본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%9E%90%EA%B8%B0%EC%9E%A5
최신순
조회순
저주파 자기장 반응성 나노입자 개발해 알츠하이머 원인물질 분해 성공
우리 대학 신소재공학과 박찬범 교수 연구팀이 저주파 자기장 반응성 나노입자를 개발하는 데 성공했다고 16일 밝혔다. 연구팀은 이를 이용해 알츠하이머질환을 유발하는 베타-아밀로이드 펩타이드(아미노산 화합물) 응집체를 자기장으로 분해할 수 있다고 밝혔다. 신소재공학과 장진형 박사과정이 제1 저자로 참여한 이번 연구는 국제학술지 `사이언스 어드밴시스(Science Advances)' 5월 13일 字에 게재됐다. (논문명: Magnetoelectric dissociation of Alzheimer's β-amyloid aggregates) 자기 전기(Magnetoelectric) 소재는 자성과 전기성이 결합한 물성을 가지며 스핀트로닉스(Spintronics) 소자, 트랜스듀서(Transducer) 등 다양한 전자기기를 구성하는 핵심 물질이다. 그러나 자기 전기 소재는 원자 내 전자의 회전과 궤도 운동을 방해하는 양성자의 정전기적 상호작용(스핀-오빗 상호작용)으로 인해 성능 향상에 한계를 지닌다. 연구팀은 자기 전기 소재의 일종이며, 반도체 및 배터리 분야에 주로 쓰이는 코발트 페라이트(Cobalt ferrite)와 비스무스 페라이트(Bismuth ferrite)를 코어쉘(Core-shell) 구조로 접합시킴으로써 이종(Heterogeneous) 자기 전기 나노입자를 개발했다. 서로 다른 자기 전기 소재의 균일한 접합을 통해 이들의 경계면에서 저주파 자기장에 반응하는 자기-압전효과(Magneto-piezoelectric effect)를 일으킬 수 있었다. 특히, 나노입자가 저주파 자기장에 반응해 전하 운반체를 생성할 때 열을 방출하지 않는 현상에 연구팀은 주목했다. 자기장은 뇌 조직을 손상 없이 투과할 수 있으며 자기공명영상(MRI, Magnetic Resonance Imaging) 등에서 활용돼 의료적 안전성이 이미 검증된 바가 있다. 연구팀이 개발한 나노입자에 저주파 자기장을 쏘았을 때 베타-아밀로이드 펩타이드(Beta-amyloid peptide)를 산화시킴으로써 그 응집체의 결합력을 약화시켜 분해했고, 신경독성도 중화시킬 수 있음을 연구팀은 관찰했다. 아밀로이드 응집체는 알츠하이머병 등 다양한 퇴행성 신경질환들에서 공통적으로 관찰되며, 규칙적인 수소 결합을 통해 매우 안정적인 단백질 이차구조(Secondary structure)를 가져 분해가 어렵다고 알려져 왔다. 박찬범 교수는 "저주파 자기장 반응성 나노소재는 독성이 낮으며 자기장과 반응해 아밀로이드 응집체를 효율적으로 분해할 수 있기에 의료분야로 확장할 수 있는 잠재력이 있다ˮ면서, "이를 검증하기 위해 향후 알츠하이머 형질변환 마우스 등을 이용한 동물실험 등이 우선적으로 필요하다ˮ고 말했다. 한편 이번 연구는 한편 이번 연구는 과학기술정보통신부 리더연구자지원사업(창의연구)의 지원을 받아 수행됐다.
