본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%9D%B8%EA%B3%B5%EC%A7%80%EB%8A%A5
최신순
조회순
똑똑한 영상 복원 인공지능 기술 개발
딥러닝 기술은 영상 복원 속도가 기존 알고리즘 대비 수백 배 이상 빠를 뿐만 아니라 복원 정확도 역시 높다. 하지만, 주어진 학습 데이터에만 의존하는 딥러닝 기술은 영상 취득 환경상에 변화가 생기면 성능이 급격히 저하되는 치명적인 약점이 있다. 이는 알파고와 이세돌 九단과의 대국 시 `신의 한 수'에 의해 알파고의 성능이 급격하게 저하되었던 사례를 떠올리면 쉽게 이해할 수 있다. 즉, 인공지능이 학습하지 못했던 변수(학습 데이터상에 존재하지 않는 수)가 발생할 때 신뢰도가 급격히 낮아지는 인공지능 기술의 근본적인 문제이기도 하다. 우리 대학 바이오및뇌공학과 장무석 교수 연구팀과 김재철AI 대학원 예종철 교수 연구팀이 공동 연구를 통해 인공 지능의 신뢰도 문제를 해결할 수 있는 물리적 학습 기반의 영상 복원 딥러닝 기술을 개발했다고 6일 밝혔다. 연구팀은 영상 취득 환경에서 발생할 수 있는 변수 대부분이 물리적 법칙을 통해 수학적으로 기술 가능하다는 점에 착안해 물리적 법칙과 심층 신경망이 통합된 학습 기법을 제시했다. 모든 영상 기술은 물리적인 영상 기기를 통해 영상 정보를 취득한다. 연구팀은 이 정보 취득 과정에 대한 물리적인 통찰력을 인공지능에 학습시키는 방법을 개발했다. 예를 들면, `네가 도출한 복원 결과가 물리적으로 합당할까?' 혹은 `이 영상 기기는 물리적으로 이런 변수가 생길 수 있을 것 같은데?'라는 식의 질문을 통해 물리적 통찰력을 인공지능에 이식하는 방법을 제시한 것이다. 연구팀은 변화하는 영상 취득 환경에서도 신뢰도 높은 홀로그래피 영상* 을 복원하는데 성공했다. 홀로그래피 영상 기술은 의료 영상, 군용 감시, 자율 주행용 영상 등 다양한 정밀 영상 기술에 다양하게 활용될 수 있는데, 이번 연구는 의료 진단 분야의 활용성을 집중적으로 검증하였다. *홀로그래피 영상: 물체의 그림자 패턴(회절 패턴)으로부터 물체의 형태를 복원하는 영상 기법, 일반적인 영상 기술과 달리 위상 변화에 의한 물체의 미세 구조를 감지할 수 있는 영상 기술 연구팀은 먼저 3차원 공간상에서 매우 빠르게 움직이는 적혈구의 회절 영상(확산된 그림자형상)으로부터 적혈구의 형태를 실시간으로 복원하는데 성공했다. 이러한 동적인 영상 환경에서 예상치 못한 변수로는 여러 개의 적혈구 덩어리가 복잡하게 겹쳐진다거나 적혈구가 예상하지 못했던 위치로 흘러가는 경우를 생각해 볼 수 있다. 여기서, 연구팀은 인공 지능이 생성한 영상이 합당한 결과인지 빛 전파 이론을 통해 검산하는 방식으로 물리적으로 유효한 복원 신뢰도를 구현하는데 성공하였다. 연구팀은 암 진단의 표준기술로 자리잡고 있는 생검 조직(생체에서 조직 일부를 메스나 바늘로 채취하는 것)의 영상 복원에도 성공했다. 주목할 점은 특정한 카메라 위치에서 측정된 회절 영상만을 학습했음에도 인공지능의 인지능력이 부가되어 다양한 카메라 위치에서도 물체를 인식하는데 성공했다는 점이다. 이번에 구현된 기술은 세포 염색 과정이나 수 천 만원에 달하는 현미경이 필요하지 않아 생검 조직 검사의 속도와 비용을 크게 개선할 수 있을 것으로 기대된다. 물리적 통찰력을 인공 지능에 이식하는 영상 복원 기술은 의료 진단 분야 뿐만 아니라 광범위한 영상 기술에 활용될 것으로 기대된다. 최근 영상 기술 산업계 (모바일 기기 카메라, 의료 진단용 MRI, CT, 광 기반 반도체 공정 불량 검출 등) 에선 인공지능 솔루션 탑재가 활발히 이루어지고 있다. 영상 취득에 사용되는 센서, 물체의 밝기, 물체까지의 거리와 같은 영상 취득 환경은 사용자마다 다를 수밖에 없어 적응 능력을 갖춘 인공 지능 솔루션에 대한 수요가 큰 상황이다. 현재 대부분의 인공 지능 기술은 적응 능력 부재로 신뢰도가 낮은 문제 때문에 실제 현장에서 활용성이 제한적인 상황이다. 바이오및뇌공학과 이찬석 연구원은 "데이터와 물리 법칙을 동시에 학습하는 적응형 인공지능 기술은 홀로그래피 영상뿐만 아니라 초고해상도 영상, 3차원 영상, 비시선 영상(장애물 뒷면을 보는 영상) 등 다양한 계산 영상 기술에 적용될 수 있을 것으로 기대된다ˮ고 밝혔다. 연구진은 "이번 연구를 통해 인공지능 학습에 있어서 학습 데이터에 대한 강한 의존성(신뢰도 문제)을 물리적 법칙을 결합해 해소했을 뿐만 아니라, 이미지 복원에 있어 매게 변수화된 전방 모델을 기반으로 했기 때문에 신뢰도와 적응성이 크게 향상됐다ˮ며, 이어 "이번 연구에서는 데이터의 다양한 특성 중에서 수학적 혹은 물리적으로 정확히 다룰 수 있는 측면에 집중했고, 향후 무작위적인 잡음이나 데이터의 형태에 대해서도 제약받지 않는 범용 복원 알고리즘을 개발하는 데 주력할 것이다ˮ라고 밝혔다. 바이오및뇌공학과 이찬석 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 머신 인텔리전스(Nature Machine Intelligence)'에 지난 1월 17일 字 출판됐다. (논문명: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data) 한편 이번 연구는 삼성미래기술육성사업과 선도연구센터사업의 지원을 받아 수행됐다.
