본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%9B%A8%EC%96%B4%EB%9F%AC%EB%B8%94%EA%B8%B0%EA%B8%B0
최신순
조회순
정확한 우울증 예측 이제는 손목에서 가능하다
정신질환 팬데믹이 발생했다. 전 세계적으로 약 10억 명이 크고 작은 정신질환을 앓고 있다. 한국도 더욱 심각하여 현재 우울증 및 불안장애 환자는 약 180만 명이며 총 정신질환자는 5년 새 37% 증가하여 약 465만 명이다. 한미 공동 연구진이 웨어러블 기기를 통해 수집되는 생체 데이터를 활용해 내일의 기분을 예측하고, 나아가 우울증 증상의 발현 가능성을 예측하는 기술을 개발했다. 우리 대학 뇌인지과학과 김대욱 교수 연구팀이 미국 미시간 대학교 수학과 대니엘 포저(Daniel B. Forger) 교수팀과 공동연구로 스마트워치로부터 수집되는 활동량, 심박수 데이터로부터 교대 근무자의 수면 장애, 우울감, 식욕부진, 과식, 집중력 저하와 같은 우울증 관련 증상을 예측하는 기술을 개발했다고 15일 밝혔다. WHO에 따르면 정신질환의 새로운 유망한 치료 방향은 충동성, 감정 반응, 의사 결정 및 전반적인 기분에 직접적인 영향을 주는 뇌 시상하부에 위치한 생체시계(circadian clock)와 수면(sleep stage)에 중점을 두는 것이다. 하지만 현재 내재적 생체리듬(endogenous circadian rhythms)과 수면 상태를 측정하기 위해서는 하룻밤 동안 30분 간격으로 피를 뽑아 우리 몸의 멜라토닌 호르몬 농도 변화를 측정하고 수면다원검사(polysomnography, PSG)를 수행해야 한다. 이 때문에 병원 입원이 불가피하여, 통원 치료를 받는 정신질환자가 대부분인 실제 의료 현장에서 두 요소를 고려한 치료법 개발은 지난 반세기 동안 큰 진전이 없었다. 더불어 검사 비용 또한 무시할 수 없어(PSG: 보험료 적용 없을 시 약 100만원) 사회적 약자는 현재 정신건강치료의 사각지대에 있다. 이러한 문제를 극복하기 위한 해결책은 공간의 제약 없이 실시간으로 심박수, 체온, 활동량 등 다양한 생체 데이터를 손쉽게 수집할 수 있다는 웨어러블 기기다. 그러나 현재 웨어러블 기기는 생체시계의 위상과 같은 의료 현장에서 필요로 하는 바이오마커(Biomarker)의 간접적인 정보만을 제공하는 한계를 가지고 있다. 공동연구팀은 스마트워치로부터 수집된 심박수와 활동량 시계열 데이터 등 매일 변화하는 생체시계의 위상을 정확히 추정하는 필터링(Filtering) 기술을 개발했다. 이는 뇌 속 일주기 리듬을 정밀하게 묘사하는 디지털 트윈(Digital twin)을 구현한 것으로, 이를 활용해 일주기 리듬 교란을 추정하는 데 활용될 수 있다. 이 생체시계 디지털 트윈의 우울증 증상 예측 활용 가능성을 미시간 대학교 신경과학 연구소의 스리잔 센(Srijan Sen) 교수 및 정신건강의학과의 에이미 보너트(Amy Bohnert) 교수 연구팀과의 협업을 통해 검증했다. 협업 연구팀은 약 800명의 교대 근무자가 참여한 대규모 전향 코호트 연구를 수행해 해당 기술을 통해 추정된 일주기 리듬 교란 디지털 바이오마커가 내일의 기분과 우울증의 대표적인 증상인 수면 문제, 식욕 변화, 집중력 저하, 자살 생각을 포함한 총 6가지 증상을 예측할 수 있음을 보였다. 김대욱 교수는 “수학을 활용해 그동안 잘 활용되지 못했던 웨어러블 생체 데이터를 실제 질병 관리에 적용할 수 있는 실마리를 제공하는 연구를 진행할 수 있어 매우 뜻깊다”라며, “이번 연구를 통해 연속적이고 비침습적인 정신건강 모니터링 기술을 제시할 수 있을 것으로 기대된다. 이는 현재 사회적 약자들이 우울증 증상을 경험할 때 상담센터에 연락하는 등 스스로 능동적인 행동을 취해야만 도움을 받을 수 있는 문제를 해결해, 정신건강 관리의 새로운 패러다임을 제시할 것으로 보인다”고 말했다. 뇌인지과학과 김대욱 교수가 공동 제1 저자 및 교신저자로 참여한 이번 연구 결과는 국제 학술지 ‘npj Digital Medicine’ 12월 5일 온라인판에 게재됐다. (논문명: The real-world association between digital markers of circadian disruption and mental health risks) DOI: 10.1038/s41746-024-01348-6 한편 이번 연구는 KAIST 신임교원 연구지원사업, 미국 국립과학재단, 미국 국립보건원, 미국 육군연구소 MURI 프로그램의 지원을 받아 수행됐다.
