영역(Intrinsically disordered region, IDR)이 중요한 조절 부위라는 점을 밝힘으로써 비정형 단백질의 생물학적 중요성을 제시했다. 보통 단백질은 접힘을 통해 고유의 구조를 나타내지만 비정형 영역을 포함하게 되는 경우에는 특정한 단백질 구조가 관찰되지 않는다. 학계에서는 이러한 비정형 영역을 가지고 있는 단백질들을 비정형 단백질이라고 구분하고 어떠한 기능을 수행하는지 주목하고 있다.
김세윤 교수는 “이번 연구는 이노시톨 대사 시스템의 핵심 효소인 IPMK 단백질이 동물 세포의 핵심 유전자 발현 네트워크의 중요한 전사 활성화 인자이며 이를 증명하는 핵심 메커니즘을 제시한 중요한 발견”이라며, “SRF 전사 인자로부터 파생되는 다양한 암의 발생과 암전이 현상, 줄기세포로부터의 조직 분화 및 발생, 신경 세포 활성화 과정 등을 근본적으로 이해함으로써 혁신적인 치료 기술 개발 등에 폭넓게 활용되기를 바란다”라는 기대를 전했다.
이 연구는 세계적 국제학술지 ‘핵산 연구 (Nucleic Acids Research)’ (IF=16.7, 생화학 및 분자생물학 분야 상위 1.8%) 온라인판에 1월 7일 게재됐다. (논문명 : Single-molecule analysis reveals that IPMK enhances the DNA-binding activity of the transcription factor SRF) (doi: 10.1093/nar/gkae1281)
한편 이번 연구는 한국연구재단의 중견연구사업, 선도연구센터 지원사업, 글로벌 기초연구실 지원사업과 서경배과학재단, 삼성미래기술육성사업의 지원을 받아 수행됐다.
2025.01.22
조회수 360
-
CES 2025 이노베이션 어워드 수상, 혁신기술 선보여
세계 최대 규모의 기술 박람회인 ‘국제전자제품박람회(이하 CES 2025)에 KAIST 혁신 기술을 선보인다. 또한, KAIST 창업기업인 ㈜버넥트, 스탠다드에너지㈜, ㈜에이투어스, (주)파네시아는 2025 CES 이노베이션 어워드(Innovation Award)를 수상했다.
우리 대학은 내년 1월 7일부터 10일까지 미국 라스베이거스에서 진행되는 CES 유레카파크에 140㎡ 규모의 단독 부스를 운영하며, KAIST 혁신 기술을 세계적인 기업과 투자자들에게 선보인다고 31일 밝혔다.
KAIST 창업기업인 ㈜버넥트, 스탠다드에너지㈜, ㈜에이투어스, (주)파네시아는 2025 CES 이노베이션 어워드를 수상했다. ▴(주)버넥트는 산업 현장을 위한 AI기반 스마트글라스인 ‘VisionX’으로 ‘산업 장비 및 기계’ 부문, ▴스탠다드에너지(주)는 바나듐 이온 배터리를 세계 최초로 개발한 기업으로, ‘스마트 시티’ 부문, ▴㈜에이투어스는 물방울만으로 공기 중의 세균과 악취 그리고 미세먼지 등을 없애는 휴대용 공기청정기로 ‘환경 & 에너지’부문, ▴(주)파네시아는 AI 인프라 구축 비용 대폭 절감이 가능한 ‘CXL 기반 GPU 메모리 확장 키트’으로 ‘컴퓨터 주변기기 및 액세서리’ 부문에서 혁신상을 수상했다.
이번 전시에는 인공지능(AI), 로보틱스, 모빌리티, 지속가능성 등 첨단기술 분야에서 두각을 나타내고 있는 15개 창업기업이 참여한다. 특히, 물류, 건축, 의료 등 다양한 산업 분야의 인공지능(AI) 기반 딥테크 스타트업이 절반을 차지하여 기업들의 혁신적 AI 기술을 선보이게 된다.
‘(주)폴리페놀팩토리’는 샴푸 과정에서 모발에 순간적인 보호막을 형성하는 ‘리프트맥스(LiftMax 308™)’ 특허 성분을 적용하여 국내 출시된 탈모 샴푸 ‘그래비티’를 소개한다. 이번 전시관에서 해당 성분의 효과를 참관객들이 직접 체험할 수 있도록 실시간 데모를 진행할 예정이며, 2025년 1월 미국 아마존 론칭을 시작으로 글로벌 시장 진출을 계획 중이다.
(주)버넥트’는 이번에 혁신상을 수상한 프로토타입의 ‘VisionX’를 선보일 예정이다. 해당 제품은 AI 음성 인터페이스를 통해 챗봇 AI를 제공하며, AI와 대화를 통해 설비의 상태를 실시간으로 확인하고, 트러블슈팅 가이드를 음성형 대화로 안내받을 수 있는 기능을 가지고 있어, KAIST관에서 직접 체험할 수 있을 것이다.
‘스탠다드에너지(주)’는 세계 최초로 개발한 바나듐 이온 배터리(이하 VIB)를 활용한 실내형 ESS인 ‘에너지타일’을 전시할 계획이다. VIB는 화재에 절대 안전하면서도 설치의 유연성이 높아 스마트 시티 및 AI 데이터센터 등에 적용이 가능하다.
‘(주)에이투어스’는 하이드록실 라디칼 물 생산기술을 세계에서 유일하게 가지고 있는데, 첫 제품인 공기청정기로 혁신상을 수상하였다. 향후 안전하고 환경친화적인 하이드록실 라디칼 물을 이용한 공기와 물 정화, 스마트팜, 푸드텍, 및 반도체 세정 등에 광범위한 사업화가 예상된다.
