-
포스트 AI 시대 핵심 신소재는?
우리 대학 신소재공학과 김상욱 교수 연구팀이 인공지능(Artificial Intelligence, 이하 AI)이 불러온 4차 산업혁명 이후를 뜻하는 포스트 AI시대의 핵심 신소재를 전망하는 초청논문을 발표했다고 6일 밝혔다.
대화형 AI인 `챗GPT(ChatGPT)'가 월간 사용자 1억 명을 두 달 만에 달성하는 등 AI는 우리 생활에 한층 가까이 다가왔다. 4차 산업혁명의 핵심 기술인 AI는 인간의 지능을 모사해 데이터를 학습하고 이에 따라 합리적인 의사결정을 내릴 수 있다. 단순 반복적인 작업을 대체하는데 머물렀던 과거 인공지능 기술들과 달리, 더욱 어렵고 복잡한 작업을 효율적으로 수행할 수 있어 의료, 자율 주행 자동차, 로보틱스 등의 분야에서 새로운 기술 혁신을 이루고 있다.
최근에는 사물인터넷(IoT) 기술의 발전과 함께 현실 세계의 다양한 사물과 개체들이 인터넷을 통해 연결된 초연결 시대가 도래하고 있다. 포스트 AI 시대에는 AI가 다양한 기기들과 결합해 우리 주변의 정보를 항상 받아들이고 이에 따라 최적의 의사결정을 하며 이를 현실적으로 실물세계에 구현하는 사이버세계와 현실세계가 하나로 융합되는 시대가 될 것으로 전망되고 있다.
포스트 AI 시대가 다가옴에 따라 웨어러블 장치를 위한 스마트 섬유, 소프트 로보틱스를 위한 인공근육, 환경친화적인 에너지 생산효율을 극대화할 수 있는 단일원자촉매등 AI의 한계를 보조하고 보완할 수 있는 신소재의 혁신이 더욱 중요해지고 있으며, 무엇보다 실용적인 기술의 확보가 시급하다.
김상욱 교수 연구팀은 스마트 섬유 개발의 원천소재인 그래핀 산화물 액정성을 세계 최초로 발견하였고, 소프트 로보틱스 분야에 새로운 돌파구를 마련한 헤라클레스 인공 근육 개발 그리고 세계 최초로 단일원자촉매를 발견하는 등 미래 신소재분야에서 혁신적인 연구를 수행해 온 공로를 인정받아 세계적인 학술지 `어드밴스드 머티리얼스 (Advanced Materials)' 명예의 전당(Hall of Fame) 특집 리뷰논문을 게재했다.
`어드밴스드 머티리얼스' 명예의 전당 초청논문은 신소재 분야의 세계적인 석학들을 매우 엄격한 기준에 따라 선정하여 그 미래 연구방향을 소개하는 권위 있는 특집 논문이다.
김상욱 교수는 "인공지능이 이끄는 4차 산업혁명 이후의 포스트 AI 시대는 신소재 기반의 사물 혁신이 중요해질 것인데 그래핀과 같은 2차원 소재가 매우 중요한 역할을 할 것으로 기대된다ˮ고 밝혔다.
KAIST 응용과학연구소 이강산 박사가 제1 저자로 참여하고 KAIST 신소재공학과 수치스라 파드마잔 사시카라(Suchithra Padmajan Sasikala) 연구교수와 경희대학교 정보디스플레이학과 임준원 교수가 공동 교신저자로 참여한 이번 연구는 한국연구재단의 리더 연구자 지원사업인 다차원 나노 조립제어 창의연구단의 지원을 받아 수행됐다.
*논문명: 2D Materials Beyond Post-AI Era: Smart Fibers, Soft Robotics And Single Atom Catalysts
2023.11.06
조회수 701
-
한빛원전의 시공 불량 문제를 해결하기 위한 시뮬레이션 개발
후쿠시마 사고 이후 원전 안전 및 관리에 대한 관심이 집중되고 있다. 한국에서는 2017년 6월경 한빛원전의 원자로 격납건물의 콘크리트 벽 속에서 대규모 공극이 발견되었다. 원자로 격납건물은 원전 사고 발생 시 방사능 유출을 막아주는 최후의 보루이기 때문에, 이러한 콘크리트 공극으로 인한 원전의 안전상 우려가 큰 상황이다.
국내 연구진들은 원자로 격납건물 시공시 콘크리트 다짐 및 채움 불량으로 인하여 격납로 내 콘크리트에 공극이 발생한 것으로 추정하고 있다. 원자로 격납건물은 일반 콘크리트 구조물과 달리 매우 높은 밀도의 철근 보강이 필요하기 때문에, 콘크리트 타설 시 진동 다짐기가 진입하지 못하는 구역이 존재할 가능성이 높아서 콘크리트 공동에 대한 위험성이 높다. 하지만 돔 형태의 벽체 내부를 감싼 6 mm 두께의 철판(콘크리트 라이너 플레이트, CLP)이 영구 거푸집으로 활용되기 때문에 내부 공동에 대한 육안 검사가 불가능하다는 점에서 공극 발생 여부의 발견에 대한 어려움이 있다.