2023.02.06
조회수 765
사진에서 3차원 정보를 추론하는 인공지능 반도체 IP(지식재산권) 세계 최초 개발
우리 대학 전기및전자공학부 유회준 교수가 이끄는 PIM 반도체 설계 연구센터(AI-PIM)가 유수 학계에서 인정한 5종의 최첨단 인공지능 반도체 IP(지식재산권)를 개발했다고 29일 밝혔다. 대표적으로 심층신경망 추론 기술 및 센서 퓨전* 기술을 통해 사진으로부터 3차원 공간정보 추출하고 물체를 인식해 처리하는 인공지능(AI) 칩은 KAIST에서 세계 최초로 개발해 SRAM PIM** 시스템에 필요한 기술을 IP(지식재산권)화 한 것이다. * 센서 퓨전 : 카메라, 거리센서 등의 각종 센서로부터 얻은 데이터를 결합하여보다 정확한 데이터를 얻는 방식 ** SRAM PIM : 기존 메모리 SRAM과 DRAM 중 SRAM에 연산기를 결합한 PIM반도체 이 IP는 올해 2월 20일부터 28일까지 개최된 국제고체회로설계학회(ISSCC)에서 현장 시연을 통해 많은 주목을 받았으며, 이를 누구라도 편리하게 활용할 수 있도록 한 것이다. (웹사이트 : www.ai-pim.org) KAIST PIM 반도체 설계연구센터는 해당 IP를 포함해 ADC*, PLL** 등 총 5가지의 PIM IP를 확보했으며, 지난 28일 웹사이트를 오픈해 연구자들이 공유할 수 있는 환경을 제공하고 있다. * ADC(Analog to Digital Converter) : 아날로그 데이터를 디지털 데이터로 변환시키는 회로 ** PLL(Phase-Locked Loop) : 내부 신호의 위상과 외부 신호의 위상을 동기화할 수 있도록 설계된 회로 기존 물체 인식 인공지능 반도체는 사진과 같은 2차원 정보를 인식하는 `사진인식기술'에 불과하다. 하지만 현실 세계의 물체들은 3차원 구조물이기 때문에 3차원 공간정보를 활용해야만 정확한 `물체인식'이 가능하다. 3차원 공간정보는 사진과 같은 2차원 정보에 거리정보를 포함시켜 실제 3차원 공간을 표현한 것으로, 3차원 공간정보에 물체를 식별해 해당 물체의 위치 및 각도를 추적하는 3차원 물체인식 기술이다. 이는 자율주행, 자동화 기술, 개인용 증강현실 (AR)과 가상현실(VR) 등과 같은 3D 어플리케이션에서 사용하는 핵심기술이다. 기존 ToF 센서*를 활용해 센서 뷰 내에 있는 모든 물체에 대한 정밀한 3차원 정보를 추출하는 것은 전력 소모가 매우 크기 때문에 배터리 기반 모바일 장치(스마트폰, 태블릿 등)에서는 사용하기 어렵다. * ToF 센서 : 3차원 공간정보를 추출하는 Time-of-Flight 센서로, 레이저를 방출하고 반사된 레이저가 검출되는 시간을 측정하여 거리를 계산, 대표적인 센서로 3D 라이다 (LiDAR) 센서가 있음 또한, ToF 센서는 특정 측정 환경에서 3차원 정보가 손실되는 문제와 데이터 전처리 과정에 많은 시간이 소요된다는 문제점이 있다. 3차원 물체인식 기술은 데이터가 복잡해 기존 인공지능 2차원 사진인식 가속 프로세서로 처리하기 어렵다. 이는 3차원 포인트 클라우드 데이터를 어떻게 선택하고 그룹화하느냐에 따라 메모리 접근량이 달라진다. 따라서 3차원 포인트 클라우드 기반 인공지능 추론은 연산 능력이 제한적이고 메모리가 작은 모바일 장치에서는 소프트웨어만으로 구현할 수 없었다. 이에 연구팀은 카메라와 저전력 거리센서 (64픽셀)를 사용하여 3차원 공간정보를 생성했고, 모바일에서도 3차원 어플리케이션 구현이 가능한 반도체 (DSPU: Depth Signal Processing Unit)를 개발함으로써 인공지능 반도체의 활용범위를 넓혔다. 모바일 기기에서 저전력 센서를 활용한 3차원 정보 처리 시스템을 구동하면서, 실시간 심층신경망 추론과 센서 퓨전 기술을 가속하기 위해서는 다양한 핵심기술이 필요하다. 인공지능 핵심기술이 적용된 DSPU는 단순 ToF센서에 의존했던 3차원 물체인식 가속기 반도체 대비 63.4% 낮춘 전력 소모와 53.6% 낮춘 지연시간을 달성했다. PIM반도체 설계연구센터(AI-PIM)의 소장인 유회준 교수는 “이번 연구는 저가의 거리센서와 카메라를 융합해 3차원 데이터 처리를 가능하게 한 인공지능 반도체를 IP화했다는 점에서 의미가 크며, 모바일 기기에서 인공지능 활용 영역을 크게 넓혀 다양한 분야에 응용 및 기술이전을 기대하고 있다”고 연구의 의의를 설명했다. 한편, 이번 연구는 과학기술정보통신부와 정보통신기획평가원의 PIM인공지능반도체핵심기술개발사업을 통해 개발되었으며, 이와 관련해 PIM 반도체 관련 기업과 연구기관에 개발된 IP들의 기술이전 및 활용을 돕고 있다.