‘(주)파네시아’는 자사 CXL 3.1 IP를 탑재한 GPU 메모리 확장 솔루션으로 CES 혁신상을 수상했다. 파네시아의 CXL IP를 활용해 메모리 확장장치를 연결하면, GPU의 메모리 용량을 테라바이트 수준으로 확장할 수 있다. 작년 CES 2024 ‘CXL 탑재AI 가속기’ 혁신상 수상에 이어 2년 연속 인공지능향 CXL 솔루션으로 혁신상을 수상한 유일한 기업이다.
이 밖에도 ▴오믈렛 ▴넥스트웨이브 ▴플랜바이테크놀로지스 ▴코스모비 ▴임팩트에이아이 ▴로엔서지컬 ▴디든로보틱스 ▴오토피디아 ▴오에이큐 ▴하이드로엑스팬드 ▴북엔드 ▴스테리 등 총 15개 업체의 기술이 소개된다.
KAIST관 중앙 스테이지에서는 CES 학생 서포터즈로 선발된 KAIST 재학생들이 참여기업과 인터뷰를 진행하며 기업의 혁신적인 기술과 솔루션을 홍보할 예정이며, 8일 오후 5시부터 오후 7시까지 사전에 초청된 투자자와 참여기업이 네트워킹하는 KAIST 나이트(NIGHT) 이벤트가 진행될 예정이다.
이건재 기술가치창출원장은 “CES 2025를 통해 KAIST의 딥사이언스와 딥테크를 기반으로 한 창업기업들의 혁신적인 기술과 솔루션을 선보이며, AI, 로보틱스, 모빌리티, 환경·에너지 등 첨단 기술 분야에서 사업화를 선도할 것입니다. KAIST는 기술가치창출원을 통해 혁신적인 창업기업들의 성장 및 마케팅을 지원하고, 글로벌 네트워크 강화 및 협력 기회를 확대함으로써 기술사업화를 더욱 촉진할 계획이다”라고 밝혔다.
2024.12.31
조회수 1108
-
항공우주공학과 김준수 박사과정, IEEE/AIAA DASC 2024 국제학회 최우수논문상 수상
우리 대학 항공우주공학과 이지윤 교수 연구실의 김준수 박사과정 학생이 제43회 국제 디지털 항공전자 시스템 학회(Digital Avionics Systems Conference, 이하 DASC)에서 최우수논문상인 ‘The David Lubkowski Award’을 수상하는 쾌거를 이루었다.
DASC는 1975년에 시작하여 올해로 43회를 맞이한 항공전자시스템, 소프트웨어 아키텍처, 네트워크 및 보안 등을 다루는 국제 학술대회이다. 해당 학회는 국제전기전자공학자협회(IEEE)와 미국항공우주협회(AIAA)가 공동 주관하며 관련 분야에서 가장 권위 있는 학술대회 중 하나로 인정받는다.
김준수 박사과정 학생은 지난 10월 미국 샌디에고에서 개최된 DASC 2024 국제학술대회에서 ‘도심항공모빌리티(UAM) 충돌회피용 최소 이격거리 산출 방법론’을 제안한 논문을 발표하였다. UAM은 새로운 교통 수단으로, 기존의 민간항공기에 비해 협소한 공역에서 저가형 센서를 사용하여 안전한 운항을 해야하는 도전적 문제가 존재한다. 특히, 기존 민간항공기 교통관제에서 설정한 넓은 이격거리를 UAM 공역에서 사용할 수 없다. 본 연구팀(김준수 박사과정 학생, 남기훈 박사과정 학생, 민동찬 박사, 이지윤 교수, Sam Pullen 박사)은 센서 성능 및 안전성 평가기법을 기반으로 한 충돌회피용 최소 이격거리 산출 방법론을 세계최초로 제안하여 항공교통의 공역 효율을 획기적으로 높일 것으로 기대된다.
김준수 학생은 “이렇게 큰 상을 받게 되어 정말 영광이며, 이지윤 교수님의 지도와 연구실 동료들과의 협력이 큰 힘이 되었다”면서 “앞으로 UAM 항법시스템 및 항공교통관제 안전성 보장 연구 분야에서 혁신적인 연구를 이어가도록 노력하겠다”라고 수상 소감을 밝혔다. 한편 김준수 학생은 스탠퍼드 대학의 위성항법시스템 연구실에서 6개월간 방문 연구 중이며 본 연구 주제로 협력을 지속할 계획이다.
2024.12.30
조회수 1184
-
암세포를 정상세포로 되돌려 치료하는 원천기술 개발
지금까지 다양한 항암 치료 기술이 개발됐음에도 현재 시행되고 있는 모든 항암치료의 공통점은 암세포를 사멸시켜서 치료하는 것을 목표로 하고 있다. 이로 인해 암세포가 내성을 획득해 재발하거나 정상세포까지 사멸시켜 큰 부작용을 유발하는 등 근본적인 한계를 지니고 있다.
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 대장암세포를 죽이지 않고 그 상태만을 변환시켜 정상 대장세포와 유사한 상태로 되돌림으로써 부작용 없이 치료할 수 있는 대장암 가역 치료를 위한 원천기술을 개발하였다고 22일 밝혔다.
연구팀은 정상세포의 암화 과정에서 정상적인 세포분화 궤적을 역행한다는 관찰 결과에 주목하고, 이를 기반으로 정상세포의 분화궤적에 대한 유전자네트워크의 디지털트윈을 제작하는 기술을 개발했다.