2022.05.16
조회수 6168
자성메모리 기반 지능형 반도체 소재 기술 개발
우리 대학 신소재공학과 박병국 교수 연구팀이 차세대 비휘발성(Non-volatile) 메모리인 *스핀궤도토크 자성메모리(SOT-MRAM)의 스위칭 분극을 전기장 인가를 통해 임의로 제어하는 소재 기술을 개발했다고 21일 밝혔다. * 스핀궤도토크 자성메모리: 면방향 전류에서 발생하는 스핀전류를 이용해 자화 방향을 제어하는 동작 방식으로 기존의 스핀전달토크 자성메모리(STT-MRAM) 보다 동작 속도가 10배 이상 빠른 장점이 있다. 연구팀은 이 결과를 이용해 하나의 소자에서 다양한 논리연산이 가능함을 보임으로, 기억과 연산 기능을 동시에 수행하는 스마트 소자의 개발 가능성을 높였다. 특히 이 기술은 차세대 지능형 반도체로 개발되는 프로세싱-인-메모리 (PIM)에 적용할 수 있을 것으로 기대된다. PIM (processing-In-Memory) 기술은 메모리 공간에서 로직 기능을 수행해 프로세서에서 처리하는 데이터양을 획기적으로 줄임으로써, 기존 컴퓨팅 기술인 폰노이만 구조의 한계를 극복하는 기술로 여겨지고 있다. 신소재공학과 강민구 박사과정과 최종국 박사과정이 공동 제1 저자로 참여하고 신소재공학과 육종민 교수, 물리학과 이경진, 김갑진 교수, 충남대학교 정종율 교수, 고려대학교 박종선 교수와 공동으로 수행한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)'에 12월 7일 字 온라인 게재됐다. (논문명 : Electric-field control of field-free spin-orbit torque switching via laterally modulated Rashba effect in Pt/Co/AlOx structures) 스핀궤도토크 자성메모리(SOT-MRAM)는 고속 동작 및 높은 안정성 특성으로 차세대 자성메모리 기술로 개발되고 있다. 하지만 이 메모리는 정보 기록을 위해서 외부자기장을 인가해야 하는데, 이는 고집적 소자에 치명적인 단점으로 작용한다. 따라서 외부자기장 없이 자화 방향을 제어하는 무자기장 스위칭 기술의 개발이 요구되고 있다. 연구팀은 자성메모리에 측면 게이트 구조를 도입해 계면의 라쉬바 효과를 제어함으로 무자기장 스핀 궤도 토크 스위칭 소재 기술을 개발했다. 또한, 게이트 전압의 부호에 따라 스위칭 방향을 제어하는 결과를 보였고, 이를 이용해 하나의 소자에서 배타적 논리합(XOR), 논리곱(AND) 등의 다양한 논리연산을 구현하는 데 성공했다. 이 기술은 데이터를 저장하는 메모리 반도체와 연산 기능을 수행하는 로직 반도체가 융합된 MRAM 기반 프로세싱-인-메모리(PIM) 소자의 원천 기술로써 활용될 수 있을 것으로 기대된다. 제1 저자인 강민구 연구원은 "이번 연구는 차세대 자성메모리 내에서 프로그램이 가능한 논리연산을 실험으로 규명해, 향후 미래 컴퓨팅 기술로 여겨지는 지능형 반도체 소자 개발에 응용될 수 있을 것이다ˮ 라고 밝혔다. 한편 이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
2021.12.21
조회수 7676
자기장과 자성체 없이 전기로만 작동 가능한 그래핀 스핀 트랜지스터 돌파구 마련