우리 대학 건설및환경공학과 김재홍 교수 연구팀은 이러한 문제를 해결하기 위하여 콘크리트의 유동성과 다짐 불량으로 인해 발생하는 공동을 억제할 수 있는 시공 시뮬레이션 기법을 개발했다.
연구팀에서 제안한 콘크리트 유동 시뮬레이션 기법은 콘크리트의 레올로지와 진동다짐의 영향 반경을 고려하여 콘크리트 공동 발생 예상 부위를 예측하는 기술이다. 연구팀은 이번 연구를 통해 콘크리트 진동다짐의 영향 반경(감쇠계수)을 직접 측정하여 굳지 않은 콘크리트 내부의 진동 에너지 밀도 분포를 제시했다. 이어서, 진동 에너지에 따른 콘크리트의 Vibrorheology를 정량적으로 측정하여, 굳지 않은 콘크리트의 항복응력 감소를 정량적으로 모델링하여 시공 시뮬레이션을 가능하게 하였다.
새로 제안된 시공 시뮬레이션 기법은 기존 콘크리트 유동해석으로는 고려할 수 없었던 격납건물 내부 보강재의 형상과 크기, 콘크리트 레올로지, 그리고 진동다짐의 진폭과 진동수까지 고려하여 콘크리트의 채움성을 평가할 수 있게 되었다. 연구팀은 향후 보강 연구를 진행해 3D 프린팅 콘크리트의 레올로지 제어, 프리캐스트 콘크리트의 품질 관리 등에도 해당 기술을 활용할 계획이다.
이번 연구는 한국수력원자력(주)와 한국연구재단의 과학기술분야 기초연구사업의 지원으로 수행되었으며, 건설공학 분야에서 권위 있는 학술지인 ACI Materials Journal, Cement and Concrete Research 등에 출판되었다.
(논문명: (1) Quantitative evaluation of energy transfer of a concrete vibrator. (2) Flow simulation of fresh concrete accounting for vibrating compaction.)
2023.10.24
조회수 1353
-
한국전력기술㈜과 인재 육성 위한 MOU 체결
우리 대학은 29일(화) 본관 제 2 회의실에서 한국전력기술㈜(사장 김성암)과 '인적자원 역량 강화 및 원자력 기술정보 공유 상호 협력체제 구축'을 위한 협약을 체결했다. 앞으로 두 기관은 ▴인적자원 역량 강화 △▴학술행사·전문가 초빙 강연 등 관련분야의 인적자원 상호 지원 ▴연구·개발 과제의 공동 참여 ▴기술정보교류 ▴기술 공동협력에 필요한 제반 사항 등의 분야에서 상호협력하고 이를 통해, 원자력 인재 육성 및 기술정보 교류 기회를 창출하는 계기를 마련할 예정이다. 특히, 우리 대학 원자력및양자공학과에는 한국전력기술㈜의 수요를 반영한 원자력 전문기술 강좌와 소형원자로 기술 등 최신 연구개발 트렌드에 관한 교육 과정이 개설된다.
이날 열린 협약식에는 이광형 총장, 윤종일 원자력및양자공학과장, 임만성 국제협력처장 등 KAIST 관계자들과 김성암 사장, 김명로 원자로설계개발본부장, 설명실 원자로총괄기술처장, 김도현 유체계통설계실장, 김민규 기계설계실장, 이윤희 계측제어설계실장, 박석정 안전해석실장 등 한국전력기술㈜ 관계자들이 참석했다.
김성암 한국전력기술㈜ 사장은 "이번 협약을 통해 양 기관이 원자력 인재육성을 위한 협력과 최신 원자력 기술정보를 공유해 원자력 관련 기술개발에 대한 시너지를 창출하겠다"며 "앞으로 상호협력을 통한 원자력사업 발전을 위해 최선을 다하겠다"라고 전했다.이광형 KAIST 총장은 "KAIST의 우수한 교육 및 연구역량과 한국전력기술의 우수한 인적·물적 자원 교류를 통해, 대한민국을 넘어 전 세계 인류가 행복한 에너지를 만드는데 기여할 수 있기를 기대한다"라고 소감을 전했다.
2023.09.11
조회수 859
-
NEREC, 2023 국제핵비확산학회 개최
우리 대학은 다음 달 1일(화)부터 이틀간 앰배서더 서울 풀만호텔에서 '2023 NEREC-KINAC 국제핵비확산학회'를 개최한다.
국제핵비확산학회는 세계 핵확산 동향 평가 및 핵비확산 전망, 북한 핵문제와 소형원자로 개발 등 원자력을 평화적으로 이용하기 위한 대안을 기술적·정책적 측면에서 통합적으로 모색하기 위한 대규모 연례 국제회의다.
올해는 학회 개최 10주년을 맞아 KAIST 핵비확산교육연구센터(센터장 임만성, Nuclear Nonproliferation Education and Research Center, NEREC)와 한국원자력통제기술원(원장대행 이나영, KINAC)이 공동 개최한다.