2022.12.29
조회수 960
인공지능으로 정확한 세포 이미지 분석..세계 AI 생명과학 분야 대회 우승
우리 대학 김재철AI대학원 윤세영 교수 연구팀이 세계 최고 수준의 인공지능(AI) 학회인 `뉴립스(NeurIPS, 신경정보처리시스템학회) 2022'에서 개최된 `세포 인식기술 경진대회'에서 취리히 리서치센터, 베이징대, 칭화대, 미시간대 등 다수의 세계 연구팀을 모두 제치고 1위로 우승을 달성했다고 28일 밝혔다. 뉴립스는 국제머신러닝학회(ICML), 표현학습국제학회(ICLR)와 함께 세계적인 권위의 기계학습 및 인공지능 분야 학회로 꼽힌다. 뛰어난 연구자들이 제출하는 논문들도 승인될 확률이 25%에 불과할 정도로 학회의 심사를 통과하기 어려운 것으로 알려져 있다. 윤세영 교수 연구팀은 이번 학회에서 `세포 인식기술 경진대회(Cell Segmentation Challenge)'에 참가했다. 이기훈(박사과정), 김상묵(박사과정), 김준기(석사과정)의 3명의 연구원으로 구성된 OSILAB 팀은 초고해상도의 현미경 이미지에서 인공지능이 자동으로 세포를 인식하는 MEDIAR(메디아) 기술을 개발해 2위 팀과 큰 성능 격차로 1위를 달성했다. 세포 인식은 생명 및 의료 분야의 시작이 되는 중요한 기반 기술이지만, 현미경의 측정 기술과 세포의 종류 등에 따라 다양한 형태로 관찰될 수 있어 인공지능이 학습하기 어려운 분야로 알려져 있다. 세포 인식기술 경진대회는 이러한 한계를 극복하기 위해 초고해상도의 현미경 이미지에서 제한된 시간 안에 세포를 인식하는 기술을 주제로 개최됐다. 연구팀은 기계학습에서 소수의 학습 데이터를 더 효과적으로 활용해 성능을 높이는 데이터 기반(Data-Centric) 접근법과 인공신경망의 구조를 개선하는 모델 기반(Model-Centric) 접근법을 종합적으로 활용해 MEDIAR(메디아) 기술을 개발했다. 개발된 인공지능 기술을 통해 정확하게 세포를 인식하고 고해상도 이미지를 빠르게 연산함으로써 대회에서 좋은 성과를 얻을 수 있었다. 지도교수인 KAIST 김재철AI대학원 윤세영 교수는 “MEDIAR는 세포 인식기술 경진대회를 통해 개발됐지만 기상 예측이나 자율주행과 같이 이미지 속 다양한 형태의 개체 인식을 통해 정확한 예측이 필요한 많은 분야에 적용할 수 있다”라고 향후 다양한 활용을 기대했다. 팀을 이끌었던 이기훈 박사과정은 "처음 접하는 분야에서도 성과를 낼 수 있었던 것은 평소 기본기를 중요시하는 교수님의 가르침 덕분ˮ이라며 "새로운 문제에 끊임없이 도전하자는 것이 연구팀의 기본 정신ˮ이라고 강조했다. 이어 같은 연구실 김상묵 박사과정은 "연구 과정에서 많은 실패가 있었지만, 세상에 꼭 필요한 기술이라는 생각으로 끝까지 노력했다ˮ라며 "혼자서라면 절대 해내지 못했던 결과인 만큼 팀원들에게 정말 감사하다ˮ라고 수상 소감을 전했다. 같은 연구실 김준기 석사과정은 "팀원들과 이룬 성과가 의료 분야 인공지능이 겪는 현실의 문제를 해결하는 데 도움이 될 수 있기를 바란다”라고 밝혔다. 연구팀은 생명과학 분야 연구의 발전을 돕기 위해 개발된 기술을 전면 오픈소스로 공개한다고 밝혔다. 학습된 인공지능 모델과 인공지능을 구현하기 위한 프로그램의 소스 코드는 개발자 플랫폼인 깃허브 (GitHub)를 통해 이용할 수 있다.
2022.12.28
조회수 1240
김준모·주재걸 교수, 한국인공지능학회 학술상·학회공로상 수상
우리 대학 유창동 전기및전자공학부 교수가 회장을 맡은 한국인공지능학회 지난 11일 2022 송년회를 개최하고 인공지능의 학술적 발전에 기여한 기업과 연구자에게 시상했다. 최근 5년 간 영향력이 큰 논문을 쓴 연구자에게 주는 학술상은 김준모 KAIST 전기및전자공학부 교수, 주재걸 KAIST 김재철AI대학원 교수에게 수여됐다. 서민준 KAIST 김재철AI대학원 교수는 신진연구자상을 받았다. 또한, 인공지능 및 학회 발전에 세운 공로로 김광수·장동의 KAIST 전기및전자공학부 교수, 석흥일 고려대 인공지능학과 교수, 백승렬 유니스트 AI 대학원 교수, 주재걸 KAIST 김재철AI대학원 교수에게 학회공로상이 부상과 함께 주어졌다. 이번 시상식에서는 학술분야의 높은 성과와 함께 인공지능 개발과 응용에 앞장서 국내·외 협력 사업을 활성화고 학회와의 협력을 위해서 노력한 기업인들의 공로도 치하돼 배경훈 LG AI 연구원장, 하정우 네이버 AI 연구소장, 배순민 KT AI2XL 소장에게 기업인상이 주여졌다. 배경훈 원장은 LG AI 연구원의 초대원장으로 LG 그룹의 인공지능 연구를 발전에 일조하고 최근에는 인력양성과 초거대 AI에 큰 힘을 쏟고 있다. 하정우 네이버 AI 연구소장은 네이버의 인공지능 연구를 세계적 수준으로 올리는데 크게 기여하고 있으며, 최근에는 NeurIPS 2022 의 Social Chair와 디지털플랫폼정부위원회 데이터-인공지능 분과 위원장을 역임하고 있다. 배순민 소장은 디지털플랫폼정부위원회 데이터-인공지능 분과에 참여하고 있으며, KT내 인공지능 연구와 국제협력 사업에 큰 힘을 기울이고 있다. 유창동 회장은 “2022년 한국인공지능 발전을 이끌어주신 모든 수상자들에게 축하와 감사의 인사를 전하며, 2023년에는 더 크게 도약하는 한 해가 되길 기원한다”라고 전했다.