우리 대학 물리학과 조성재 교수 연구팀이 그래핀으로 자기장, 자성체 없이 스핀 전류를 생성, 검출하는 실험에 성공해 차세대 그래핀 스핀 트랜지스터 개발의 돌파구를 마련했다. 차세대 신소재로 주목받는 그래핀은 탄소 원자가 벌집 모양으로 이루어진 2차원 물질(원자만큼 얇은 물질)로서 전기전도성, 탄성, 안정성이 높아 ‘꿈의 나노 물질’이라고 불린다. 이 그래핀은 전자의 스핀 확산 거리가 길어, 전자스핀을 정보화하는 분야인 스핀트로닉스 응용에 큰 기대를 받아왔다. 하지만 그래핀은 전자의 스핀과 전자의 궤도가 상호작용하는 스핀-궤도 결합 에너지가 매우 약하다는 이유로 스핀 전류를 직접 생성하거나 검출할 수 없다는 한계가 있었다. 조성재 교수 연구팀은 그래핀에 스핀-궤도 결합이 매우 큰 전이금속이자 디칼코게나이드 물질인 2H-TaS2를 접합시켜서 그 인접효과로 그래핀의 스핀-궤도 결합을 100배 이상 증가시키는 데 성공했고 이어 ‘라쉬바 효과’를 유도하는 데 성공했다. ‘라쉬바 효과’란 강한 스핀 궤도 결합으로 그래핀과 같은 2차원 물질 내부의 전기장이 자기장으로 전환되는 효과를 말한다. 이것을 이용해 스핀 전류를 생성, 검출하는 효과를 ‘라쉬바-에델스타인 효과’라고 부르는데 이번 연구에서는 이 효과를 그래핀에서 최초로 구현했다. 리준리 박사후 연구원이 제1 저자로 참여한 이번 연구는 국제 학술지 ‘에이씨에스 나노 (ACS Nano)’ 4월 8일 字 온라인판에 게재됐다. (논문명 : Gate-Tunable Reversible Rashba−Edelstein Effect in a Few-Layer Graphene/2H-TaS2 Heterostructure at Room Temperature). 라쉬바 효과가 그래핀에 유도되면, 라쉬바-에델스타인 효과에 의해 전하 전류와 스핀 전류가 상호 전환이 가능하다. 다시 말해, 자기장이나 자성체 없이 그래핀에 전류를 흘려줌으로써 스핀 전류를 생성시킬 수 있고, 그래핀 층에 흘러들어오는 스핀 전류를 전하 전류 혹은 전압 측정을 통해 검출할 수 있다. 조 교수 연구팀은 또 트랜지스터의 단자 사이에 인가되는 전압인 게이트 전압으로 그래핀 이종접합에 생성되는 스핀 전류의 크기와 방향을 제어하는 데 성공했다. 이는 추후 자기장, 자성체 없이 동작 가능한 그래핀 스핀 트랜지스터의 초석을 마련한 획기적인 연구성과로 평가받는다. 조성재 교수는 “이번 연구는 그래핀 이종접합에 자기장, 자성체 없이 전기적으로만 스핀 전류를 생성, 검출, 제어할 수 있음을 보인 최초의 연구로서 전기적으로만 작동 가능한 그래핀 스핀 트랜지스터의 개발로 이어질 것”이라며 “특히, 상온에서 실험이 성공했기 때문에 응용 가능성이 매우 크기 때문에 향후 우리나라 비메모리 산업뿐 아니라 세계적으로 스핀트로닉스 관련 물리학 및 산업에 응용할 수 있는 효과를 기대할 수 있어 의미가 매우 크다”고 강조했다. 한편, 이번 연구는 한국연구재단 미래반도체 신소자원천기술개발사업의 지원을 받아 수행됐다.
2020.05.18
조회수 14926
인공신경망 기반 핵융합플라즈마 자기장 재구성 기술 개발
우리 대학 원자력및양자공학과 김영철 교수 연구팀(핵융합및플라즈마연구실)이 국가핵융합연구소, ㈜모비스 연구진과 공동으로 인공신경망 기반 핵융합플라즈마 자기장의 재구성 기법을 개발했다. 김 교수 연구팀은 비실시간으로 엄밀히 계산된 자기장 구조와의 오차를 최소화함과 동시에 실시간으로 해당 정보를 제공할 수 있는 인공신경망을 개발해 핵융합플라즈마 제어 성능을 높이는 데 기여할 것으로 기대된다. 정세민 박사과정이 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘뉴클리어 퓨전(Nuclear Fusion)’ 2019년 12월 3일 자에 게재됐다. (논문명: Deep neural network Grad-Shafranov solver constrained with measured magnetic signals) 핵융합 연구에 널리 사용되는 토카막은 실시간으로 재구성된 자기장 구조를 바탕으로 초고온(약 1억도) 핵융합 플라즈마의 운전과 제어를 가능하게 만든다. 