그리고 이를 시뮬레이션 분석해 정상세포 분화를 유도하는 마스터 분자스위치를 체계적으로 탐색해 발굴한 뒤 대장암세포에 적용했을 때 대장암세포의 상태가 정상화된다는 것을 분자세포 실험과 동물실험을 통해 입증했다.
이번 연구성과는 암세포를 정상세포로 가역화 하는 것이 우연한 현상적 발견에 의존하는 것이 아니라 암세포 유전자 네트워크의 디지털 트윈을 제작하고 분석함으로써 체계적으로 접근해 이루어낼 수 있음을 보인 원천기술 개발이며 이 기술을 다른 다양한 암종에 응용하여 암 가역 치료제 개발이 가능함을 제시한 것에 큰 의미가 있다.
조광현 교수는 "암세포가 정상세포로 변환될 수 있다는 것은 놀라운 현상이다. 이번 성과는 이를 체계적으로 유도해낼 수 있음을 증명한 것이다ˮ라고 말했다.
이어 “이번 연구 결과는 암세포를 정상세포로 되돌리는 가역 치료 개념을 최초로 제시한 성과들을 바탕으로 정상세포의 분화궤적을 체계적으로 분석해 암 가역화 치료타겟을 발굴하는 원천기술을 개발한 것이다”라고 강조했다.
우리 대학 공정렬 박사, 이춘경 박사과정 학생, 김훈민 박사과정 학생, 김주희 박사과정 학생 등이 참여한 이번 연구 결과는 와일리(Wiley)에서 출간하는 국제저널 `어드밴스드 사이언스(Advanced Science)' 12월 11일 字 온라인판 논문으로 출판됐다. (논문명: Control of cellular differentiation trajectories for cancer reversion) DOI: https://doi.org/10.1002/advs.202402132
한편 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구사업 및 기초연구실사업의 지원을 통해 수행되었으며 연구 성과는 바이오리버트(주)로 기술이전 되어 실제 암 가역치료제 개발에 활용될 예정이다.
2024.12.23
조회수 1971
-
전산학부 구주일 박사과정 학생, 삼성전자 DS부문 산학협력 교류회 최우수논문상 수상
우리 대학 전산학부 구주일(지도교수: 성민혁) 박사과정 학생은 지난 8월 29일 삼성전자 DS부문 산학협력 교류회에서 최우수 논문상을 수상했다. 해당 시상식은 매년 삼성전자와 국내 주요 대학 간 산학협력 성과를 공유하고, 반도체, 인공지능, 바이오, 생명화학공학, 로봇공학 등 다양한 첨단 분야에서 혁신적인 연구를 수행한 연구자들을 격려하기 위해 열린다.
구주일 학생이 최우수 논문상으로 수상한 “Posterior Distillation Sampling” 논문은 세계 최고 권위의 컴퓨터 비전 학회인 Conference on Computer Vision and Pattern Recognition (CVPR 2024)에 게재되었으며, 해당 학회에서 열린 6개의 워크숍에서도 우수성을 인정받아 발표되었다.
본 연구는 텍스트 기반 2D 이미지 생성 모델을 활용해 3D 데이터 (NeRF, 3D Gaussian Splatting)와 벡터기반이미지(SVG) 같은 다양한 비주얼 컨텐츠를 텍스트만으로 변형할 수 있는 새로운 방법론을 제시한다. 해당 방법론은 픽셀기반의 이미지만 변형이 가능하던 기존 방법론들의 한계를 벗어나, 사용자가 텍스트 입력만으로 다양한 비주얼 컨텐츠를 유연하게 변형할 수 있는 가능성을 연다. 이러한 기술을 통해 메타버스와 같은 차세대 컨텐츠 플랫폼에서 컨텐츠 제작 및 변형의 효율성을 크게 향상시킬 수 있을 것으로 기대된다.
수상 논문 5분 설명 영상: https://www.youtube.com/watch?v=GNqJYk949pY
2024.11.29
조회수 1482
-
유지환 교수, 세계 최고 햅틱스 저널 편집장으로 우리나라 최초 선임
우리 대학 건설및환경공학과 유지환 교수가 세계적인 학술 저널인 미국전기전자학회(Institute of Electrical and Electronics Engineers, 이하 IEEE) 로봇 및 자동화 분과(Robotics and Automation Society)에서 출판하는 햅틱스(IEEE Transactions on Haptics, ToH) 저널에 편집장(Editor-in-Chief, EiC)으로 선임돼 2025년 1월부터 활동하게 되었음을 22일 밝혔다.
IEEE ToH의 편집장 선임은 우리나라에서는 최초이며, IEEE 로봇 및 자동화 분과 전체 저널 중에서도 우리나라 연구자가 편집장에 선임되는 것은 두 번째 사례로, 그만큼 세계적으로도 드문 일이다.
유지환 교수는 햅틱스 및 원격제어 분야에서 난제로 여겨졌던 안정성 확보와 시간지연 문제를 해결한 세계적인 석학이다. 유 교수는 높은 인용 수를 기록하는 다수의 논문 발표와 국제 특허를 통해 햅틱 인터페이스 및 원격 로봇 분야에 기여해 왔다.
특히 국제학회 ‘아시아햅틱스(AsiaHaptics) 2018’에서 총괄 의장(General Chair)을, ‘세계 햅틱스 학회(World Haptics Conference)에서 편집장(EiC)을 역임하며 국제적으로 햅틱스 분야의 전문가적 리더십을 인정받아 IEEE ToH의 편집장으로 선임됐다.
