본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%9D%B8%EC%A7%80%EA%B8%B0%EB%8A%A5
최신순
조회순
학습 없이 자발적으로 발생하는 뇌 인지기능 원리 밝혀
우리 대학 바이오및뇌공학과 백세범 교수 연구팀이 학습을 전혀 거치지 않은 뇌 신경망에서 선천적인 인지 기능이 발생하는 원리를 규명했다고 30일 밝혔다. 이번 연구 결과는 동물들이 출생 직후 학습을 거치지 않은 상태에서도 기초적 인지 기능들을 수행할 수 있게 하는 `선천적 뇌 기능'에 대한 이해에 다가가는 기초를 마련했으며 `초기 뇌 신경망 인지 기능의 발생'에 대해 기존의 상식과 완전히 다른 시각을 제시한다. 또한 연구팀의 결과는 일반적인 인공지능 모델에서 기능을 발생시키기 위해서는 외부의 데이터 학습이 반드시 요구되는 것과 달리, 생물학적 뇌 신경망의 기능 발생과 진화는 확률적으로 생성되는 물리적 연결 구조에 의해 자발적으로 발생할 수 있다는 차별된 기저 원리를 제안한다. 연구팀은 인지과학 분야에서 활발히 연구돼 온 얼굴 인지 기능(face detection)에 초점을 두어 뇌의 시각 신경망을 모사한 인공신경망에서의 사물 인지 기능을 시뮬레이션했다. 이를 통해 모든 연결 가중치가 무작위로 정해지도록 초기화된 심층신경망이 전혀 학습을 거치지 않은 상태에서도 얼굴 이미지를 다른 사물 이미지와 구별할 수 있음을 발견했다. 연구팀은 이러한 무작위화 신경망에서 발생하는 얼굴 선택성 (face-selectivity)이 실제 동물 실험에서 관측되는 다양한 생물학적, 인지 행동적 특성들과 매우 유사한 양상을 보이는 것을 확인했다. 이는 이론적 모델 기반의 본 연구 결과가 충분한 생물학적 타당성을 가지며, 향후 뇌 신경망에서 나타나는 선천적 인지 기능의 핵심적 발생 원리를 설명하는 일반적인 이론으로 확장될 수 있음을 시사한다. 우리 대학 바이오및뇌공학과 백승대, 송민 박사과정이 공동 제 1저자로 참여한 이번 연구는 국제 학술지 `네이처 (Nature)'의 자매지 `네이처 커뮤니케이션스 (Nature Communications)' 12월 16일 字에 게재됐다. (논문명 : Face Detection in Untrained Deep Neural Networks) 인지 지능의 최초 발생에 관한 연구는 뇌신경과학, 인지과학과 인공지능 분야 모두에서 중요한 주제다. 특히, 별다른 학습 과정 없이 출생 직후부터 다양한 인지 기능을 수행할 수 있게 하는 뇌의 `선천적' 인지 기능은 데이터 입력을 통한 학습에 의존하는 인공신경망의 기능과 뚜렷이 구별되며, 이에 대한 이해는 생물학적 지능의 발생과 진화의 원리를 밝히는 데 결정적인 역할을 할 것으로 기대됐다. 또한 얼굴 인지 기능은 사회적 행동을 하는 다양한 동물 종의 어린 개체들에서 관측되며, 이 기능의 발생을 위해 외부 정보의 학습이 필수적인지는 학계에서 활발하게 논의돼왔다. 연구팀은 앞서 진행했던 연구를 토대로 구축한 신경망 기능 발생 이론에 기반해, 아무런 학습을 거치지 않은 계층적 신경망의 초기 피드 포워드 연결 구조를 통해 얼굴 인지 기능이 자발적으로 형성될 수 있을 것이라 가정했다. 이를 확인하기 위해 수행한 심층신경망 시뮬레이션에서 얼굴 이미지를 비롯한 단순 사물의 인식 기능은 학습을 전혀 거치지 않은 초기 무작위화 신경망에서 자발적으로 발생할 수 있음을 확인했다. 이러한 결과는 학습이 이루어지기 전, 신경망의 초기 구조가 갖춰진 시점에 이미 다양한 인지 기능이 발생할 수 있음을 보여주며, 뇌 과학의 오랜 화두인 지능 형성의 선천성 또는 후천성(nature vs. nurture) 논의와 관련해 자발적으로 발생하는 선천적 기능 발생에 대한 이해의 중요성을 강조한다. 백세범 교수는 "이번 연구는 뇌신경과학 연구의 가장 근본적인 질문 중 하나인 선천적인 인지 기능의 발생을 설명할 수 있는 최초의 이론을 제시해 생물학적 지능의 발생과 진화의 원리를 이해하는데 결정적인 단서를 제공할 것으로 기대된다ˮ며 "한편으로 데이터 학습 기반 인공지능 구현의 방법과 완전히 다른 관점의 생물학적 지능 구현 원리를 정립해 현재의 인공지능 개발의 상식과 완전히 다른 시각을 제공할 수 있을 것으로 기대된다ˮ고 언급했다. 한편 이번 연구는 한국연구재단의 이공분야기초연구사업 및 원천기술개발사업, KAIST 특이점교수 사업의 지원을 받아 수행됐다.
