본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%A0%80%EC%9E%A5%EC%8B%9C%EC%8A%A4%ED%85%9C
최신순
조회순
세계 최고 수명을 지닌 불타지 않는 ESS(에너지저장시스템) 수계전지 개발
우리 대학 생명화학공학과 김희탁 교수(나노융합연구소 차세대배터리센터) 연구팀이 아연 전극의 열화 메커니즘을 규명하고 이를 해결함으로써 전 세계에서 보고된 모든 레독스 흐름 전지 가운데 가장 오래가는 수명을 가지는 수계 아연-브롬 레독스 흐름 전지 개발에 성공했다고 5일 밝혔다. 생명화학공학과 이주혁 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `Energy and Environmental Science'에 최근(9월) 게재되는 한편 표지논문으로 선정됐다. (논문명: Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries) 최근 들어 신재생에너지의 간헐성을 보완하고 전력 피크 수요를 충당하기 위해 신재생에너지 및 심야 전력을 대용량으로 저장, 필요할 경우 저장된 에너지를 설비에 공급함으로써 에너지 이용 효율을 높일 수 있는 에너지저장시스템(Energy storage systems, 이하 ESS) 기술이 각광받고 있다. 현재 대부분의 ESS는 값이 저렴한 `리튬이온전지' 기술을 채택하고 있지만, 리튬이온전지는 태생적으로 발화로 인한 화재 위험성 때문에 대용량의 전력을 저장하는 ESS에는 적합하지 않다는 지적을 받아왔다. 실제 2017년~ 2019년까지 2년간 국내에서 발생한 리튬이온전지로 인한 ESS 화재사고 33건 가운데 가동이 중단된 곳은 전체 중 35%에 달한다. 현재까지 집계된 손해액만도 약 7,000억 원 이상으로 추정되고 있다. 따라서 최근에는 배터리 과열 현상을 원천적으로 차단할 수 있는 수계(물) 전해질을 이용한 *레독스 흐름 전지가 큰 주목을 받고 있다. 특히, 초저가의 브롬화 아연(ZnBr2)을 활물질로 이용하는 아연-브롬 레독스 흐름 전지는 다른 수계 레독스 흐름 전지와 비교할 때 높은 구동 전압과 함께 에너지 밀도를 높일 수 있고, 가격이 싸다는 장점 때문에 70년대부터 ESS용으로 개발돼왔다. ☞ 레독스 흐름 전지(Redox flow battery): 레독스 흐름 전지는 양극 및 음극 전해액 내에 활물질을 녹여서 외부 탱크에 저장한 후 펌프를 이용해 전극에 공급하면 전극 표면에서 전해액 내의 활성 물질의 산화·환원 반응을 이용해 에너지는 저장하는 전지이다. 문제는 아연-브롬 레독스 흐름 전지의 경우 아연 음극이 나타내는 짧은 수명 때문에 상용화가 지연되고 있다는 점이다. 특히 아연 금속이 충·방전 과정 중에 보이는 불균일한 돌기 형태의 *덴드라이트 형성은 전지의 내부 단락을 유발해 수명을 단축하는 주요 원인으로 지적되고 있다. 현재 덴드라이트 형성 메커니즘은 명확히 규명되진 않고 있지만 충전 초기 전극 표면에 형성되는 아연 핵의 불균일성 때문일 것으로 전문가들은 추정하고 있다. 이런 문제 해결을 위해 그동안 균일한 핵의 생성을 유도하는 기술이 경쟁적으로 개발돼왔으나, 여전히 충분한 수명향상 효과를 얻지 못하고 있다. ☞ 덴드라이트(Dendrite): 아연 이온이 환원되어 금속 전극 표면에 증착될 때, 금속 표면 일부에서 비정상적으로 성장하는 나뭇가지 형태의 결정. 김희탁 교수 연구팀은 낮은 표면에너지를 지닌 탄소 전극 계면에서는 아연 핵의 `표면 확산(Surface diffusion)'을 통한 `자가 응집(Self-agglomeration)' 현상이 발생한다는 사실에 주목하고 양자 역학 기반의 컴퓨터 시뮬레이션과 전송 전자 현미경 분석을 통해 자가 응집 현상이 아연 덴드라이트 형성의 주요 원인임을 규명하는 데 성공했다. 연구팀은 이와 함께 특정 탄소결함구조에서는 아연 핵의 표면 확산이 억제되기 때문에 덴드라이트가 발생하지 않은 사실을 발견했다. 탄소 원자 1개가 제거된 단일 빈 구멍 결함(single vacancy defect)은 아연 핵과 전자를 교환하며, 강하게 결합함으로써 표면 확산이 억제되고 균일한 핵생성 또는 성장을 가능하게 한다. 김 교수 연구팀은 고밀도의 결함 구조를 지닌 탄소 전극을 아연-브롬 레독스 흐름 전지에 적용해, 리튬이온전지의 30배에 달하는 높은 충·방전 전류밀도(100 mA/cm2)에서 5,000 사이클 이상의 수명 특성을 구현하는데 성공했다. 연구팀 관계자는 지금까지 다양한 레독스 흐름 전지에 대해 보고된 결과 중 가장 뛰어난 수명성능을 지닌 전지라는 점을 강조했다. 우리 대학 나노융합연구소 차세대배터리센터장 김희탁 교수는 "차세대 수계 전지의 수명 한계를 극복하기 위한 새로운 기술을 제시한 게 이번 연구의 성과”라면서 "기존 리튬이온전지보다 저렴할 뿐만 아니라 에너지 효율 80% 이상에서 5,000 사이클 이상 구동이 가능하다는 점에서 신재생에너지의 확대 및 ESS 시장 활성화에 기여할 것”이라고 밝혔다. 한편 이번 연구는 우리 대학 나노융합연구소와 과학기술정보통신부의 지원을 받아 수행됐다.