이에 대해 유지환 교수는 “학술지 발전을 통해 햅틱스 분야의 세계적 성장을 촉진하고, 이를 로봇 기술과 융합해 인류에 실질적으로 도움이 되는 기술을 제공하는 데 기여하고 싶다”라는 포부를 밝혔다.
한편, 햅틱스(Haptics) 분야 세계 최고 권위의 학술지인 IEEE ToH는 촉각을 통한 정보 획득 및 객체 조작과 관련된 과학, 기술, 응용을 다루는 학술지다.
이 저널은 인간과 기계가 실제, 가상, 원격, 네트워크 환경에서 상호작용하는 촉각 탐색 및 조작을 포함해 인간의 촉각 인식과 운동 제어, 촉각 기기 및 렌더링, 인간-기계 상호작용, 교육, 재활, 의료, 디자인, 훈련 등 응용 분야까지의 최신 연구 성과를 폭넓게 다루고 있다.
유지환 교수는 KAIST에서 기계공학 석박사 학위를 취득했으며, 미국 워싱턴대학교, 독일 항공우주연구원 박사후연구원을 거쳐 2019년부터 KAIST 건설 및 환경공학과 교수로 재직 중이다. 현재는 KAIST 로봇학제전공 주임교수를 겸임하고 있다.
2024.11.22
조회수 1314
-
페트병 대체할 미생물 플라스틱 생산 성공하다
현재, 전 세계는 플라스틱 폐기물로 인한 환경 문제로 인해 큰 골머리를 앓고 있다. KAIST 연구진이 생분해성을 가지면서 기존 페트병을 대체할 미생물 기반의 플라스틱 생산에 성공해서 화제다.
우리 대학은 생명화학공학과 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용해 PET(페트병) 대체 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 미생물 균주 개발에 성공했다고 7일 밝혔다.
유사 방향족 다이카복실산은 고분자로 합성시 방향족 폴리에스터(PET)보다 나은 물성 및 높은 생분해성을 가지고 있어 친환경적인 고분자 단량체*로서 주목받고 있다. 화학적인 방법을 통한 유사 방향족 다이카복실산 생산은 낮은 수율과 선택성, 복잡한 반응 조건과 유해 폐기물 생성이라는 문제점을 지니고 있다.
*단량체: 고분자를 만드는 재료로 단량체를 서로 연결해 고분자를 합성함
이를 해결하기 위해 이상엽 특훈교수 연구팀은 대사공학을 활용, 아미노산 생산에 주로 사용되는 세균인 코리네박테리움에서 2-피론-4,6-다이카복실산과 4종의 피리딘 다이카복실산 (2,3-, 2,4-, 2,5-, 2,6-피리딘 다이카복실산)을 포함한 5종의 유사 방향족 다이카복실산을 고효율로 생산하는 미생물 균주를 개발했다.
연구팀은 대사공학 기법을 통해 여러 유사 방향족 다이카복실산의 전구체로 사용되는 프로토카테츄산의 대사 흐름을 강화하고 전구체의 손실을 방지하는 플랫폼 미생물 균주를 구축했다.
이를 기반으로 전사체 분석을 통해 유전자 조작 타겟을 발굴해 76.17g/L의 2-피론-4,6-다이카복실산을 생산하였고, 3종의 피리딘 다이카복실산 생산 대사회로를 신규 발굴 및 구축하여 2.79g/L의 2,3-피리딘 다이카복실산, 0.49g/L의 2,4-피리딘 다이카복실산, 1.42g/L의 2,5-피리딘 다이카복실산을 생산하는 데 성공했다.
또한, 연구팀은 2,6-피리딘 다이카복실산 생합성 경로 구축 및 강화를 통해 15.01g/L의 생산을 확인하며 총 5종의 유사 방향족 다이카복실산을 고효율로 생산하는 데 성공했다.
결론적으로, 2,4-, 2,5-, 2,6-피리딘 다이카복실산을 세계 최고 농도로 생산하는 데 성공하였다. 특히 2,4-, 2,5-피리딘 다이카복실산은 기존에 극미량 (mg/L) 생산되던 것을 g/L 규모의 생산까지 달성하였다.
이번 연구를 기반으로 다양한 폴리에스터 생산 산업공정으로의 응용이 기대되며, 유사 방향족 폴리에스터 생산에 관한 연구에도 적극 활용될 수 있으리라 기대된다.
교신저자인 이상엽 특훈교수는 “미생물을 기반으로 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 친환경 기술을 개발했다는 점에 의의가 있다”며 “이번 연구가 앞으로 미생물 기반의 바이오 단량체 산업이 석유 화학 기반의 화학산업을 대체하는 데 일조할 것”이라고 밝혔다.
해당 연구 결과는 국제 학술지인 `미국 국립과학원 회보(PNAS)'에 10월 30일 자 게재됐다.
※ 논문명 : Metabolic engineering of Corynebacterium glutamicum for the production of pyrone and pyridine dicarboxylic acids
※ 저자 정보 : 조재성(한국과학기술원, 공동 제1저자), 찌웨이 루오(한국과학기술원, 공동 제1저자), 문천우(한국과학기술원, 공동 제1저자), Cindy Prabowo (한국과학기술원, 공동저자), 이상엽(한국과학기술원, 교신저자) 포함 총 5명
한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제(과제 책임자 이상엽 특훈교수)의 지원을 받아 수행됐다.