2021.12.31
조회수 8126
백세범 교수팀, 고등 인지 기능의 자발적 발생 원리 규명
우리 대학 바이오및뇌공학과 백세범 교수 연구팀이 학습 과정을 전혀 거치지 않은 신경망에서 고등 시각 인지 기능이 자발적으로 발생할 수 있음을 보였다고 4일 밝혔다. 이번 연구 결과는 신경망에서 상위 인지 기능을 발생시키기 위해서는 반드시 충분한 데이터 학습이 필요하다는 기존의 상식과 완전히 상반되는 것으로, 현재 통용되고 있는 인공지능의 구현 방식에 대한 근본적인 의문을 던진다. 또한 연구팀의 결과는 다양한 생물 종의 뇌에서 관측되는 선천적인 인지 기능의 발생에 대한 설명 가능한 이론을 제시할 뿐만 아니라, 뇌신경과학 연구의 가장 근본적인 질문 중 하나인 `인지 지능의 발생 및 진화'의 원리에 대한 기존과는 전혀 다른 새로운 시각을 제시한다. 연구팀은 뇌의 시각 신경망을 모사한 인공신경망 시뮬레이션을 통해, 모든 연결 가중치가 무작위로 정해지도록 초기화된 신경망이 전혀 학습을 거치지 않은 상태에서도 특정 숫자에 선택적으로 반응하는 `수량 선택성'을 자발적으로 생성함을 발견했다. 또한 이렇게 자발적으로 발생한 수량 선택적 유닛은 실제 동물의 뇌에서 발견되는 수량 선택적 뉴런들이 보이는 *`베버-페히너 법칙' 등의 주요 특성을 동일하게 따름을 확인했다. ☞ 베버-페히너 법칙(Webber-Fechner law): 자극과 감각 사이의 상대적 관계를 나타내는 심리물리학적 법칙. 인지 가능한 자극 강도 변화량은 현재 강도에 지수적으로 비례한다는 것으로 이는 인지생물학에서 기본적인 원리로 알려져 있다. 우리 대학 물리학과 김광수 석박사통합과정, 바이오및뇌공학과 장재선 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스(Science)'의 온라인 자매지 `사이언스 어드밴시스(Science Advances)' 1월 1일 字에 게재됐다. (논문명 : Visual number sense in untrained deep neural networks) 신경망에서 인지 지능의 발생에 관한 연구는 뇌인지과학과 인공지능 분야 모두에서 핵심적인 연구 주제 중 하나다. 흥미롭게도 인지 기능을 발생시키기 위해서 일반적으로 많은 양의 데이터 입력을 통한 학습 과정을 거쳐야 하는 인공신경망과 달리 동물의 뇌는 태어난 직후부터 다양한 인지 기능을 수행하는 `선천적' 인지 지능을 가지고 있는 것이 관찰돼왔다. 이러한 차이점은 생물학적 지능의 발생과 진화의 원리를 이해하는 데 결정적인 역할을 하고, 현재 개발된 인공지능과의 차이점을 보여주는 핵심적인 단서를 제공할 것으로 기대되고 있으나 이러한 인지 기능이 어떻게 자발적으로 발생하는지는 아직 명확하게 알려진 바가 없었다. 이에 연구팀은 학습을 거치지 않은 신경망의 초기 상태에서 나타나는 단순한 물리적 구조 특성이 다양한 인지 기능을 발생시킬 수 있을 것이라 예상했다. 이를 확인하기 위해 수행한 심층신경망 시뮬레이션 연구를 통해 모든 연결 가중치가 무작위로 초기화된 신경망에서도 `계층 구조'와 무작위적 피드 포워드 연결만 형성된다면 특정 수량에 선택적으로 강한 반응을 보이는 신경망 유닛들이 자발적으로 생성됨을 확인했다. 이러한 신경망 유닛들은 실제 뇌에서 발견되는 수량 선택적 신경세포의 주요한 성질들과 유사한 특성을 보였다. 이 결과는 생물학적 뇌에서 생애 초기에 발견되는 선천적인 숫자 선택성 역시 동일한 원리에 의해 발생할 가능성을 시사한다. 