총 4개의 세션으로 진행되는 이번 학회는 ▴핵비확산의 관점에서 국제사회가 직면한 도전과제와 대응 방향 ▴북한 핵 개발 동향 및 전망과 핵 위협 감소를 위한 고찰 ▴소형원자로(SMRs) 개발과 도입에 따른 원자력 안전· 핵안보·안전조치 등에 대한 통합적 대응 방안 ▴미래 원자력기술의 평화적인 이용을 주도할 차세대 전문가 양성을 위한 국제사회 협력 방안 등을 주제로 다룬다.
이를 위해, 보니 젠킨스(Bonnie Jenkins) 미국 국무부 군비통제·국제안보 차관, 빅터 차(Victor Cha) 미 국제전략연구소 한국석좌, 스티븐 밀러(Steven E. Miller) 미 하버드대 케네디스쿨 국제안보프로그램 국장 등이 기조연설하고, 백원필 한국원자력학회 회장이 폐회사를 전한다.
한국·미국·중국·호주·캐나다·인도네시아 등 8개국 소속 21개 대학 및 연구소의 원자력전문가와 국제정치전문가 총 26명이 발표와 토론을 맡는다. 온·오프라인으로 동시 진행되는 이번 학회에는 국내·외 핵비확산 정책 및 원자력기술 전문가 등 약 300여 명이 참여할 것으로 예상된다. 또한, 이번 학회 기간에는 세계 핵비확산체제의 미래를 주도해 갈 젊은 인재들이 대거 참여하는 'NEREC 총동문회'를 부대행사로 진행한다. KAIST 핵비확산교육연구센터는 세계 각국의 역량 있는 학생들을 핵비확산 전문가로 양성하는 국제 교육 훈련 프로그램을 10년간 운영해 총 50여 개 국가 출신 263명의 동문을 배출했다. 이들은 이번 행사를 계기로 한자리에 모여 신진 연구자 사이의 네트워크를 공고히 다지는 것은 물론 세대 간 소통을 위해 연사로 참여하는 세계적인 전문가들과 교류할 예정이다.
학회를 총괄한 임만성 KAIST 핵비확산교육연구센터장은 "올해 10주년을 맞이한 이번 학회가 우리 시대 원자력 기술의 평화적 이용과 관련된 도전과제를 해결해 나가는 데 실천적이고 구체적인 방안을 제시하는 전진의 자리가 되기를 바란다"라고 밝혔다. 우리나라 시간을 기준으로 8월 1일 오전 10시에 시작되는 이번 행사는 모든 순서가 유튜브로 실시간 중계되며, 유튜브 KAIST NEREC 채널에서 누구든 무료로 참여할 수 있다. '2023 NEREC-KINAC 국제핵비확산학회'와 관련한 자세한 내용 참여 방법은 사무국(042-350-8115)에서 확인할 수 있다.
2023.07.28
조회수 1425
-
한전원자력연료(주)와 상호협력 협약 체결
우리 대학은 지난 12일(월) 한전원자력연료(주)(사장 최익수)와 ‘학술연구와 원자력산업 발전을 위한 상호협력 협약’을 체결했다.
이번 협약은 우리 대학 원자력및양자공학과(학과장 윤종일)와 한전원자력연료(주)(기술본부장 최재돈)이 상호 유기적인 산학 협력체계를 구축해 양 기관의 경쟁력을 높이고 학술연구와 원자력산업 발전에 이바지하려는 비전을 공유하며 시작됐다.
양 기관은 이번 협약을 통해 ▴원자력연료 주기 분야 신기술 개발을 위한 공동연구 ▴연구인력 및 기술정보 교류 협력 ▴연구장비 및 시설 공동 활용 ▴학생 현장실습 지도 및 시설 제공 ▴기타 양 기관의 상호 관심 분야 등에서 협력할 예정이다.
12일 오후 우리 대학 본원 제2회의실에서 개최된 협약식에는 이광형 총장, 윤종일 원자력및양자공학과장, 임만성 국제협력처장, 조규성 KAI-NEET 연구원장 등 우리 대학 관계자들과 최익수 사장, 최재돈 기술본부장, 우해석 기술연구원장, 장도익 기술관리처장 등 한전원자력연료(주) 관계자들이 참석했다.
최익수 한전원자력연료(주) 사장은 "세계 최고의 과학기술 인재를 양성하는 KAIST와의 협력을 통해 한전원자력연료(주)는 현안을 해결하고 미래 선도 기술을 확보하는 데 관심과 지원을 아끼지 않겠다"라고 전했다.이광형 총장은 "기후 위기 극복을 위한 탄소중립을 달성하고 국가 에너지 안보를 확보하는 데 있어 원자력 기술의 역할이 매우 중요하다"라면서, 이어, "우리나라 원자력 기술이 인류의 지속 가능한 발전과 삶의 질 향상에 기여하기를 바란다"라고 말했다.