2022.12.19
조회수 1089
전기및전자공학부 서창호, 최경철 교수 2023 IEEE 석학회원 선임
우리 대학 전기및전자공학부 서창호 교수와 최경철 교수가 국제전기전자공학자협회(IEEE)의 2023년 석학회원(Fellow)으로 선임됐다고 9일 밝혔다. 전기및전자공학부에서는 1995년 김충기 명예교수가 석학회원으로 선임된 이후 20명의 교수가 석학회원으로 선임됐다. 2023년처럼 2명의 석학회원이 동시 선임된 것은 2008년 이주장 교수와 유회준 교수, 2009년 경종민 교수, 김종환 교수, 송익호 교수, 2016년 조규형 교수와 김정호 교수가 동시 선임된 이래 7년 만이다. 서창호 교수는 무한용량 통신기법과 최적의 분산 저장시스템 개발 공로를 인정받아 석학회원으로 선정됐다. 서 교수는 KAIST 전기및전자공학부에서 학사 및 석사과정을 이수하고, 미국 캘리포니아대학교 버클리(UC버클리)에서 박사과정을 밟으며 정보이론의 선구자 클로드 섀넌이 제기한 해당 분야의 난제를 해결한 연구 실적으로 화제가 됐다. 국제전기전자공학자학회(IEEE)를 비롯한 UC버클리 등에서 각종 논문상을 받은 그는 2011년 박사학위를 받고 메사추세츠 공과대학(MIT)에서 1년가량 박사후연구원을 지낸 뒤 2012년부터 모교인 KAIST로 돌아와 연구와 교육을 이어가고 있다. 2021년에는 IEEE 정보이론 소사이어티(Information Theory Society)에서 젊은 과학자상을 받는 등 활발한 대외활동을 하고 있다. 최경철 교수는 디스플레이 분야의 최고 권위자로 플렉시블 및 웨어러블 디스플레이 분야에 대한 연구업적을 인정받아 석학회원으로 선정됐다. 최경철 교수는 서울대학교 전기공학과에서 학사/석사 및 박사학위를 마쳤고, 미국의 창업 회사 및 국내 대기업 등에서 디스플레이 소자 개발을 했으며, 2005년 KAIST 전기 및 전자공학부 교수로 부임해, 입는 OLED 디스플레이 및 플렉시블 OLED 소자에 관한 연구와 이들을 응용한 바이오메디칼 연구를 진행해, 상처 치료용 OLED 패치 기술과 옷 OELD로 소아 황달을 치료하는 기술을 개발한 바 있다. 최경철 교수는 2018년 머렉(Merck) 상, 2022년에는 유니버설 디스플레이 코퍼레이션(UDC) 혁신상(Innovative Award)을 수상했다. IEEE는 세계 최고 권위의 전기, 전자, 컴퓨터, 통신 분야 학회다. 160여 개국에서 40만 명에 이르는 회원을 보유하고 있다. 이중 석학회원(Fellow)은 탁월한 개인 연구업적, 기술 성취 실적, 전문 분야 총괄 경력 등 7개의 평가 기준 심사를 거쳐 회원의 최상위 0.1% 내에서 선정한다. 서창호 교수는 정보이론 뿐 아니라 인공지능(AI) 분야에서도 활발한 연구를 하고 있다. 현재 신뢰할 수 있는 인공지능(Trustworthy AI) 개발에 주력 중인데, 최근에는 편향성이 있는 데이터로도 공정한 판단을 내리는 인공지능을 개발해 구글 연구상(Google Research Award)을 수상한 바 있다. 구글과는 AI 교육과정 공동개발의 일환으로 수업 교재를 개발해, 이를 텍스트북(convex optimization for machine learning)으로 발간했다. 향후 신뢰할 수 있는 AI 이외 유전체 정보를 활용한 질병예측 AI 연구에 매진할 예정이며, 교육 분야에서는 학생들을 위한 교과서 외에 일반인들을 위한 AI 서적을 쓸 계획이다. 최경철 교수는 향후 상처 치료용 OLED 패치의 제품 생산을 위해 설립한 KAIST 연구소기업과 공동으로, 상용화 기술 개발을 수행할 예정이며, 웨어러블 OLED 광 치료 기술을 치매 치료 및 우울증 치료 등의 연구도 적용하는 연구를 수행할 예정이다.
2022.12.09
조회수 1002
낸드플래시 방식의 고신뢰성 인공 시냅스 소자 개발
우리 대학 신소재공학과 김경민 교수 연구팀이 낸드플래시(NAND Flash)의 전하 저장 방식을 활용하여 양산성이 높으며 높은 균일도를 갖는 고신뢰성 인공 시냅스 소자 개발에 성공했다고 6일 밝혔다. 최근 고성능의 인공지능 기술(Artificial Intelligence; AI) 구현을 위하여 인공 시냅스 소자를 통해 크로스바 어레이 구조에서 고밀도의 메모리 집적과 행렬 연산 가속을 동시에 구현하는 맞춤형 하드웨어를 개발하기 위한 노력이 계속되고 있다. 시냅스 소자의 후보 물질로 다양한 물질이 제시되었으나, 인공지능 가속기가 요구하는 다비트성 (Multi-bit), 보존성 (retention), 균일성 (uniformity), 내구성(Endurance) 등을 모두 만족하는 소자는 매우 드물었으며, 또한 제시되는 후보 물질들의 동작 방식도 기존 반도체 소자들과 매우 달라 반도체 소자로 활용함에 있어 양산성 및 수율 등에도 추가적인 검증이 필요하다는 한계가 있었다. 김경민 교수 연구팀은 낸드플래시의 전하 저장하는 방식을 차용한 2단자 구조의 인공 시냅스 소자를 개발했다. 기존에는 2단자 시냅스 구조가 안정적으로 동작하기 위해서는 전하의 저장 상태를 읽기 위해 산화막을 얇게 하여 저장된 전하의 보존성을 희생해야하는 한계가 있었다. 연구팀은 이번 연구에서 알루미늄 산화막, 나이오븀 산화막, 탄탈룸 산화막 등이 순차적으로 적층된 최적의 시냅스 소자 구조를 제안하였으며, 이를 통해 안정적인 다비트성과 보존성을 모두 확보하였다. 또한, 제안한 시냅스 소자가 갖는 자가정류(self-rectifying) 특성을 활용하는 병렬 컴퓨팅 방법을 제시하여 기존의 순차적 컴퓨팅 대비 필요한 에너지를 약 71% 절약할 수 있었다. 공동 제1 저자인 신소재공학과 김근영 석박통합과정은 “이번 연구는 이미 검증된 낸드플래시 메모리 구조를 인공 시냅스 소자에 적용하여 시냅스 소자의 양산성에 대한 우려를 불식한데 의미가 있다”며 “이처럼 향후 개발되는 인공지능 반도체에도 기존 반도체 소자의 고성능 특성과 물질의 새로운 특성을 접목하는 연구가 활발히 이뤄질 것으로 예상된다”고 밝혔다. 이러한 인공 시냅스 소자 기술은 인공지능 컴퓨팅을 저전력으로 구현하는 지능형 반도체 소자에 적용되어 에지 컴퓨팅 (Edge computing)과 같이 적은 에너지 소모가 필수적인 인공지능 기술에 다양하게 적용될 수 있을 것으로 기대된다. 이번 연구는 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’에 11월 28일 字 온라인 게재됐으며 한국연구재단, KAIST, SK Hynix의 지원을 받아 수행됐다. (논문명: Retention secured nonlinear and self-rectifying analog charge trap memristor for energy-efficient neuromorphic hardware)