이러한 결과는 기초적인 인지 기능이 신경망의 초기 구조가 갖춰진 시점에 이미 존재하고 이후 다양한 학습을 통해 조절될 수 있음을 보여주며, 뇌신경과학의 중요한 화두 중 하나인 `지능의 선천적 혹은 후천적(nature vs. nurture) 형성'에 관해 매우 중요한 단서를 제공하는 발견으로 평가된다. 연구팀의 결과는 학습과 훈련에 의존해 대부분의 뇌 기능이 발생한다는 기존의 시각을 탈피해, 선천적이고 자발적으로 발생하는 뇌 기능에 대한 보다 심도 있는 연구가 필요하다는 사실을 시사한다. 한편으로 현재의 인공지능 구현 기법들과 완전히 다른 인공지능 구현 원리를 제시할 수 있는 생물학적 뇌 기반 이론을 제시한다. 백세범 교수는 "뇌 신경망 연구를 통해 얻은 아이디어를 인공신경망 연구에 적용하고, 그 결과를 다시 뇌과학적 원리를 발견하는 데 사용해 중요한 통찰을 가능하게 한 의미있는 연구ˮ라며 "뇌신경과학과 뇌공학 분야 모두에서 가장 중요한 질문 중 하나라고 할 수 있는 인지 지능의 기원에 대한 이해의 전환점을 가져올 것으로 기대된다ˮ라고 언급했다. 한편 이번 연구는 한국연구재단의 이공분야기초연구사업 및 원천기술개발사업의 지원을 받아 수행됐다.
2021.01.04
조회수 59865
임미희 교수, 손상된 뇌 신경교세포 회복 물질 개발
우리 대학 화학과 임미희 교수 연구팀이 손상된 뇌의 신경교세포를 회복시키는 저분자 화합물(Small molecule)을 발견했다. 연구팀의 이번 연구는 기억력 등 인지기능이 저하돼 일상생활의 장애를 유발하는 알츠하이머 등 만성질환의 치료 가능성을 제시할 수 있을 것으로 기대된다. 경북대 의대 박민희 교수가 1 저자로 참여하고 경북대 배재성, 진희경 교수가 공동 교신저자로 참여한 이번 연구는 미국 국립과학원에서 발행하는 국제 학술지 ‘PNAS’ 11월 4일 자 온라인판에 게재됐다. 퇴행성 뇌 질환인 치매의 일종인 알츠하이머병은 다양한 원인에 의해 발생된다. 이 질병을 치료하기 위해서 병의 원인을 정확히 파악하고 그에 맞는 치료제들을 개발하는 것이 무엇보다 중요하다. 아밀로이드-베타 펩타이드는 알츠하이머병과 밀접한 관계가 있다고 알려져 있다. 또한, 뇌의 신경 세포이며 면역 세포인 신경교세포는 신경염증 반응에 중추적인 역할을 한다. 최근 들어, 아밀로이드-베타 펩타이드와 신경교세포의 신경염증 반응 사이의 상관관계가 알츠하이머병을 일으킬 수 있는 주요한 원인으로 주목받고 있다. 신경교세포는 뇌에서 면역기능을 담당하는 신경세포의 일종으로, 탐식기능 및 식세포 작용을 통해 노폐물을 처리하는 역할을 한다. 연구팀은 알츠하이머 동물 모델들에게 저분자 화합물을 주입한 후, 동물들의 인지능력과 뇌 속에 존재하는 베타 아밀로이드의 양을 관찰해 알츠하이머 치료제로서 어떠한 유효한 효과가 있는지 실험했다. 이를 통해 ‘저분자 화합물’이 주입된 동물들은 손상된 신경교세포가 회복돼 뇌 속에 존재하는 베타 아밀로이드 단백질이 감소하는 등 인지능력이 향상된다는 사실을 발견했다. 임미희 교수는 “이 연구는 마이크로글리아의 식세포 작용 손상을 복구시켜 알츠하이머병을 치료할 수 있다는 것을 증명했다”라며 “발견된 합성 분자를 바탕으로 다양한 퇴행성 뇌질환의 치료제 개발에 더욱 박차를 가할 것이다”라고 말했다. 이번 연구는 한국보건산업진흥원, 한국연구재단, KAIST, 그리고 국가과학기술연구회 지원으로 수행됐다.