2023.06.19
조회수 1227
-
양자컴퓨팅 원자를 던지고 받는 기술 개발
양자컴퓨터의 기본 구성요소인 원자를 이동하여 배치하는 기술은 리드버그 양자컴퓨팅 연구에 매우 중요하다. 하지만 원자를 원하는 위치에 배치하려면, 일반적으로 광 집게라고 불리는 매우 집속된 레이저 빔을 사용해, 원자를 하나씩 잡아서 운반해야 하는데 이렇게 운반하는 동안 원자의 양자 정보가 변화할 가능성이 크다.
우리 대학 물리학과 안재욱 교수 연구팀이 레이저 빔을 이용하여 루비듐 원자를 하나씩 던지고 받는 기술을 개발했다고 27일 밝혔다.
연구팀은 광 집게가 원자와 접촉하는 시간을 최소화하여 양자 정보가 변하지 않도록 원자를 던지고 받는 방법을 개발했다. 연구팀은 원자의 온도가 매우 낮아 절대 영도 이하 4천만분의 일의 온도의 차가운 루비듐 원자가 광 집게의 초점을 따라서 빛이 가하는 전자기력에 매우 민감하게 움직인다는 특성을 이용했다.
연구팀은 광 집게의 레이저를 가속해서 원자에 광학적 킥을 줘서 원자를 목표지점으로 보낸 다음, 다른 광 집게로 날아오는 원자를 잡아서 멈추게 했다. 원자의 비행 속도는 65cm/s이고, 이동 거리는 최대 4.2 마이크로미터다. 기존의 광 집게로 원자를 잡아서 이동하는 기술과 대비해 원자를 던지고 받는 기술은 원자 이동을 위한 광 집게 이동 경로 계산이 필요 없어지고, 원자 배열에 생기는 결함을 쉽게 고칠 수 있다. 결과적으로 많은 개수의 원자 배열을 생성하고 유지하는 데 효과적이며, 양자 정보를 지닌 원자(flying atom qubit)를 추가로 던지고 받는 때에 양자 배열의 구조변화를 전제하는 새롭고 더욱 강력한 양자컴퓨팅 방법을 연구할 수 있다.
안재욱 교수는 “이 기술이 더 크고 강력한 리드버그 양자 컴퓨터를 개발하는 데 사용될 것”이라 말한다. “리드버그 양자 컴퓨터에서 원자는 양자 정보를 저장하고, 전자기력을 통해 인접한 원자들과 상호작용해 양자컴퓨팅을 수행할 수 있도록 배치된다. 만약 오류가 발생해 원자를 교체하거나 이동해야 할 경우, 원자를 던져서 빠르게 재구성하는 방법이 효과적일 수 있다”고 말한다.
우리 대학 물리학과 황한섭, 변우정 박사과정 연구원과 일본 국가자연과학연구소의 실바앙 드 레젤러크 연구원이 참여한 이번 연구는 국제 학술지 `옵티카(Optica)' 3월 10권 3호에 출판됐다. (논문명 : Optical tweezers throw and catch single atoms).
이번 연구는 삼성미래기술재단의 지원으로 수행됐다.
2023.03.27
조회수 3593
-
3D 프린터로 차세대 소형원전 안전성 높이는 기술 나왔다
우리 대학 원자력및양자공학과 류호진 교수 연구팀이 금속 3D 프린팅을 활용해 소형모듈원자로(SMR) 안전성을 더욱 높일 수 있는 기술을 개발했다고 26일 밝혔다. SMR은 발전용량이 300메가와트(㎿) 수준인 소형 원자력발전소로 기존 원전보다 훨씬 좁은 땅에서 비슷한 수준의 전기를 생산할 수 있는 차세대 기술이다. 한국원자력연구원은 강석훈 재료안전기술개발부 책임연구원팀과 금속 분말 소재 전문 제조 기업인 하나에이엠티도 개발에 참여했다.
3D 프린팅 기술을 이용하면 원자로와 같이 구조가 복잡하면서 정밀한 가공이 요구되는 부품을 이음새 없이 설계‧제조할 수 있다. 원재료를 별도로 가공처리하지 않아고 되고 재료 손실도 거의 없어 비용을 아낄 수 있다는 장점도 있다. 때문에 최근 원전 부품 제조업에서 3D 프린팅 기술이 각광받는 추세다.
연구팀이 개발한 것은 SMR 압력용기 소재를 만들 수 있는 3D 프린팅 전용 금속 분말이다. 원자로 압력용기는 원자로 격납 건물 내부 정중앙에 위치한 핵심 구조물로 안에는 핵 연료봉이 들어간다. 압력용기가 튼튼하게 만들어져야 그 안에서 핵분열이 안전하게 일어나면서 전기 생산이 가능하다는 것이다.
원자로 압력용기는 탄소 함량이 높은 소재로 돼있어 3D 프린팅용 미세 분말로 만들기가 어려웠다. 탄소 함량이 높은 소재는 분말로 만드는 과정에서 쉽게 산화되고 유동성이 낮아 3D 프린터에서 분말을 분사하는 노즐을 통과하기 어렵기 때문이다.