2022.12.06
조회수 1148
세계 최초로 사람처럼 사물의 개념을 스스로 학습하는 장면 인식 기술 개발
우리 대학 전산학부 안성진 교수 연구팀이 미국 럿거스(Rutgers) 대학교와 공동연구를 통해 사람의 라벨링 없이 스스로 영상 속 객체를 식별할 수 있는 인공지능 기술을 개발했다고 1일 밝혔다. 이 모델은 복잡한 영상에서 각 장면의 객체들에 대한 명시적인 라벨링 없이도 객체를 식별하는 최초의 인공지능 모델이다. 기계가 주변 환경을 지능적으로 인지하고 추론하기 위해서는 시각적 장면을 구성하는 객체들과 그들의 관계를 파악하는 능력이 필수적이다. 하지만 이 분야의 연구는 대부분 영상의 각 픽셀에 대응하는 객체의 라벨을 사람이 일일이 표시해야 하는 지도적 학습 방식을 사용했다. 이 같은 수작업은 오류가 발생하기 쉽고 많은 시간과 비용을 요구한다는 단점이 있다. 이에 반해 이번에 연구팀이 개발한 기술은 인간과 유사하게 환경에 대한 관측만으로 객체의 개념을 스스로 자가 학습하는 방식을 취한다. 이렇게 인간의 지도 없이 스스로 객체의 개념을 학습할 수 있는 인공지능은 차세대 인지 기술의 핵심으로 기대돼왔다. 비지도 학습을 이용한 이전 연구들은 단순한 객체 형태와 배경이 명확히 구분될 수 있는 단순한 장면에서만 객체를 식별하는 단점이 있었다. 이와 달리 이번에 안성진 교수 연구팀이 개발한 기술은 복잡한 형태의 많은 객체가 존재하는 사실적인 장면에도 적용될 수 있는 최초의 모델이다. 이 연구는 그림 인공지능 소프트웨어인 DALL-E와 같이 텍스트 입력을 통해 사실적인 이미지를 생성할 수 있는 이미지 생성 연구에서 영감을 얻었다. 연구팀은 텍스트를 입력하는 대신, 모델이 장면에서 객체를 감지하고 그 객체의 표상(representation)으로부터 이미지를 생성하는 방식으로 모델을 학습시켰다. 또한, 모델에 DALL-E와 유사한 트랜스포머 디코더를 사용하는 것이 사실적이고 복잡한 영상을 처리할 수 있게 한 주요 요인이라고 밝혔다. 연구팀은 복잡하고 정제되지 않은 영상뿐만 아니라, 많은 물고기가 있는 수족관과 교통이 혼잡한 도로의 상황을 담은 유튜브 영상과 같이 복잡한 실제 영상에서도 모델의 성능을 측정했다. 그 결과, 제시된 모델이 기존 모델보다 객체를 훨씬 더 정확하게 분할하고 일반화하는 것을 확인할 수 있었다. 연구팀을 이끈 안성진 교수는 "인간과 유사한 자가 학습 방식으로 상황을 인지하고 해석하는 혁신적인 기술ˮ이라며 "시각적 상황인지 능력을 획기적으로 개선해 지능형 로봇 분야, 자율 주행 분야뿐만 아니라 시각적 인공지능 기술 전반에 비용 절감과 성능향상을 가져올 수 있다ˮ고 말했다. 이번 연구는 미국 뉴올리언스에서 지난 11월 28일부터 개최되어 12월 9일까지 진행 예정인 세계 최고 수준의 기계학습(머신러닝) 학회인 제36회 신경정보처리학회(NeurIPS)에서 발표됐다.
2022.12.02
조회수 1035
예종철 교수, 제10회 KSIAM-금곡학술상 수상
우리 대학 김재철AI대학원 예종철 교수 연구팀이 지난 11월 24일 제주도에서 열린 한국산업응용수학회(KSIAM) 가을정기학술대회에서 제10회 KSIAM-금곡학술상 수상자로 선정됐다. KSIAM-금곡학술상은 연령에 무관하게 연구의 수월성을 기준으로 수학 분야(응용수학 및 계산수학 분야) 및 공학 분야(계산과학공학 분야)에서 탁월한 연구업적을 통해 해당 학문 분야의 진보에 기여한 국내외 한인 연구자에게 수여된다. 예 교수는 인공지능 기반으로 응용수학의 중요한 분야인 역문제(inverse problem)를 푸는 연구를 국제적으로 선도하고, 이러한 인공지능망을 통한 역문제 해석 기법의 수학적 원리를 밝히는 것을 개척해 온 공로로 이 상을 받게 됐다. 여기서 역문제는 센서 등에서 얻어진 측정치에서 신호원을 복원하는 문제로서 의료, 자연과학 및 편미분방정식등 많은 분야에 사용이 되는 중요한 문제다. 이러한 역문제는 측정치가 적거나 잡음이 많은 경우 전통적인 방식으로는 해결되지 않는데, 예종철 교수는 이러한 난제를 데이터 기반 인공지능 기술을 이용해 푸는 것을 개척해왔다. 예종철 교수는 이러한 연구 성과를 `미국 산업응용수학학회 이미징 사이언스 저널(SIAM Journal on Imaging Science)' `미국 산업응용수학학회 응용수학 저널(SIAM Journal on Applied Mathematics)', `네이처 머신 인텔리전스(Nature Machine Intelligence)', `네이처 커뮤니케이션즈(Nature Communications)', `전기전자학회 정보이론 트랜잭션(IEEE Transaction on Information Theory)', `전기전자학회 메디컬이미징 트랜잭션(IEEE Transaction on Medical Imaging)', `의료 이미지 분석(Medical Image Analysis)' 등 역문제 분야 응용수학 및 공학 분야의 최고 권위 학술지에 약 150여편의 논문을 발표하고, 신경정보처리학회(NeurIPS), 국제 컴퓨터 비전 및 패턴인식 학술대회(CVPR), 국제 머신러닝학회(ICML), 유럽컴퓨터비전학회(ECCV) 등 인공지능 분야 일류(top tier) 학술대회에 23편 이상의 논문을 게재하고, 총 논문 인용 횟수 1만 6천 회 이상으로 응용수학 분야의 탁월한 지명도 (H-index 59)를 보이고 있다. 특히 합성곱 신경망(컨볼루션 뉴럴 네트워크)의 구성 원리를 조화해석학 기법으로 밝힌 연구(`Deep Convolutional Framelets: A General Deep Learning Framework for Inverse Problems')는 미국 산업응용수학학회 이미징 사이언스 저널(SIAM Journal on Imaging Sciences)에서 가장 많이 인용된 논문 탑 10에 드는 연구로서 응용수학계에 많은 반향을 일으키고 있다. 예종철 교수는 "인공지능을 이용한 역문제에 대한 이론적인 연구가 수학계에서 인정받아 매우 기쁘고, 금곡학술상을 수상하게 되어 영광이다ˮ 라고 소감을 밝혔다.