2024.11.07
조회수 2182
-
이제 전자제품도 완전히 생분해될 수 있다
전자폐기물이 발생하지 않는 안전한 전자제품을 구현할 수 있을까?
국제공동연구진은 갑오징어에서 추출한 미래 전자 소재로 주목받는 세피아 멜라닌으로 만든 친환경 필름이 85일 만에 약 97% 생분해됨을 밝혀 지속가능한 친환경 전자제품의 새로운 가능성을 열어 화제다.
우리 대학 건설및환경공학과 명재욱 교수 연구팀이 몬트리올 공과대학 클라라 산타토(Clara Santato) 교수 연구팀과 국제 공동연구를 통해 완전히 생분해되는 세피아 멜라닌 기반 전기 활성 필름을 개발했다고 25일 밝혔다.
해마다 전자제품에 대한 수요가 급격하게 증가함에 따라 매년 약 6천만 톤에 이르는 전자폐기물이 발생하고 있다. 전자폐기물은 자연에서 쉽게 분해되지 않고 납(Pb), 카드뮴(Cd)과 같은 중금속이나 폴리염화비닐(PCB) 등 유해 화학물질을 자연에 유출해 생태계를 오염시킬 수 있다.
한편 생분해성 *유기전자소재는 기존 전자제품에 대한 패러다임을 전환할 수 있는 새로운 소재로 떠오르고 있다. 특히 갑오징어에서 추출할 수 있는 세피아 멜라닌은 생분해성, 저독성으로 지속가능한 미래 전자 소재로 주목받고 있다.
*유기전자소재(organic electronic material): 멜라닌, 타닌, 이모딘, 리그닌, 도파민 등 화학 구조상 전자공액계(electron conjugation)를 특징으로 하는 물질들을 뜻한다.
연구팀은 완전한 분해가 가능한 전기 활성 필름을 구현하기 위해 천연 바이오 소재인 세피아 멜라닌-셸락 잉크 복합체를 플렉소그래피 인쇄 기술을 활용해 은 전극 패턴의 종이 위에 인쇄했다.
인쇄된 필름이 이산화탄소(CO2)로 전환되는 정도(광물화도)를 기반으로 퇴비화 조건에서 생분해 거동을 분석한 결과, 85일 만에 약 97% 생분해됨을 연구팀은 확인했다. 인쇄 필름은 육안으로 봤을 때 20일 이내에 완전히 분해됐으며, 주사전자 현미경 분석을 통해 박테리아가 인쇄 필름의 생분해에 관여하여 퇴비 미생물 군집이 표면에 형성됨을 관찰했다.
한편, 인쇄 필름의 생분해 산물이 생태독성을 띠는지 조사하기 위해 두 가지 식물 쥐보리(Lolium multiflorum)와 메리골드(Tagetes erecta)를 대상으로 발아 실험을 진행한 결과, 인쇄 필름과 그 개별 구성 성분(세피아 멜라닌, 셸락, 셀룰로오스 등)은 식물에 대한 독성이 미미한 것으로 나타났다.
전기적 특성을 분석한 결과 세피아 멜라닌-셸락 인쇄 필름은 10-4 S/cm의 전기전도도를 나타냈다. 해당 전기전도도는 일반 금속이나 고성능 전자 재료에 비해 낮지만, 생분해성 및 친환경 특성 덕분에 환경 센서, 생체 디바이스, 일회용 전자제품 등 특정 응용 분야에서 경쟁력 있는 대안이 될 수 있다.
이번 국제 공동 연구를 이끈 건설및환경공학과 명재욱 교수는 “세피아 멜라닌, 셸락과 같은 널리 쓰이지 않는 바이오 기반 물질을 활용해 완전히 생분해되는 전기활성 필름을 구현한 최초 사례이며, 후속 연구를 통해 지속가능한 전자 디바이스 구현을 위한 여러 대안을 제시할 계획”이라고 밝혔다.
건설및환경공학과 최신형 박사과정과 몬트리올 공과대학 앤써니 카뮈(Anthony Camus) 박사과정이 공동 제1 저자로 참여한 이번 연구는 지난 8월 29일 국제 학술지 Communications Materials에 출판됐다.
※ 논문명: Electrical response and biodegradation of Sepia melanin-shellac films printed on paper
(저자 정보 : Anthony Camus*, 최신형*(공동 제1 저자*), Camille Bour-Cardinal1(몬트리올 공과대), Joaquin Isasmendi(몬트리올 공과대학), 조용준(KAIST), 김영주(KAIST), Cristian Vlad Irimia(요한케플러대), Cigdem Yumusak(요한케플러대), Mihai Irimia-Vladu(요한케플러대), Denis Rho(캐나다국립연구위원회)**, 명재욱(KAIST)**, Clara Santato(몬트리올 공과대)** (공동 교신저자**), 총 12명)
한편, 이번 연구는 KAIST 공과대학 석·박사 모험연구 및 창의도전사업(C2연구), 한국연구재단 과학기술국제화사업-한국 이공계 대학원생 캐나다 연수 프로그램 사업 등의 지원으로 수행됐다.
2024.09.28
조회수 2255
-
순수한 입방정 얼음 제작에 성공
우리 대학 신소재공학과 육종민 교수 연구팀이 기존에 만들기 어려웠던 입방정 얼음을 선택적으로 형성시키는 데에 성공하며, 입방정 얼음의 형성 조건 및 얼음의 상전이를 원자단위에서 연구한 결과를 발표했다고 20일 밝혔다.