2020.10.05
조회수 25837
2018년 올해의 젊은과학자상 수상
우리 학교 이지운 교수(수리과학과)와 변혜령 교수(화학과), 김호민 교수(의과학대학원)가 과학기술정보통신부로부터 2018년 올해의 젊은과학자상 수상자로, 그리고 이해신 교수(화학과)는 올 10월 ‘이달의 과학기술인상’ 수상자로 각각 선정돼 지난 14일 국립과천과학관에서 열린 ‘2018 우수 과학자 포상’ 통합시상식에서 수상했다. 올해의 젊은과학자상을 수상한 이지운 교수는 랜덤행렬 이론 분야에서 지난 수십 년 간 연구돼온 난제를 해결했고, 변혜령 교수는 표면·계면에서 발생하는 전기화학반응을 통해 에너지 저장시스템 분야에서 성과를 냈으며, 김호민 교수는 패혈증 발병기전과 치료제 개발에 기여했다. 이와 함께 이해신(화학과) 교수는 세계 최초로 ‘무출혈 주사바늘’을 개발해 에이즈, 에볼라, 간염 바이러스 등 환자 혈액에 따른 2차 감염 문제를 근본적으로 방지하는데 기여한 공로를 인정받아 이달의 '과학기술인상' 10월 수상자로 선정돼 14일 열린 통합시상식을 통해 함께 수상했다.
2018.12.20
조회수 8011
서창호 교수, IT 젊은 공학자상 수상
우리 대학 전기및전자공학부 서창호 교수가 미국전기전자학회(IEEE)와 대한전자공학회(IEIE)가 공동 주관하고 해동과학문화재단이 후원하는 ‘IT 젊은 공학자상’ 수상자로 선정됐다. 시상식은 6월 28일 오후 6시 제주롯데호텔에서 열렸다. 2006년부터 시작해 13회째 진행되는 ‘IT 젊은 공학자상’은 만 40세 이하 의 3년 이상 국내에서 연구를 수행한 연구자에게 주어진다. 기술적 실용성, 사회 및 환경에의 공헌도 및 창의성 등을 중심으로 심사가 이뤄진다. 올해의 수상자로 선정된 서창호 교수는 통신시스템, 분산저장시스템, 인공지능 분야 등의 연구를 통해 SCI급 논문 23편, 신경정보처리시스템학회(NIPS)와 머신러닝국제학회(ICML) 등 최상위 국제학회 논문 10편, 국제특허등록 30건 이상의 연구 성과를 보이고 있다. 서 교수의 논문은 4천 100회 이상 인용되는 등 학문 및 기술 발전, 벤처창업지원을 통한 기술상용화에 크게 기여하고 있다. 최근에는 인공지능을 교육에 접목시킨 AI-튜터(AI-tutor)와 딥러닝 기술을 활용한 자율주행시스템을 개발 중이다. 서창호 교수는 “IT 젊은공학자상을 받게 돼 영광으로 생각한다. 앞으로도 학생 지도와 연구에 몰두해 IT/인공지능 분야에 기여할 수 있도록 최선을 다하겠다”고 말했다.
2018.07.05
조회수 9203
버려지는 온실가스로 고부가 가치의 전극소재 제조 기술개발
〈 KAIST - 성일에스아이엠 간 기술이전 체결식 〉 우리 대학과 ㈜성일에스아이엠(대표이사 우창수)이 ´이산화탄소 전환을 통한 탄소 전극소재 제조 기술´에 대해 기술이전 계약을 체결했다. 이번 성과는 국가 R&D 사업의 성과가 중소기업의 신성장동력 창출에 기여했다는데 의의가 있다. 우리 대학 이재우 교수 연구팀의 이번 성과는 기존 탄소 제조 기술의 한계점인 고온․고압의 반응 조건을 획기적으로 개선하여 500℃, 1기압의 조건에서도 탄소물질을 제조할 수 있게 된 것이다. 기존의 이산화탄소 전환 기술은 매우 안정한 이산화탄소 분자간 결합을 끊어 탄소물질로 전환하기 위해서는 많은 에너지를 공급할 수 있는 고온․고압 조건 요구되었다. 그러나 본 기술은 강력한 환원력을 가진 수소화붕소나트륨(이하 NaBH4)을 환원제로 사용하여 기존 기술 대비 1/10 이하의 적은 에너지만으로도 탄소 전극 물질로 전환할수 있어 저에너지․저비용의 생산공정 구축이 가능해 상용화가 매우 용이하다. ㈜성일에스아이엠은 이전받은 기술을 적용한 양산시설을 구축하는 등 조기 상용화를 통해 양산된 탄소물질을 국내외 연료전지, 수퍼캡, 및 각종 전지 전극소재 시장에 진입할 계획이다. 본 기술이 적용될 수 있는 연료전지, 고성능 축전지 및 이차전지는 에너지저장 기술로서 주목을 받고 있는 가운데, 신재생에너지 확산 및 글로벌 전력 수요의 증가에 따라 세계 에너지저장시스템* 시장은 오는 2020년 약 47.4조원 규모가 될 것으로 전망되고 있다. ㈜성일에스아이엠 우창수 대표는 “KAIST로부터 이전 받은 탄소 전극 기술에 대한 기대가 매우 크다” 면서 “해당 기술이 조기 상용화되어 당사의 신성장 동력원이 되길 기대한다”고 밝혔다. □ 그림 설명 그림1. NaBH4를 이용한 CO2 전환 공정의 개념도 그림2. 합성된 다공성 탄소 물질
2016.03.03
조회수 8137
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1