2025.01.15
조회수 1309
일상 움직임으로 웨어러블 기기가 충전된다
국제 공동 연구진이 운동 에너지를 전기 에너지로 효율적으로 변환하여 웨어러블 기기의 자가 충전이 가능하게 하는 새로운 방법을 개발했다. 이제 일상적인 움직임, 즉 저주파 운동에서도 효율적으로 에너지를 수확할 수 있게 되었다. 우리 대학 신소재공학과 서동화 교수 연구팀이 싱가포르 난양공대(NTU, Nanyang Technological Univ.) 전자공학과 이석우 교수 연구팀과의 국제공동연구를 통해 새로운 전기화학적 에너지 수확 방법을 개발했으며, 이를 통해 기존 기술 대비 10배 높은 출력과 100초 이상 지속되는 전류 생성에 성공했다고 10일 밝혔다. 운동 에너지를 전기 에너지로 변환시키는 보통 압전(Piezo-electric)과 마찰전기(Tribo-electric) 방식으로 순간적으로 높은 전력을 발생시킬 수 있지만, 내부 저항이 높기 때문에 전류가 짧게 흐르는 한계가 있다. 이에 따라, 보다 효율적이고 지속 가능한 에너지 하베스팅(수확) 기술이 요구되고 있다. 연구팀은 물과 이온성 액체 전해질에 전극을 각각 담가 이온의 이동으로 발생하는 전위차(전기적 위치에너지)를 이용하여 전력을 수확하는 새로운 방식을 개발했다. 또한, 연구팀은 이온이 전해질과 전극 계면에서 산화ㆍ환원 반응을 통해 에너지를 어떻게 발생시키는지 더 깊이 이해하기 위해 *제1원리 기반 분자동역학 시뮬레이션을 수행했다. *제1원리 기반 분자동역학 시뮬레이션: 양자역학 법칙을 사용해 전자들의 거동을 계산하는 것을 말하며 원자들 사이의 상호작용을 계산으로 구한 뒤, 이를 통해 시간에 따른 원자들의 움직임을 예측하는 것임 그 결과, 이온이 각 전해질에서 주변 용매와 상호작용하는 방식과, 전해질 환경 따른 전극 내부에서의 주변 상호작용 에너지가 다르게 나타났음을 확인했다. 이러한 종합적인 상호작용이 에너지 차이를 발생시키며, 이를 통해 전해질 간 전위 차이를 설명하는 중요한 원리를 제시했다. 연구진은 이 시스템을 여러 개 직렬로 연결하면 출력 전압을 크게 높일 수 있다는 것도 확인했다. 그 결과 계산기를 작동시킬 수 있을 정도인 935mV의 전압을 달성했으며, 이는 저전압 기기나 웨어러블 디바이스와 같은 장치에 적용 가능하다. 또한, 물리적 마모 없이 장시간 안정적으로 작동할 수 있어, 이 기술은 사물인터넷(IoT) 기기나 자가 충전형 전자기기에도 실용적으로 적용될 가능성이 크다. 서동화 교수는 "이번 연구의 핵심은 일상적인 움직임, 즉 저주파 운동에서도 효율적으로 에너지를 수확할 수 있다는 점”이라며 "시뮬레이션과 실험의 협업을 통해 에너지 수확 원리를 깊이 이해함으로써 설계 가이드라인을 도출할 수 있었고, 이는 상용화 가능성을 크게 높였다”고 설명했다. 이번 연구는 이동훈 난양공대 전자공학과 박사과정, 송유엽 KAIST 신소재공학과 박사과정 학생이 공동 제1 저자로 참여했다. 연구 결과는 네이처 커뮤니케이션에 지난 10월 19일 자로 온라인 출판됐다. (논문명 : Electrochemical kinetic energy harvesting mediated by ion solvation switching in two-immiscible liquid electrolyte) DOI: 10.1038/s41467-024-53235-z 한편, 이번 연구는 한국연구재단의 나노 및 소재 기술개발사업, 중견연구사업의 지원을 받아 이뤄졌고, 한국과학기술정보연구원의 슈퍼컴퓨터를 지원받아 수행됐다.