얼음은 다양한 온도와 압력 조건에 따라 20여 가지 이상의 구조를 갖는 대표적인 동질이상 물질이다. 일반적인 자연환경에서는 육각형의 구조를 갖는 육방정의 얼음이 관찰된다. 그동안 과학자들은 다른 구조를 갖는 얼음이 육방정 얼음과는 다른 물리적, 화학적, 기계적 특성을 가질 것으로 예상했으나, 고압이나 초저온이 필요했기에 육방정과 다른 구조를 갖는 얼음을 형성시키는 데 어려움을 겪고 있었다.
육 교수 연구팀은 소량의 수분이 존재하는 고진공 환경의 투과전자현미경 내부에서 극저온 환경을 모사해 얼음이 형성되는 것을 원자 단위에서 관찰하는 데 성공했다. 해당 관찰을 통해 얼음이 초기에는 준안정적인 입방정 상으로 형성된다는 것을 이해하고, 순수한 입방정 얼음을 제작하는 데 성공했다. 나아가, 이러한 입방정 얼음은 불안정하여 에너지를 받으면 쉽게 안정적인 육방정 얼음으로 전이된다는 것 또한 밝혔다.
연구팀은 얼음 형성시 얼음 입자의 크기에 따라 얼음의 상이 다르게 형성되는 것을 밝혀냈다. 높은 온도에서 형성된 얼음의 경우 입자의 크기가 크게 분포하며 대부분 육방정상과 입방정상을 같이 지니는 복합상 얼음이 형성되며, 형성 초기 단계의 작은 얼음 입자의 경우 순수한 입방정상으로 존재하는 것을 확인했다.
또한, 복합 상 얼음의 경우 얼음이 에너지를 받아 녹는 과정에서 준안정적인 입방정상이 안정적인 육방정상으로 상전이가 일어나며, 이는 얼음 내의 결함의 이동을 통해 낮은 에너지에서도 손쉽게 일어난다는 사실을 밝혀냈다. 해당 사실은 극저온 전자현미경을 이용해 얼음의 구조와 동적 행동을 원자단위에서 상세히 분석할 수 있었다. 이번 연구에서는 입방정상이 육방정상으로의 상전이 현상을 처음으로 직접 관찰했다는 것에 의미가 크다.
육종민 교수는 "이번 연구는 일반적인 대기 중에서 왜 육방정의 얼음이 형성되는지에 대한 가장 기초적이면서 근본적인 해답을 줄 수 있을 것이다"며 "이번 연구를 통해 우주에서 물의 흔적 조사나 사각수 연구 등 다양한 분야에서 중요한 의미를 지닌다"라고 말했다.
신소재공학과 박지수 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `Nano Letters' 2024년 9월호에 표지 논문으로 선정됐다. (논문명: Phase Transition of Cubic Ice to Hexagonal Ice During Growth and Decomposition).
2024.09.20
조회수 3885
-
피부 모니터링부터 뇌심부 해석까지 쉽게 가능
실시간으로 심박수를 측정할 수 있는 스마트 워치, 심장 박동수를 조절하는 페이스메이커 등 생체신호를 지속적으로 측정해 다양한 병을 진단하거나 치료할 수 있는 전자소자인 생체전자소자에 관한 연구가 활발히 진행되고 있다. KAIST 연구진이 생체조직 접촉 시 손상을 최소화하고 3D 마이크로니들 구조로 조직표면부터 심부까지 측정할 수 있는 전도성 하이드로젤 소재를 개발해 화제다.
우리 대학 신소재공학과 스티브 박 교수, 바이오및뇌공학과 박성준 교수 공동연구팀이 3D 프린팅을 통해 다양한 형태의 생체전자소자를 쉽고 빠르게 제작할 수 있는 전도성 고분자 기반 전극 물질을 개발했다고 7일 밝혔다.
이번 연구를 통해 기존 2D 전극 패터닝 기술로 접근하기 어려웠던 한계점을 극복해, 원하는 위치 및 심부 영역의 뇌 신경세포를 자극 및 측정할 수 있어, 뇌의 심부 영역에서 뇌의 활성화 원리를 정확하게 해석할 수 있을 것으로 기대된다. 또한 3D 프린팅을 통해 이 기술은 피부에 부착하는 헬스케어 모니터링 소자부터 생체 삽입형 소자에 이르기까지 광범위하게 활용할 수 있을 것으로 기대된다.
기존 생체전자소자에 사용됐던 금속 물질은 단단한 물성으로 인해 연약한 생체조직에 상처를 입힐 수 있다는 문제점이 있었다. 또한, 이 문제를 보완하기 위해 개발됐던 전도성 하이드로젤 소재는 낮은 전기전도성을 가지고, 생체적합성을 개선하기 위해 소자 제작 후 24시간 이상의 독성 제거 공정을 진행해야 한다는 문제점이 있었다. 또한, 2D 구조의 전극 패터닝만 가능하다는 한계점 때문에 다양한 형태의 소자를 제작하기 어려웠다.
박 교수 연구팀은 전도성 고분자를 나노미터 크기의 콜로이드 형태로 가공해 유화 작용을 유도함으로써 잉크의 유변학적 특징*을 개선하고, 생체적합성에 악영향을 미치는 독성 물질을 원심분리 공정을 통해 제거함으로써 3D 프린팅이 가능하면서 후처리 공정이 필요 없는 고전도성 하이드로젤 잉크를 개발했다.
*유변학적 특성: 잉크의 유동성과 그에 따른 변형, 그 응답인 응력 등의 특성을 말하며 특성이 높을수록 잉크의 압출 직후 인쇄된 형태를 유지할 수 있으며, 낮으면 압출 직후 인쇄된 형태를 유지하기 어렵다.