이에 연구팀은 수십 마이크로미터(㎛) 크기의 3D 프린팅용 미세 분말을 제조했다. 여기에 분말을 방사하는 노즐을 소용돌이 형태로 만들어 분사 중에 분말 크기를 미세하게 제어할 수 있도록 해 유동성도 개선했다. 이후 3D 프린팅 방식의 빔 에너지, 스캔 속도, 열의 양을 조절해 충격 흡수율이 우수한 소재를 만드는 최적의 공정 조건을 만들었다.
연구팀은 영하 196도 저온에서 영상 80도 고온까지 다양한 환경에서 3D 프린터로 만든 압력용기용 소재와 기존 압력용기용 소재의 충격 흡수율을 비교했다. 기존 소재는 영하 75도 부근에서 쪼개지는 걸 발견했으나 3D 프린터로 만든 소재는 영하 145도까지 버틸 수 있었다. 금속이 깨지기 쉬운 극한의 저온 환경에서도 충격을 잘 흡수한 것이라고 연구팀은 설명했다.
연구팀은 앞으로 3D 프린팅 기반 제조 기술 표준화와 규제기관 인허가 획득에 힘쓸 계획이다. 주한규 한국원자력연구원장은 “이번에 개발한 3D 프린팅용 분말 소재는 향후 SMR은 물론 높은 안전성이 요구되는 각종 원자로 부품 제작에도 널리 활용될 것이라 기대한다”고 말했다.
2023.01.27
조회수 2180
-
공과대학 올해의 동문상, 김한곤 한국수력원자력(주) 중앙연구원장 선정
우리 대학 공과대학이 '올해의 자랑스러운 공과대학 동문'으로 김한곤 한국수력원자력㈜ 중앙연구원장을 선정했다.김한곤 한국수력원자력㈜ 중앙연구원장은 원자력및양자공학과(석사 90, 박사 93)를 졸업했다. 1997년 한국수력원자력㈜ 중앙연구원에서 재직하면서 한국형 신형원자로인 APR1400의 핵심 기술인 핵증기공급계통(Nuclear Steam Supply System) 및 안전 계통 개발 책임을 맡았다. 김 원장은 원자로용기 직접 주입 방식의 안전계통 및 피동 유량조절 기술 등 고유한 기술을 개발했으며, 국내 최초로 표준설계인가를 획득해 신형원자로의 국내 건설 및 수출에 발판을 마련했다.
이후, 순수 국내 기술로 개발된 3세대+ 원전인 APR+의 주요 핵심기술 개발 총괄 책임자를 역임했다. 세계 최초로 피동보조급수계통(Passive Aux. Feedwater System)을 신형원전에 적용하고, 국내 허가를 받아 미국에 이어 세계 두 번째로 피동계통을 상용화하는 데 기여했다.
특히, APR1400의 경우 김 원장의 총괄 책임 아래 세계 시장 진출을 위한 미국 US-NRC의 설계인증 및 유럽의 EUR 인증을 모두 획득했다. 이 두 대륙의 인증을 획득한 신형원자로는 미국의 AP1000, ESBWR에 이어 세계에서 세 번째다. 미국의 2개 노형이 자국에서 인증받은 점을 감안한다면, 미국 이외 국가 중 유일하게 미국과 유럽의 인증을 모두 획득한 원전이다.
또한, 김 원장은 2005년부터 정부 주도로 추진된 원전기술자립계획(Nu-Tech2012)의 핵심 기획위원으로 참여해 우리나라의 원전 기술 자립을 위한 장기 계획을 수립했다. 3대 미자립 기술 중 가장 어렵다고 평가받는 원전설계핵심코드개발사업의 총괄 책임자를 역임하며 미국 정부가 사용을 제한하는 12종 설계 코드의 국산화를 성공시켰다. 이를 통해 우리나라는 미국, 러시아, 프랑스에 이어 세계 4번째로 독자적인 설계 코드를 보유하게 되었다.
이동만 공과대학장은 "김 원장은 한국형 신형원자로 개발 및 수출, 미국과 유럽의 인증 등을 주도적으로 추진해 우리나라 원전 기술을 세계 최고의 반열에 올려놓는 데 절대적인 기여를 했다"라고 전했다. 이어, "해외 수출에 문제가 없는 원천기술을 확보하기 위해 기술자립 계획 및 기술 개발을 진두지휘해 1984년에 미국의 원전 기술을 도입한 지 약 30여 년 만에 진정한 의미의 원자력 기술자립을 달성하는 등 학교 명예를 높였다"라고 선정 배경을 밝혔다.
2014년에 제정돼 올해로 6회 째를 맞은 공과대학 '올해의 동문상'은 산업 기술 발전에 공헌하거나, 학문적으로 뛰어난 업적을 달성해 학교의 명예를 높인 동문에게 수여하는 상이다.2014년 제1회 동문상은 유태경 ㈜루멘스 대표에게 수여됐다. 2015년 제2회 수상자로는 넥슨 창업자인 故 김정주 ㈜NXC 대표, 2017년 제3회에는 이우종 전 LG전자 VC사업본부 사장이 수상했다. 2019년 제4회에는 임병연 롯데케미칼㈜ 대표이사, 2021년 제5회에는 김형준 한국항공우주산업㈜ 부사장이 선정됐다. 1일 오후 4시 30분 학술문화관(E9) 양승택 오디토리움에서에서 열린 시상식에는 이동만 공과대학장, 김상욱 공과대학 부학장, 윤종일 원자력및양자공학과 학과장 등이 참석했다. 시상식 후에는 ‘원전 기술자립의 여정’이란 주제로 김 원장의 수상 기념 강연이 진행됐다.