2024.12.10
조회수 1987
웨어러블 기기로 내일 기분 미리 안다
일기예보처럼 내일의 기분을 간단히 예측할 수 있게 됐다. 우리 대학 수리과학과 김재경 교수(기초과학연구원 수리 및 계산 과학 연구단 의생명 수학 그룹 CI) 연구팀은 이헌정 고려대 의대 교수팀과 공동으로 오늘의 수면 패턴을 기반으로 내일의 기분 삽화를 높은 정확도로 예측하는 기술을 개발했다. 기분 장애는 수면과 밀접한 관련이 있다. 가령, 장거리 비행으로 인한 시차, 계절에 따른 일출 시간 변화는 기분 장애 환자들의 기분 삽화 재발을 유도하는 대표적 요인이다. 그간 수면 데이터를 기반으로 기분 삽화를 예측하려는 시도가 다수 이뤄졌다. 하지만 기존 방법은 수면 패턴뿐만 아니라 걸음 수, 심박수, 전화사용 여부, GPS를 활용한 이동성 등 다양한 종류의 데이터가 필요해 수집 비용이 높고, 일상적 활용이 어렵다는 한계가 있었다. 연구진은 수면-각성 패턴 데이터만으로 기분 삽화를 예측할 수 있는 새로운 모델을 개발해 기존 한계를 극복했다. 수면-각성 패턴 데이터는 잠을 잔 시간과 깨어있는 시간(각성 시간)이 기록된 데이터를 말한다. 우선, 연구진은 168명의 기분 장애 환자가 웨어러블 기기를 통해 기록한 평균 429일간의 수면-각성 데이터를 수집했다. 참여 환자들은 우울증 및 조울증 환자로 대부분 약물치료도 병행하고 있는 상태였다. 이렇게 수집한 빅데이터에서 연구진은 36개의 수면-각성 패턴과 생체리듬에 관련된 지표들을 추출했고, 이 지표를 기계학습 알고리즘에 적용했다. 알고리즘은 당일의 수면 패턴을 토대로 다음 날의 우울증, 조증, 경조증 정도를 각각 80%, 98%, 95%의 높은 정확도로 예측할 수 있었다. 이 과정에서 연구진은 생체리듬의 일일 변화가 기분 삽화 예측의 핵심 지표임을 발견했다. 생체리듬이 늦춰질수록 우울 삽화의 위험이 증가하고, 반대로 과도하게 앞당겨지면 조증 삽화의 위험이 증가했다. 예를 들어, 저녁 11시에 취침하고 오전 7시에 기상하는 생체리듬을 가진 사람이 늦게 자고, 늦게 일어나게 되면 우울 삽화의 위험이 증가하는 식이다. 연구진이 제시한 방법론은 기분 장애 환자의 치료 효율성을 높일 것으로 기대된다. 실제 임상 현장에서는 계절성 우울증 환자의 치료를 위해 이른 아침에 광선치료를 진행한다. 효과적 기분 장애 치료를 위해서는 환자의 주관적 회상에 의존한 심리 상태 평가를 넘어 객관적 기분 삽화 데이터가 필요하다. 이번 연구는 객관적 기분 삽화 지표를 얻을 수 있는 방법론을 제시한 것으로 특히, 웨어러블 기기를 통해 일상생활 중 비침습적이고 수동적으로 기분 삽화 데이터를 확보한다는 것이 장점이다. 공동 교신저자인 이헌정 교수는 “이번 연구는 기분 장애 예측의 새로운 패러다임을 제시했다는 의미가 있다”며 “향후 기분 장애 환자들이 스마트폰 애플리케이션(앱)을 통해 맞춤형 수면 패턴을 추천받아, 기분 삽화를 예방하는 디지털 치료가 가능해질 것”이라고 말했다. 연구를 이끈 김재경 CI는 “수면-각성 패턴 데이터만으로 기분 삽화를 예측할 수 있는 모델을 개발하여 데이터 수집 비용을 절감하고, 임상 적용 가능성을 크게 높였다”며 “기분 장애 환자들에게 비용 효율적인 진단 및 치료법 개발 가능성을 제시했다는 의미가 있다”고 말했다. 이번 연구 결과는 11월 18일 ‘네이처’의 디지털 헬스케어 분야 자매지인‘NPJ Digital Medicine’온라인 판에 게재됐다. ※ 논문명: Accurately Predicting Mood Episodes in Mood Disorder Patients Using Wearable Sleep and Circadian Rhythm Features (제1저자: 임동주, 정재권)
2024.11.25
조회수 1879
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1