이 재료는 선행연구 대비 약 1.5배(286 S/cm)의 전기전도도를 가지며, 고해상도 패터닝(~50μm), 전방위 3D 전극 패터닝이 가능하다는 장점을 가진다. 또한 생체조직과 비슷한 물성(영 계수 750kPa)를 가져, 생체조직과의 접촉 시 손상을 최소화할 수 있다.
연구팀은 개발한 신소재 전극을 기반으로 심전도 측정(ECG) 및 근전도 측정(EMG) 측정 타투, 뇌 피질전도도(ECoG) 측정소자, 3D 뇌 탐침 측정 소자를 개발해 기능성을 검증했다. 또한 높은 전하 저장 능력을 활용, 낮은 전압(60mV)으로 쥐의 좌골 신경을 자극하는 소자를 개발해 생체 자극 소자로서의 성능을 확인했다. 더불어 복잡한 3D 회로를 필요한 적용 분야에 맞추어 제작할 수 있고 3D 마이크로니들 구조로 전극을 패터닝해 조직 표면에 있는 생체신호뿐만 아니라 조직 심부에 있는 뉴럴 인터페이스의 제작이 가능해졌다.
연구를 주도한 스티브 박 교수는 "기존 3D 프린팅 기술을 이용해 제작되는 전자소자의 경우 전도성 및 생체적합성을 개선하기 위해 장시간 및 복잡한 형태의 후처리가 필요해 래피드 프로토타이핑(Rapid prototyping)을 장점으로 가져갈 수 있는 3D 프린팅 기술의 모든 장점을 이용할 수 없었다”며, “이번 연구에서는 이러한 단점을 해결해 향후 환자 맞춤형 바이오 전자소자 및 다양한 3D 회로 응용 분야에 활용될 수 있을 것으로 기대된다ˮ라고 말했다.
신소재공학과 오병국 박사과정과 백승혁 석사, 바이오및뇌공학과 남금석 석박사통합과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)'에 7월 11일 게재됐다. (논문명 : 3D printable and biocompatible PEDOT:PSS-ionic liquid colloids with high conductivity for rapid on-demand fabrication of 3D bioelectronics)
이번 연구는 한국연구재단 나노 및 소재기술개발사업, 중견 사업 및 ETRI의 지원을 받아 수행됐다.
2024.08.07
조회수 3432
-
KAIST-삼성전자, 시스템 반도체 칩 추가 지원 협약 체결
우리 대학이 삼성전자와 ‘130nm BCDMOS 공정 지원' 협약을 23일 오후 체결한다.
삼성전자가 반도체 설계 전문 인재 양성을 위해 지원하는 BCDMOS(복합고전압소자: Bipolar-CMOS-DMOS)*는 고전압과 고속 동작이 필요한 전력 관리 응용 분야에 적합한 공정이다.
이번 협약을 바탕으로 130nm(나노미터) BCDMOS 8인치 공정을 올해 하반기부터 도입해 국내 반도체 전공 석·박사 과정 학생에게 칩 제작 기회를 제공한다.
이를 위해, 우리 대학 반도체설계교육센터(소장 박인철, IC Design Education Center 이하 IDEC)는 130nm BCDMOS 공정을 위한 설계 전자설계자동화툴(EDA Tool)과 기술 지원 환경을 마련했다.
IDEC은 삼성전자와 협력해 2021년부터 28nm 로직** 공정 칩 제작 기회를 학생들에게 제공하고 있으며, 지난해 28nm FD-SOI***공정 지원도 추가했다.
올해 제공된 28nm 공정에는 30개 대학 160개 팀, 800여 명의 학생이 설계에 참여해 칩을 제작 중이다. 이번 협약으로 추가된 130nm BCDMOS 공정에는 올해 하반기 20개 팀을 시작으로 내년부터 2년간 상하반기 각 20개 팀이 칩 제작에 참여할 수 있게 됐다. 반도체 칩 제작은 대학원생들이 이론으로 설계한 도면을 실제 웨이퍼에 구현하여 실물을 만드는 중요한 과정이다. 실물 칩을 제작하면 설계의 정확성과 효율성을 검증할 수 있지만, 비용이 최소 3천만 원 이상 소요돼 학생들이 외부 지원 없이 칩 제작을 경험하기는 어려운 실정이다.
박인철 IDEC 소장은 “이번 삼성전자의 130nm BCDMOS 공정 지원은 해당 분야를 연구하는 대학에 실질적인 제작 기회를 제공해 연구 성과를 향상하는 데 크게 기여할 것으로 기대된다”라고 말했다.
이어, “특히 전력 관리와 고속 통신 분야에서 중요한 역할을 하는 공정으로 혁신적인 기술 개발로 이어질 수 있는 환경이 마련돼, 제작에 참여한 학생은 기술 개발의 경쟁력을 갖춘 전문 설계 인력으로 성장하게 될 것”이라고 덧붙였다.
23일 오후 우리 대학 IDEC 동탄교육장에서 열리는 협약식에는 박인철 소장과 박상훈 삼성전자 상무 등 양 기관의 주요 인사들이 참석한다. 협약식과 함께 2024년 하반기 130nm BCDMOS 공정에 참여하는 13개 대학의 19팀을 대상으로 설계설명회도 개최된다.