2022.12.02
조회수 3121
-
리튬이차전지 실리콘 기반 음극의 수명과 관련된 전자전도도 퇴화를 나노스케일에서 영상화 성공
고에너지 밀도를 갖는 리튬이차전지 개발에 대한 수요가 폭발적으로 증가하면서, 실리콘 기반 음극 개발에 관한 연구가 활발히 이뤄지고 있다. 실리콘 활물질은 기존 음극 활물질인 흑연 대비 높은 용량 값(4200 mAh/g)을 가지고 있어, 고에너지 밀도를 가지는 리튬이차전지용 음극의 유력한 후보로 자리 잡고 있다.
하지만 충전 및 방전 간 400%에 달하는 높은 부피 팽창/수축률이 실리콘 활물질의 상업화를 방해하고 있다. 실리콘 기반 음극의 급격한 부피 변화는 특히 전극 내 전자 전달 시스템에 큰 악영향을 미치고 있으며, 이를 보완하기 위해 다양한 도전재 시스템을 적용하는 연구가 활발히 진행 중이다. 전극 내 전자 전도 채널의 확보는, 활물질 내 균등한 전기화학 반응을 유발하기 위해 필수적이지만, 이를 나노스케일 공간 분해능을 갖고 영상화하는 방법론에 관해서는 많은 연구가 진행되지 않은 실정이다.
우리 대학 신소재공학과 홍승범 교수 연구팀이 LG에너지솔루션과 협업해, 나노스케일 분해능으로 전극 내 전자 전도 채널을 왜곡 신호 없이 정량적으로 추출하는 방법론을 개발하는 데 성공했다고 8일 밝혔다. 연구팀은 전극 소재와 같이 표면 거칠기가 큰 시료에서 전도성 원자간력현미경(Conductive Atomic Force Microscopy, C-AFM) 운용 시 발생하는 왜곡 정보인 용량성 전류(capacitive current)의 원인을 규명하고, 피어슨 상관 분석 방법을 기반으로 해당 왜곡 정보를 제거했다. 이 방법론을 실리콘/흑연 기반 복합 음극에 적용해 도전재 성분에 따른 전자 전도 채널 영상화를 실시했으며, 이를 통해 단일벽 탄소나노튜브(Signle-Walled Carbon Nano Tube, 이하 SWNCT)가 적용된 전극의 전기적, 전기화학적 우수성을 입증하는 데 성공했다.
연구팀은 이번 연구를 통해 실리콘 기반 전극과 같이 활물질의 부피 변화가 큰 시스템에서는 기존의 점형 도전재 대비 선형의 구조적 장점을 갖고 있는 SWCNT가 안정적인 전자 전도 채널을 확보하는 데 유리함을 보였다. 또한 SWCNT가 포함된 복합 전극의 경우, 130 사이클 이후에도 활물질의 분쇄가 보다 억제됐음을 보여주며, 전자 전도 채널의 불균일성이 활물질의 구조적 안정성에도 영향을 미칠 수 있음을 가설을 들어 설명했다.
제1 저자인 신소재공학과 박건 박사과정은 "전자 전도 채널 불균일이 유발한 전극의 전기화학 특성 퇴화라는 주제로 후속 연구를 진행 중이다ˮ라며 "나노스케일 영상화를 기반으로 지금껏 관찰하지 못했던 현상을 탐구할 수 있어 즐겁다ˮ라고 말했다. 교신 저자인 홍승범 교수는 "왜곡 신호의 원인을 규명하고, 이를 정량적으로 제거하는 연구는 영상화 분야에서 매우 중요하다ˮ라며 "이번에 개발한 방법론이 전극 내 전자 전도 채널을 강화하는데 적용돼, 실리콘 기반 복합 음극의 고도화를 앞당기는 데 도움이 되면 좋겠다ˮ라고 말했다.
이번 연구는 국제 학술지 `에이씨에스 어플라이드 머티리얼즈 앤드 인터페이시스(ACS Applied Materials & Interfaces)'에 게재됐다. (논문명: Nanoscale Visualization of the Electron Conduction Channel in the SiO/Graphite Composite Anode)
한편 이번 연구는 LG에너지솔루션-KAIST 프론티어 리서치 랩(Frontier Research Lab)과 KAIST 글로벌 특이점 사업의 지원을 받아 수행됐다.