따라서 재구성된 자기장 구조의 정확도는 토카막 운전 성능과 밀접한 관계가 있다. 2계 비선형 미분방정식을 따르는 토카막의 내부 자기장은 일반적으로 수치해석 기법과 외부에서 측정된 자기장 값을 이용하여 재구성된다. 실시간과 비실시간 재구성 기법이 존재하며, 비실시간 기법의 정확도가 실시간보다 높다고 알려졌지만 이름에서도 확인할 수 있듯 실시간 운전에 활용하기 어렵다는 아쉬움이 있다. 연구팀은 비실시간 기법의 정확도를 유지하되 실시간으로 해당 정보를 확보할 수 있는 알고리즘을 인공신경망을 활용해 개발했다. 측정된 외부 자기장과 토카막 내부 공간 정보를 입력값으로 하고 비실시간 기법을 활용해 재구성된 자기장을 출력값으로 신경망을 훈련했다. 또한, 신경망의 출력값은 앞서 언급된 2계 비선형 미분방정식을 만족해야 하므로 이 역시 신경망의 훈련 조건으로 둬 단순한 자기장 재구성을 넘어서 해당 문제의 지배방정식 역시 만족하도록 했다. 연구팀이 개발한 기법은 그 성능의 우수성과 더불어 토카막의 고성능 운전 달성에 큰 영향을 미칠 것을 인정받았다. 세계적으로 활발히 진행 중인 토카막 연구에 가장 기초적이며 중추적인 토카막 내부 자기장 정보를 최소화된 오차 내에서 실시간으로 제공할 수 있다는 점에서 토카막을 활용한 핵융합발전의 가능성을 제고할 수 있을 것으로 기대된다. 이번 연구는 과학기술정보통신부 한국연구재단의 핵융합기초연구사업과 개인연구사업(신진연구) 및 기관고유과제 KAI-NEET의 지원을 받아 수행됐다. 타기관 참여연구진 국가핵융합연구소(공저자순): 박준교, 이상곤, 한현선, 김현석 ㈜모비스(공저자순): 이근호, 권대호 □ 그림 설명 그림1. 토카막 내부 재구성된 자기장 구조
2020.02.05
조회수 9993
양찬호 교수, 자석 아닌 물질이 자성(磁性) 갖게 하는 기술 개발
우리 대학 물리학과 양찬호 교수 연구팀이 전기장을 통해 자석이 아닌 물질이 자성을 갖게 하거나 그 반대로 자석 내의 자성을 없앨 수 있는 기술을 개발했다. 이 연구를 통해 자성 물질 기반의 저장 매체를 개발한다면 대용량의 정보를 빠른 속도로 이용할 수 있을 것으로 기대된다. 장병권 박사과정이 1저자로 참여한 이번 연구 성과는 물리학 분야 학술지 ‘네이처 피직스(Nature Physics)’ 10월 3일자 온라인 판에 게재됐다. 물질의 내부에는 아주 작은 자석들이 존재한다. 그 작은 자석들이 무질서하게 여러 방향으로 향하고 있으면 비 자성 상태이고, 일정한 방향으로 정렬이 이뤄지면 우리가 흔히 볼 수 있는 자석이 된다. 테라바이트 이상의 외장하드를 쉽게 구할 수 있을 정도로 저장 매체의 용량 기술은 발전했다. 그러나 용량 증가는 필연적으로 저장 매체의 읽고 쓰는 속도를 느리게 만든다. 현재 가장 널리 쓰이는 하드 디스크(HDD)의 느린 데이터 접근 속도로는 다른 기술과 조화되기 어려운 상황이다. 이에 따라 SSD, 플로팅 게이트(Floating gate), 저항 방식(Resistive switching) 방식 등이 대안으로 떠오르고 있으나 기록을 할 때마다 흔적을 남기기 때문에 피로 누적 현상을 피할 수 없다는 한계를 갖는다. 정보를 자성 상태로 기록하면 속도가 빠르고 피로 누적 현상을 없앨 수 있기 때문에 저장 매체의 최소 저장 공간인 셀(Cell)을 자성 물질로 구성하려는 시도가 많았다. 주로 전류의 흐름을 통해 유도된 자기장을 이용하는 방식인데, 자기장은 자폐가 매우 어려워 넓은 범위에 영향을 끼치기 때문에 인접한 셀의 자성도 변화시킨다. 