한편, KAIST IDEC은 1995년에 설립돼 시스템반도체 분야의 전문인력을 양성해왔다. 지난 29년간 삼성전자와 협력해 2천 219개 설계팀에 칩 제작 기회를 제공해 총 8천 1백여 명의 반도체 전문인력을 배출해 산업계와 학계의 발전을 도모했다.
2021년부터는 산업통상자원부의 '차세대 시스템반도체 설계 전문인력 양성 사업'을 수행하고 있으며, 2026년까지 정부 자금 170억을 지원받아 전국 대학 석·박사급 학생에게 반도체 칩 설계와 제작 환경을 제공할 계획이다.
양 기관은 이번 협약을 통해 두 기관은 반도체 전문 인력 양성을 위한 협력을 더욱 강화할 계획이다.
2024.07.24
조회수 2607
-
암세포 약물반응 예측 ‘그레이박스’ 개발
지난 수십 년간 많은 의생명과학자의 집중적인 연구에도 불구하고 여전히 국내 사망원인 1위는 암이다. 이처럼 암 치료가 난해한 이유는 환자마다 암 발생의 원인이 되는 유전자 돌연변이와 그로 인한 유전자 네트워크 변형이 서로 달라서 전통적인 실험생물학 접근만으로 표적치료를 적용하는 데에는 본질적인 한계가 있기 때문이다. 한편 딥러닝과 같은 소위 블랙박스(black-box) 방식의 인공지능 기술을 활용해 실험을 대체하고 데이터 학습을 통해 약물 반응을 예측할 수 있으나 이에 대한 생물학적 근거를 설명할 수 없어 결과를 신뢰하기 어려웠다.
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 인공지능과 시스템생물학을 융합해 암세포의 약물 반응 예측 및 메커니즘 분석을 동시에 이룰 수 있는 새로운 개념의 ‘그레이박스’ 기술을 개발했다고 3일 밝혔다.
조광현 교수 연구팀은 높은 예측 성능을 보이지만 그 근거를 알 수 없어 블랙박스로 불리는 딥러닝과 복잡한 대규모 모델의 경우 예측 성능의 한계를 지니지만 예측 결과에 대한 상세한 근거를 제시할 수 있어서 화이트박스로 불리는 시스템생물학 기술을 융합함으로써 두 기술의 한계를 동시에 극복할 수 있는 소위 ‘그레이박스’ 기술을 착안했다.
연구팀은 다양한 암종의 돌연변이 및 표적항암제 타겟 유전자 정보를 집대성해 분자 조절 네트워크 모델을 구축함으로써 여러 암종과 항암제의 약물 반응 예측에 활용될 수 있는 범용적 골격 모델을 우선 정립했다. 특히 다양한 암종에서 돌연변이가 빈번하게 발생하는 유전자들을 중심으로 전암(pan-cancer) 유전자 네트워크를 제작했고 표적항암제별 약물 반응과 관련된 돌연변이 및 연관 유전자들로 구성된 부분네트워크(sub-network)를 추출함으로써 약물 반응 예측을 위한 시스템생물학 모델을 제작했다.
연구팀은 이렇게 제작된 모델의 매개변수를 딥러닝 블랙박스 최적화기를 통해 결정하는 방식으로 트라메티닙, 아파티닙, 팔보시클립 세 개의 표적항암제 및 대장암, 유방암, 위암 세 개의 암종에 대한 그레이박스 모델을 구축했다. 완성된 모델의 약물 반응 컴퓨터시뮬레이션 결과는 각 암종별 약물반응의 민감도 차이를 보이는 세포주(cancer cell lines) 실험을 통해 비교 검증됐다.
특히 개발된 모델은 미국 국립암연구소(National Cancer Institute)의 돌연변이 정보 기반 약물 반응 예측으로는 동일한 반응을 보일 것으로 예상된 암세포주들이 실제로는 서로 다른 약물 반응을 보일 수 있다는 것을 정확히 예측했으며, 약물 반응의 차이가 발생하는 원인 또한 세포 주별 분자 네트워크 동역학의 차이로 상세히 설명할 수 있었다.
이번 연구 성과는 학습에 의한 시뮬레이션 모델 최적화를 통해 블랙박스 모델인 인공지능 기술의 높은 예측력과 화이트박스 모델인 시스템생물학 기술의 해석력을 동시에 달성한 새로운 약물 반응 예측 기술 개발이어서 그 의미가 크다. 특히, 발생 원인이 이질적이고 복잡한 네트워크 질환인 암에 대해 범용적으로 활용가능한 약물 반응 예측 원천기술이므로 향후 기술 고도화를 통해 다양한 종류의 암종 및 환자 맞춤형 치료 전략 제시에 활용될 수 있을 것으로 기대된다.
조광현 교수는 "인공지능 기술의 높은 예측력과 시스템생물학 기술의 우수한 해석력을 동시에 갖춘 새로운 융합원천기술로서 향후 고도화를 통해 신약 개발 산업의 활용이 기대된다ˮ고 말했다.
바이오및뇌공학과 김윤성 박사, 한영현 박사 등이 참여한 이번 연구 결과는 셀 프레스(Cell Press)에서 출간하는 국제저널 `셀 리포트 메소드(Cell Reports Methods)' 5월 20일 字 표지논문으로 출판됐다. (논문명: A grey box framework that optimizes a white box logical model using a black box optimizer for simulating cellular responses to perturbations)
논문링크: https://www.cell.com/cell-reports-methods/fulltext/S2667-2375(24)00117-6
한편 이번 연구는 삼성미래기술육성사업 및 과학기술정보통신부와 한국연구재단의 중견연구사업 등의 지원으로 수행됐다.
2024.06.03
조회수 3972