2022.11.29
조회수 1072
세계 최고 수준의 딥러닝 의사결정 설명기술 개발
우리 대학 김재철AI대학원 최재식 교수(㈜인이지 대표이사) 연구팀이 인공지능 딥러닝의 의사결정에 큰 영향을 미치는 입력 변수의 기여도를 계산하는 세계 최고 수준의 기술을 개발했다고 23일 밝혔다. 최근 딥러닝 모델은 문서 자동 번역이나 자율 주행 등 실생활에 널리 보급되고 활용되는 추세 및 발전에도 불구하고 비선형적이고 복잡한 모델의 구조와 고차원의 입력 데이터로 인해 정확한 모델 예측의 근거를 제시하기 어렵다. 이처럼 부족한 설명성은 딥러닝이 국방, 의료, 금융과 같이 의사결정에 대한 근거가 필요한 중요한 작업에 대한 적용을 어렵게 한다. 따라서 적용 분야의 확장을 위해 딥러닝의 부족한 설명성은 반드시 해결해야 할 문제다. 최교수 연구팀은 딥러닝 모델이 국소적인 입력 공간에서 보이는 입력 데이터와 예측 사이의 관계를 기반으로, 입력 데이터의 특징 중 모델 예측의 기여도가 높은 특징만을 점진적으로 추출해나가는 알고리즘과 그 과정에서의 입력과 예측 사이의 관계를 종합하는 방법을 고안해 모델의 예측 과정에 기여하는 입력 특징의 정확한 기여도를 계산했다. 해당 기술은 모델 구조에 대한 의존성이 없어 다양한 기존 학습 모델에서도 적용이 가능하며, 딥러닝 예측 모델의 판단 근거를 제공함으로써 신뢰도를 높여 딥러닝 모델의 활용성에도 크게 기여할 것으로 기대된다. ㈜인이지의 전기영 연구원, 우리 대학 김재철AI대학원의 정해동 연구원이 공동 제1 저자로 참여한 이번 연구는 오는 12월 1일, 국제 학술대회 `신경정보처리학회(Neural Information Processing Systems, NeurIPS) 2022'에서 발표될 예정이다. 모델의 예측에 대한 입력 특징의 기여도를 계산하는 문제는 해석이 불가능한 딥러닝 모델의 작동 방식을 설명하는 직관적인 방법 중 하나다. 특히, 이미지 데이터를 다루는 문제에서는 모델의 예측 과정에 많이 기여한 부분을 강조하는 방식으로 시각화해 설명을 제공한다. 딥러닝 예측 모델의 입력 기여도를 정확하게 계산하기 위해서 모델의 경사도를 이용하거나, 입력 섭동(행동을 다스림)을 이용하는 등의 연구가 활발히 진행되고 있다. 그러나 경사도를 이용한 방식의 경우 결과물에 잡음이 많아 신뢰성을 확보하기 어렵고, 입력 섭동을 이용하는 경우 모든 경우의 섭동을 시도해야 하지만 너무 많은 연산을 요구하기 때문에, 근사치를 추정한 결과만을 얻을 수 있다. 연구팀은 이러한 문제 해결을 위해 입력 데이터의 특징 중에서 모델의 예측과 연관성이 적은 특징을 점진적으로 제거해나가는 증류 알고리즘을 개발했다. 증류 알고리즘은 딥러닝 모델이 국소적으로 보이는 입력 데이터와 예측 사이의 관계에 기반해 상대적으로 예측에 기여도가 적은 특징을 선별 및 제거하며, 이러한 과정의 반복을 통해 증류된 입력 데이터에는 기여도가 높은 특징만 남게 된다. 또한, 해당 과정을 통해 얻게 되는 변형된 데이터에 대한 국소적 입력 기여도를 종합해 신뢰도 높은 최종 입력 기여도를 산출한다. 연구팀의 이러한 입력 기여도 측정 기술은 산업공정 최적화 프로젝트에 적용해 딥러닝 모델이 예측 결과를 도출하기 위해서 어떤 입력 특징에 주목하는지 찾을 수 있었다. 또한 딥러닝 모델의 구조에 상관없이 적용할 수 있는 이 기술을 바탕으로 복잡한 공정 내부의 다양한 예측변수 간 상관관계를 정확하게 분석하고 예측함으로써 공정 최적화(에너지 절감, 품질향상, 생산량 증가)의 효과를 도출할 수 있었다. 연구팀은 잘 알려진 이미지 분류 모델인 VGG-16, ResNet-18, Inception-v3 모델에서 개발 기술이 입력 기여도를 계산하는 데에 효과가 있음을 확인했다. 해당 기술은 구글(Google)이 보유하고 텐서플로우 설명가능 인공지능(TensorFlow Explainable AI) 툴 키트에 적용된 것으로 알려진 입력 기여도 측정 기술(Guided Integrated Gradient) 대비 LeRF/MoRF 점수가 각각 최대 0.436/0.020 개선됨을 보였다. 특히, 입력 기여도의 시각화를 비교했을 때, 기존 방식 대비 잡음이 적고, 주요 객체와 잘 정렬됐으며, 선명한 결과를 보였다. 연구팀은 여러 가지 모델 구조에 대해 신뢰도 높은 입력 기여도 계산 성능을 보임으로써, 개발 기술의 유효성과 확장성을 보였다. 연구팀이 개발한 딥러닝 모델의 입력 기여도 측정 기술은 이미지 외에도 다양한 예측 모델에 적용돼 모델의 예측에 대한 신뢰성을 높일 것으로 기대된다. 전기영 연구원은 "딥러닝 모델의 국소 지역에서 계산된 입력 기여도를 기반으로 상대적인 중요도가 낮은 입력을 점진적으로 제거하며, 이러한 과정에서 축적된 입력 기여도를 종합해 더욱 정확한 설명을 제공할 수 있음을 보였다ˮ라며 "딥러닝 모델에 대해 신뢰도 높은 설명을 제공하기 위해서는 입력 데이터를 적절히 변형한 상황에서도 모델 예측과 관련도가 높은 입력 특성에 주목해야 한다ˮ라고 말했다. 이번 연구는 2022년도 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받은 사람 중심 AI강국 실현을 위한 차세대 인공지능 핵심원천기술개발 사용자 맞춤형 플로그앤플레이 방식의 설명가능성 제공, 한국과학기술원 인공지능 대학원 프로그램, 인공지능 공정성 AIDEP 및 국방과학연구소의 지원을 받은 설명 가능 인공지능 프로젝트 및 인이지의 지원으로 수행됐다.