셀 하나하나를 조절할 수 없기 때문에 일정한 방향으로 정렬시킬 수 없어 자성의 상태를 바꾸기가 어려웠다. 연구팀은 문제 해결을 위해 자기전기 상호작용을 통해 자성 상태를 조절했다. 자기전기 상호작용은 자기장이 아닌 전기장을 이용해 전류의 흐름 없이 자성 상태를 조절하는 방식으로 에너지 소모가 적다는 장점을 갖는다. 연구팀은 실험을 통해 전기장 인가만으로 무질서하게 임의의 방향을 향하고 있는 셀들이 일정한 방향을 향하고 있음을 확인했다. 또한 반대로 일정한 방향에서 다시 무질서한 상태로도 변화가 가능함을 증명했다. 기존에 보고된 자기전기 현상은 통상적으로 극저온이나 고온에서 발현이 가능했다. 그러나 이번 기술은 화학적 도핑을 통해 상온에서도 작동이 가능하고, 변환이 가역적이며 비휘발성을 갖기 때문에 차세대 정보 저장 소자 개발의 발판이 될 것으로 기대된다. 양 교수는“이번 전기적 자성상태의 변화는 엔트로피 변화를 동반하고 있을 것으로 예상한다”며“자기전기 소자 응용뿐만 아니라 열전 현상의 새로운 가능성을 열 것으로 기대된다”고 말했다. 이번 연구는 재료연구소 최시영 박사, 포항공대 정윤희 교수, 포항 가속기연구소 구태영 박사, 막스플랑크 연구소 고경태 박사, 미국 스탠포드 가속기연구소 이준식 박사 와 헨드릭(Hendrik Ohldag) 박사, 호주 뉴사우스웨일즈 대학 잔(Jan Seidel) 교수 등과 공동으로 진행됐다. 한국연구재단의 중견연구자지원사업, 글로벌연구네트워크지원사업, 선도연구센터지원사업(응집상 양자 결맞음 연구센터)과 글로벌프론티어사업(하이브리드 인터페이스기반 미래소재 연구단) 등의 지원을 통해 수행됐다. □ 그림 설명 그림1. 전기장 인가를 통한 자성 방향의 변화를 나타낸 개념도
2016.10.27
조회수 15307
모든 빛에 작동하는 무지갯빛 나노안테나 개발
- Nano Letters지 발표, “태양광 발전에 활용할 수 있는 핵심 기술 개발 ”- 완전결정* 은(銀) 나노선을 이용해 모든 파장의 빛에 작동하는 광학 나노 안테나가 순수 국내 연구진에 의해 개발되었다. 이번 연구 결과는 태양광 발전 등에 핵심적으로 활용할 수 있는 효율 높은 안테나 개발에 새로운 가능성을 열었다는 평가를 받고 있다. ※ 완전결정(perfect crystal) : 원자배열이 전체 결정체에 완전히 조직적으로 된 결정으로 이상결정(ideal crystal)이라고도 부름. 실제 자연환경에서는 거의 존재하지 않는 상태임 우리 학교 김봉수 교수(52세), 서민교 교수 및 고려대 박규환 교수가 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약연구), 21세기 프론티어연구개발사업 및 선도연구센터지원사업 등의 지원으로 수행되었고, 나노과학 및 기술 분야의 권위 있는 학술지인 ‘Nano Letters’지에 4월 17일자로 게재되었다. (논문명 : Rainbow Radiating Single-Crystal Ag Nanowire Nanoantenna) 특히 이번 연구결과는 강태준 박사(제1저자), 최원준 박사 및 윤일선 박사와 같은 30대 초반의 젊은 국내 토종 박사들이 주축이 되어 일궈낸 성과라는 점에서 의미가 있다. 김봉수 교수 연구팀은 한 가지 파장의 빛에서만 작동하는 기존의 광학 나노 안테나의 한계를 극복하는 모든 파장의 빛에서 반응하는 광학 나노 안테나 개발에 성공하였다. 광학 안테나는 휴대폰의 안테나가 전파를 수신하여 전기신호로 변환하고 반대로 전기신호를 전파로 변환하여 송신하는 것과 같이, 빛을 수신하여 전자기장으로 변환하고 그 반대의 역할도 수행할 수 있는 최근 주목 받고 있는 광학 소자이다. 