2022.11.08
조회수 3847
-
코어-쉘 나노입자의 원자 구조와 물성 규명 성공
우리 대학 물리학과 양용수 교수, 화학과 한상우 교수, 기계공학과 유승화 교수 공동연구팀이 한국기초과학지원연구원, 한국화학연구원과의 공동연구 및 미국 로런스 버클리 국립연구소(Lawrence Berkeley National Laboratory), 영국 버밍엄 대학교(University of Birmingham)와의 국제 협력 연구를 통해 팔라듐-백금 코어-쉘 구조 나노입자의 3차원 계면구조와 그 특성을 규명했다고 3일 밝혔다.
코어-쉘(core-shell) 구조 나노입자는 서로 다른 물질로 이루어진 코어(알맹이)와 쉘(껍데기)이 맞붙은 형태로 합성된 나노물질이다. 코어와 쉘 간의 경계면에서 코어를 이루는 물질과 쉘을 이루는 물질 간의 원자 간격 차이로 인해 원자 구조의 변형이 일어나며, 이 변형을 제어함으로써 나노입자의 광학적, 자기적, 촉매적 성질들을 변화시킬 수 있다.
특히 수소연료전지 제작에 필수적으로 사용되는 촉매에 값비싼 백금이 주로 사용되는데, 코어-쉘 구조를 최적화할 수 있다면 훨씬 적은 양의 백금을 이용해 더욱 높은 성능의 촉매를 제작 가능하다는 점 때문에 많은 연구자의 관심을 끌고 있다. 하지만 지금까지의 코어-쉘 나노입자의 계면 연구들은 대부분 2차원 분석이나 앙상블-평균(ensemble-averaged) 분석을 통해 이루어져 쉘 내부에 묻힌 3차원적인 코어-쉘 경계면의 구조와 그에 따른 특성을 정확히 파악하기 어려웠다는 한계가 있다.
연구팀은 자체 개발한 원자 분해능 전자토모그래피 기술을 이용해 팔라듐과 백금으로 이루어진 코어-쉘 구조 나노입자의 3차원 계면 원자 구조를 최초로 규명했다. 병원에서 인체 내부의 3차원적인 구조를 엑스레이 CT를 이용해 측정하는 것과 마찬가지로, 전자토모그래피는 투과전자현미경을 이용해 물질에 대한 초고분해능 CT를 촬영하는 기술이라고 볼 수 있다. 이는 다양한 각도에서 물질의 2차원적인 투과전자현미경 이미지들을 얻고, 이로부터 3차원적인 구조 정보를 재구성해내는 방식으로 작동한다. 연구팀은 전자토모그래피의 3차원 분해능을 끌어올려 물질 내부의 원자들을 하나하나 관찰 가능한 수준으로 재구성하고, 코어-쉘의 3차원 원자 구조를 약 24pm(피코미터)의 정밀도로 규명했다. 1pm(피코미터)는 1미터의 1조 분의 일에 해당하는 단위로, 24pm는 수소 원자 반지름의 약 1/2 정도에 해당하는 매우 높은 정밀도다.
얻어진 구조를 통해 연구팀은 나노입자 내부의 코어-쉘 경계면의 구조를 단일 원자 단위로 파악할 수 있었고, 계면구조로부터 파생되는 원자들의 변위와 구조 변형에 대한 단일 원자 수준의 3차원적인 지도를 작성해 정량적으로 해석했다. 이를 통해 팔라듐-백금의 코어-쉘 나노입자 표면에 분포하는 각각의 원자들의 촉매 활성도를 규명했으며, 적절한 변형이 가해질 경우 촉매 활성도를 크게 높일 수 있음을 밝혔다.
물리학과 조혜성 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)'에 10월 10일 字 게재됐다. (논문명 : Direct strain correlations at the single-atom level in three-dimensional core-shell interface structures)
연구팀은 얻어진 3차원적 원자 변위와 구조 변형 지도에서 푸아송 효과(Poisson effect)로 알려진 탄성체 성질이 코어-쉘 나노입자 전체뿐만 아니라 단일 원자 수준에서도 일어난다는 것을 발견했다. 연구팀은 또한 이론적으로만 예측돼왔던 계면과 표면에서의 구조 변형도에 대한 상관성을 실험적으로 확인하고 이를 정량적으로 해석했다. 이러한 구조의 변형이 나노입자 전체에서 비슷하게 분포하는 것이 아니라 나노입자의 모양에 따라 위치별로 다르게 나타날 수 있음을 밝혔으며, 이러한 실험적인 발견은 분자 정역학(molecular statics) 시뮬레이션을 통해 이론적으로도 재확인됐다.
특히, 실험적으로 얻어진 3차원적인 원자 구조 정보는 양자역학적 계산을 통해 실제 물질의 물성과 직접적으로 연관될 수 있다는 점에서 그 의의가 크다. 이번 연구에서는 표면에서의 구조 변형도를 밀도범함수이론(density functional theory)의 양자역학적 계산 결과와 대응시킴으로써 표면에서의 촉매 활성도를 나타내는 표면의 산소 환원 반응(oxygen reduction reaction)을 각각의 표면 원자에 대해 계산했고, 이는 코어-쉘 구조와 촉매 특성 간의 관계를 단일 원자 수준에서 규명한 최초의 사례다.