2022.11.23
조회수 2559
Cultivating Empathy Through Design 국제전시회 개최
우리 대학 건설및환경공학과가 KAIST-KT 공동연구센터에서 〈Cultivating Empathy Through Design> 국제전시회를 개최 중이다. 우리 대학 건설및환경공학과와 미국 조지아텍 건축학부 14명의 학생들이 공동으로 참여했으며, 사회 취약계층을 도울 수 있는 건축 및 도시 환경을 디자인한 프로젝트의 작품들이 전시되었다. 미디어아트 1점, 설치 16점, 이미지 31점 등 총 48점의 전시 작품에는 초고령사회에서 고령자와 아이는 물론 모두를 위한 환경이 어떻게 디자인되어야 하는가에 대한 고민과 아이디어들이 담겨있다. 예술감독(Artistic Director)으로 참여한 임리사 교수 연구실(Health Design Lab)의 백대화 박사과정 학생은 "KAIST와 조지아텍에는 다양한 문화적·학문적 배경을 가진 여러 국적의 학생들이 재학 중이다"라며, "서로 다른 지역에서 살아온 학생들이 보여준 시선의 차이 덕분에 건축과 도시 환경이 초고령사회를 살아가는 다양한 세대의 삶을 어떻게 향상할 수 있는지를 풍부하게 고찰할 수 있었다"라고 설명했다. 이번 전시는 우리 대학 인공지능연구원과 건설및환경공학과가 후원했으며, 이달 14일 시작된 전시는 KAIST-KT 공동연구센터(KT대덕2연구센터 4동 4층)에서 다음 달 2일까지 진행되며, 오프라인은 물론 3D 전시를 제공해 전 세계 어디에서나 온라인으로도 관람할 수 있다. 전시를 총괄한 임리사 교수는 "이번 전시를 통해 디자인이 사람들을 도울 수 있다는 사실을 널리 알려 향후 보다 많은 사람을 위해 좋은 건축도시환경을 조성하는 계기가 될 수 있길 바란다"라고 전했다. ▶ 3D 전시 사이트 바로가기: https://my.matterport.com/show/?m=ysYAM54nsQk ▶ 전시 상세 정보 바로가기: https://www.healthdesign.kaist.ac.kr/post/exhibition-cultivating-empathy-through-design ▶ 문의: 건설및환경공학과 임리사 교수(lisalim@kaist.ac.kr) / 백대화 박사과정(aboutbaek@kaist.ac.kr)
2022.11.21
조회수 932
다양한 학과의 AI 수업을 내 맘대로 골라 듣는 ‘AI특별지정전공’ 개설
우리 대학 인공지능연구원이 'AI 특별지정전공' 개설했다. '특별지정전공'은 기존의 부·복수전공 설치 및 운영기준 등을 혁신해 우리 대학이 새롭게 시도하는 교육과정이다. 'AI 특별지정전공'은 일종의 '모듈형' 전공이다. 학부생이 전공의 구별 없이 다양한 학과에서 개설한 AI 수업을 18학점 이상 이수하면 부·복수전공과 동일하게 졸업 학위기에 전공 명칭이 표기된다. 소프트웨어에 특화된 학과를 전공하지 않더라도 특별지정전공 학위를 통해 우리 대학에서 수학하는 동안 AI와 관련된 균형 잡힌 교육을 받았다는 사실을 인정받을 수 있는 제도다.우리 대학은 대부분 학과에서 고유의 특성을 살린 AI 교육 및 연구를 활발하게 수행하고 있다. AI연구원은 학과별로 운영하는 AI 과목을 체계적으로 구성해 전공필수 6학점과 전공선택 12학점 등 총 18학점의 커리큘럼을 완성했다. 소프트웨어 특화 학과인 전산학부는 물론 기계공학과, 전기및전자공학부, 산업및시스템공학과, 수리과학과, 생명화학공학과, 물리학과, 인문사회과학부 등 교내 다양한 학과 교수진이 설계에 참여했다. 'AI 특별지정전공'에서는 전공필수 과목을 통해 AI를 위한 컴퓨터 기초와 기계학습 기초를 쌓고, 전공선택 과목을 통해 AI를 과학기술 분야뿐만 아니라 각종 산업과 연계하여 활용할 수 있는 융합교육을 제공한다. 이를 위해, 자연어처리, 컴퓨터비전, 로보틱스, 기계심화학습, 데이터사이언스 등의 공학 분야는 물론 언어·마음·뇌, 과학기술과 사회, 논리학과 인공지능 등 인문학 분야의 수업이 지정선택 과목으로 설계됐다. 또한, 최적화이론, 금융인공지능, 생명화학공학 특강, 전산 물리학 개론 등도 선택과목으로 배정됐다. 류석영 KAIST 인공지능연구원장은 "AI를 토대로 신기술분야의 창조적이고 미래지향적인 교육을 제공하기 위해 기존의 학사제도를 과감하게 뛰어넘는 AI 특별지정전공을 개설했다"라며, "세계 최고 수준의 AI교육을 자유로운 형태로 이수할 수 있다는 것은 KAIST에서만 가능한 일이기 때문에 이 장점이자 강점을 학생들이 마음껏 누리고 활용하길 기대한다"라고 전했다. 우리 대학의 여러 학과의 교수가 참여하여 설계한 AI특별지정전공은 홍보 동영상(☞ 바로가기 클릭 )과 학사요람(☞ 바로가기 클릭)에서 자세한 내용을 확인할 수 있다.