2019.11.25
조회수 9412
조광현 교수, 뇌의 제어구조 규명
〈 조광현 교수 연구팀 〉 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 뇌 영역 간 복잡한 연결 네트워크에 내재된 뇌의 제어구조를 규명했다. 이번 연구를 통해 뇌의 동작 원리에 대한 이해를 높이고, 뇌의 제어구조 분석을 통해 뇌 질환 연구 및 치료에 응용될 수 있을 것으로 기대된다. 또한 4차 산업혁명의 핵심기술로 주목받는 IT와 BT의 융합연구인 시스템생물학을 통해 규명했다는 의의가 있다. 이병욱 박사, 강의룡, 장홍준 박사과정이 참여한 이번 연구는 셀(Cell) 출판사가 펴내는 융합과학 국제학술지 ‘아이사이언스(iScience)’ 3월 29일 자에 게재됐다. 뇌의 다양한 인지기능은 뇌 영역들 사이의 복잡한 연결을 통한 영역 간 상호작용으로 이뤄진다. 최근 뇌의 연결성에 대한 정보가 뇌의 동작 원리를 파악하는 핵심이라는 의견이 대두되면서 세계적으로 뇌 연결성을 파악하기 위한 커넥톰(Connectome) 연구가 활발히 이뤄지고 있다. 이를 통해 뇌 영역 사이의 구체적 연결성이 파악되고 있지만 복잡한 연결성에 내재된 뇌의 동작 원리에 대한 이해는 아직 매우 부족한 상황이다. 특히 뇌의 강건하면서 효율적 정보처리 능력의 기반이 되는 뇌의 숨겨진 제어구조는 파악된 내용이 없다. 조 교수 연구팀은 뇌의 제어구조 분석을 위해 ‘미국국립보건원(NIH) 휴먼 커넥톰 프로젝트(Human Connectome Project)’에서 제공하는 정상인의 뇌 영상 이미지 데이터를 활용해 뇌 영영 간 네트워크를 구축했다. 이후 연구팀은 그래프 이론의 최소지배집합(minimum dominating set) 개념을 활용해 뇌 영역 간 복잡한 연결 네트워크의 제어구조를 분석했다. 최소지배집합이란 네트워크의 각 노드(뇌의 각 영역)가 링크(뇌의 서로 다른 영역간의 연결)로 연결된 이웃 노드에 직접적 영향을 줘 기능을 제어할 수 있다고 가정할 때, 네트워크를 구성하는 모든 노드를 제어하는 데 필요한 최소한의 노드 집합을 말한다. 기존 여러 연구를 통해 다양한 생체 네트워크 및 통신망, 전력망 등의 복잡계 네트워크를 제어하는 데 있어서 최소지배집합이 핵심적인 역할을 한다는 것이 보고된 바 있다. 연구팀은 최소지배집합을 기반으로 ‘제어영역의 분포(distribution of control)’와 ‘제어영역의 중첩(overlap in control area)’이라는 두 가지 지표를 정의한 뒤 이를 기준으로 총 네 종류의 제어구조를 정의했다. 이후 연구팀은 브레인 네트워크를 비롯해 도로망, 통신망, 소셜 네트워크 등 실존하는 다양한 복잡계 네트워크가 어떤 제어구조를 갖는지 분석했다. 분석 결과 뇌는 다른 대부분 네트워크와는 달리 제어영역이 분산된 동시에 서로 중첩된 특이한 구조로 이뤄짐을 밝혀냈다. 뇌의 이러한 제어구조는 외부 섭동에 의한 네트워크의 높은 강건성을 유지하면서 동시에 여러 인지기능을 효율적으로 수행하기 위한 영역들의 상호 활성화를 다양하게 하기 위한 것임을 밝혔다. IT와 BT가 융합된 시스템생물학 접근을 통한 브레인 네트워크의 구조분석은 인공지능의 발전에도 기여할 것으로 보인다. 브레인 네트워크의 진화적 설계원리에 대한 이해를 높인다면 컴퓨터 과학자들이 이를 이용해 새로운 인공지능 기술을 개발할 수 있다. 조 교수는 “지금껏 뇌의 제어구조가 밝혀진 바가 없었다”라며 “복잡한 연결성에 숨겨진 브레인 네트워크의 진화적 설계원리를 시스템생물학 연구를 통해 찾아냄으로써 뇌의 동작 원리를 파악할 수 있는 새로운 가능성을 제시했다”라고 말했다. 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업과 바이오의료기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 뇌의 제어구조 규명 그림2. 뇌 영역 간 네트워크 구축
2019.04.10
조회수 17586
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1