일반 전파가 아닌 빛을 송․수신하기 위해서는 안테나의 크기를 머리카락의 10만분의 1미터(나노미터) 수준으로 매우 작게 제작해야 하기 때문에, 전 세계 수많은 연구팀들은 나노입자를 이용해 광학 안테나를 개발하고자 노력해왔다. 그러나 기존에 개발된 광학 안테나들은 파장의 범위가 매우 제한적이어서 한 가지 파장의 빛에서만 작동하기 때문에, 다양한 파장에서 송․수신기 역할을 수행할 만큼 효율적이 못했다. 김 교수팀은 지금까지 활용하던 나노입자가 아닌 가시광 전 영역에서 작동하는 은(銀)을 사용해 다양한 파장에서 공명할 수 있는 나노선*으로 광학 안테나를 제작하여 이 문제점을 해결하였고, 모든 파장의 빛에서 은 나노선 안테나가 잘 작동한다는 사실을 실험적․이론적으로 증명하였다. ※ 나노선 : 수십에서 수백 나노미터(10억분의 1미터)의 굵기를 갖는 반도체 물질로 이루어진 머리카락 형태의 나노 구조체 김 교수팀이 합성한 은 나노선 안테나는 완벽한 결정구조를 가지면서도 결함이 없어 표면이 매끈하기 때문에, 모든 파장의 빛을 어떠한 손실 없이 송신하고 동시에 수신하여 효율을 극대화할 수 있다. 모든 파장의 빛을 손실 없이 송․수신하기 위해서는 나노선 안테나의 표면에 아주 작은 결함도 없어야 한다. 연구팀은 우선 섭씨 800도의 고온에서 아무 결함도 없는 완전결정 은 나노선을 만드는데 처음으로 성공하였다. 특히 은 나노선 안테나에 백색광을 비춰주면 빛을 송신하여 안테나 표면에 집중된 전자기장으로 변환시키고, 이 전자기장을 다시 여러 가지 파장의 빛으로 수신하여 마치 무지개와 같은 화려한 색상을 나타낸다. (사진) 김봉수 교수는 “이번 연구성과인 은 나노선 안테나는 실제로 활용할 수 있는 광학 안테나 개발에 한 걸음 다가섰다는 의미이다. 특히 태양광 발전 및 극미세 나노센서 등에 핵심기술로 사용될 수 있어 향후 나노-광-바이오산업에 선도적인 위치를 차지할 수 있을 것으로 기대된다”고 연구의의를 밝혔다.
2012.05.03
조회수 15978
물리학과 김은성 교수, "리 오셔로프 리처드슨 상"수상
우리학교 물리학과 김은성(金恩成, 36) 교수가 "리 오셔로프 리처드슨 상(Lee Osheroff Richardson Prize)" 위원회가 정하는 2008년 수상자로 선정됐다고 밝혔다. 이 상은 헬륨-3의 초유체성을 발견한 업적으로 1996년 노벨 물리학상을 공동 수상한 데이비드 리, 더글러스 오셔로프, 로버트 리처드슨을 기려 제정됐다. 매년 ‘저온과 고자기장 분야’에서 뛰어난 연구업적을 이룬 젊은 과학자(박사학위 후 10년 이내)중 1명이 수상자로 선정되는 ‘저온 및 고자기장 분야 젊은 과학자상’에 해당한다. 김교수는 고체에서도 초유체 현상이 존재할 수 있다는 초고체 현상 이론을 실험적으로 증명한 업적을 인정받아 수상자로 선정됐다. 초고체 현상은 양자역학적 진동으로 인해 절대영도(-273.15℃) 근처에서 고체 격자를 이루는 원자들의 일부가 점성이 없는 초유체 상태로 존재한다는 것이다. 실험 물리학자들은 30년 이상 이 초고체 현상의 실체를 입증하기 위해 노력해 왔으며, 金 교수가 최초로 초고체 현상의 존재를 실험적으로 입증하여 고체 내에서도 보즈-아인슈타인 응축현상의 존재 가능성을 제안했다. 이 상은 영국 옥스퍼드 인스트루먼츠(Oxford instruments)社의 후원으로 저온과 고자기장 분야의 세계적 저명학자들로 구성된 위원회에서 수상자를 선정한다. 시상식은 오는 11일(화) 美 뉴올리언즈에서 열리는 미국 물리학회 학술대회에서 갖는다.
2008.03.10
조회수 18887
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1