2022.11.17
조회수 891
딥러닝 적대적 공격을 막는 방어 프레임 개발
우리 대학 전기및전자공학부 노용만 교수 연구팀이 물체를 검출하는 딥러닝 신경망에 대한 적대적 공격을 방어하는 알고리즘을 개발했다고 15일 밝혔다. 최근 몇 년간 인공지능 딥러닝 신경망 기술이 나날이 발전하고 실세계에 활용되면서, 딥러닝 신경망 기술은 자율주행 및 물체검출 등 다양한 분야에서 떠오르는 핵심기술로 주목받고 있다. 하지만 현재의 딥러닝 기반 검출 네트워크는, 특정한 적대적 패턴을 입력 이미지에 악의적으로 주입하여 잘못된 예측 결과를 초래하는 적대적 공격에 대해 심각하게 취약하다. 적대적 패턴이란 공격자가 검출이 되지 않기 위해 인위적으로 만든 패턴이다. 이 패턴이 포함된 물체는 검출이 되지 않게 하는 것으로 적대적 패턴 공격이라 한다. 이러한 취약성은 인공지능으로 대표되는 딥러닝 기반의 모델을 국방이나 의료 및 자율주행 등 국민의 생명과 재산을 직접 다루는 분야에 적용할 때 크게 문제가 된다. 구체적인 예로 국방·보안을 위한 감시 정찰 분야에서 적군이 적대적 패턴으로 위장하여 침입하면 검출을 못하는 경우가 발생하여 국방 및 보안에 매우 큰 위험을 초래할 수 있다. 기존의 많은 연구가 적대적 패턴 공격을 막기 위해 노력했으나 추가로 복잡한 모듈이 필요하거나 네트워크를 처음부터 다시 학습해야 했기 때문에, 기존 연구는 실시간으로 동작하는 물체검출 알고리즘에 현실적으로 적용하기가 쉽지 않았다. 노 교수 연구팀은 물리적인 환경에서 적대적 패턴 공격의 원리를 반대로 이용해 적대적 공격을 막아내는 방어 프레임을 고안했다. 이러한 방어 프레임은 부가적인 복잡한 모듈이나 네트워크의 재학습이 필요하지 않으므로 보다 실용적이고 강인한 물체검출 네트워크를 구축하는데 폭넓게 응용 및 적용될 수 있을 것으로 기대된다. 공동 제1 저자인 전기및전자공학부 유영준 박사과정 학생과 이홍주 박사과정 학생 등이 함께 수행한 이번 연구는 영상처리 분야 최고의 국제 학술지인 `IEEE Transactions on Image Processing'에 11월 1일 자로 온라인 게재됐다. (논문명 : Defending Person Detection Against Adversarial Patch Attack by using Universal Defensive Frame). 연구팀은 문제 해결을 위해 적대적 공격의 원리를 역으로 이용해, 학습된 네트워크에 접근하지 않으면서도 입력단에서 방어할 수 있는 방어 프레임 기술을 고안했다. 연구팀의 방어 기술은 적대적 공격과 정반대로 물체검출 시 딥러닝 모델이 옳은 예측 결과를 내리도록 방어 프레임을 만드는 것이다. 이러한 방어 프레임은 마치 창과 방패의 싸움처럼 적대적 패턴과 함께 경쟁적으로 학습되며, 해당 과정을 반복해 최종적으로 모든 적대적 패턴 공격에 대해 높은 방어성능을 지니도록 최적화된다. 연구팀은 입력 이미지 외부에 덧붙이는 방어 프레임을 변화시킴으로써 손쉽게 방어성능을 조절할 수 있음을 확인했고, 개발된 방어 프레임은 인리아(INRIA) 검출 벤치마크 데이터셋에서 기존 방어 알고리즘 대비 평균 31.6% 정확도가 향상하는 성과를 거뒀다. 연구팀이 개발한 방어 프레임은 실시간 물체 탐지 시, 모델의 재학습 없이 적대적 패턴 공격을 방어할 수 있으므로 예측 시간 및 비용 절감을 크게 이룰 수 있을 것으로 기대된다. 연구팀은 나아가 이번 연구에서 개발된 방어 프레임을 물리적으로 직접 구현시켜서, 물리적 환경에 자연스레 놓여있는 적대적 패턴 공격과 마찬가지로 좀 더 접근성 있는 방어 방법으로도 활발히 응용될 수 있음을 제시하였다. 노용만 교수는 "국방 및 보안 분야에서 인공지능이 활용되기 위해서 아직 인공지능의 완전성을 높이는 많은 연구가 필요한데, 이번에 개발된 방어 기술은 이 분야들에서 인공지능 모델을 적용 시 실용적인 적대적 방어를 제시함에 의의가 있을 것ˮ이라며 "이 기술은 국방 감시정찰, 보안, 자율주행 분야에도 적용될 수 있을 것이다ˮ라고 말했다. 한편 이번 연구는 방위사업청과 국방과학연구소의 지원으로 한국과학기술원 미래국방 인공지능 특화연구센터에서 수행됐다.
2022.11.15
조회수 1188
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 12