연구를 주도한 양용수 교수는 "이번 연구는 그동안 2차원적인 분석, 또는 낮은 분해능에 국한되어 온 코어-쉘 구조 연구에서 벗어나 원자 하나하나까지 3차원적으로 들여다본다는 완전히 새로운 시각을 제시한다ˮ며 "이는 결과적으로 각각의 원자를 제어하는 사전적 설계를 통해 물질의 촉매 특성뿐만 아니라 구조와 연관된 모든 물성을 원하는 대로 최적화할 가능성을 보여준다ˮ라고 연구의 의의를 설명했다.
한편 이번 연구는 삼성미래기술육성재단 사업의 지원을 받아 수행됐다.
2022.11.03
조회수 4283
-
고도로 응축된 빛-물질의 새로운 플랫폼 구현
우리 대학 국내외 연구자들과 협업을 통해 고도로 구속된 빛이 전파될 수 있는 새로운 플랫폼을 2차원 물질 박막을 통해 구현했다고 18일 밝혔다. 이 연구 결과는 향후 강한 빛-물질 상호작용에 기반한 차세대 광전자 소자 개발에 기여할 것으로 예상된다.
원자 한 층으로 이루어진 2차원 물질들이 여러 겹으로 쌓이게 되면 기존의 2차원 물질과 다른 특성을 보이게 된다. 이러한 방식으로 만들어진 결정을 반데르발스 결정이라고 한다. 포논-폴라리톤은 전기를 띠는 물질 속 이온의 진동이 전자기파에 결합된 형태를 말하며, 전자기장이 입사광의 파장에 대비해 극도로 응축된 형태를 띈다. 특히, 고전도도를 가지는 금속 위에 놓여진 반데르발스 결정에 생성되는 포논-폴라리톤은 응축성이 극대화된다는 결과가 최근 보고됐다. 금속 위의 유전체에서 빛의 응축성이 극대화되는 것은 폴라리톤 결정 속 전하가 영상 전하 영향으로 금속에 반사돼 `영상 포논-폴라리톤' 이라는 새로운 형태의 폴라리톤이 생성되기 때문이다.
영상 포논-폴라리톤의 형태로 전파되는 빛은 강한 빛-물질 상호작용을 유도할 수 있다는 장점이 있으나 금속 표면이 거칠 경우 생성이 억제돼, 영상 포논-폴라리톤에 기반한 광소자의 실현 가능성은 제한적인 것으로 평가받아왔다.
이러한 한계점을 돌파하고자, 첨단 제작 기술과 측정기술을 보유한 다섯 연구팀이 협업을 통해 단결정 금속 위 영상 포논 폴라리톤 측정에 성공했다.
우리 대학 전기및전자공학부 장민석 교수 연구팀은 높은 민감도를 가지는 주사 근접장 현미경(Scanning near-field optical microscope, SNOM)을 통해 단결정 금 위 63nm(나노미터) 두께의 육각형 질화붕소(hexagonal boron nitride, h-BN)에서 전파되는 쌍곡 영상 포논-폴라리톤(hyperbolic image phonon polariton, HIP)을 측정했다. 이 측정 결과를 통해 유전체 속에서 전파되는 영상 포논-폴라리톤은 중적외선 빛이 100배 응축된 형태임을 확인했다.
장민석 교수와 메나브데 세르게이(Sergey Menabde) 연구교수는 수-파장을 진행하는 HIP의 이미지를 얻었으며, 육각형 질화붕소(h-BN) 결정에서 전파되는 강한 구속 상태의 고차 HIP 신호를 세계 최초로 관측하는데 성공했다. 이 결과를 통해 연구진은 반데르발스 결정에서 포논-폴라리톤이 전파 수명 손실 없이 고응축 상태에 이를 수 있다는 것을 보였다.
이 실험 결과는 원자 수준으로 평편한 금 단결정이 육각형 질화붕소(h-BN)이 올라갈 기판으로 사용됐기 때문에 얻을 수 있었던 결과로 평편한 금 단결정은 표면 산란을 억제하며, 극도로 작은 전압 손실(ohmic loss)를 보유하기 때문에 중적외선 대역에서 영상 포논-폴라리톤이 손실없이 전파되기 위한 최적의 환경을 제공한다. 연구진에 의해 측정된 영상 포논-폴라리톤은 저손실 유전체에서 전파되는 포논-폴라리톤 대비 2.4배 응축된 형태와 비슷한 전파 수명을 지니기 때문에, 약 두 배의 성능 지표를 가진다.
실험에 사용된 원자 수준의 평편도를 가지는 금 단결정은 남덴마크대학교(University of South Denmark) 나노광학센터(Center for Nano Optics) 연구소의 모텐슨(N. Asger Mortensen) 교수 연구팀이 화학적으로 제작했다.
중적외선 파장 대역에는 수많은 유기물질의 흡수 스펙트럼이 위치하기 때문에 센서에 사용될 가능성이 높다. 하지만 현재의 상용화된 센서는 낮은 민감도를 가지고 있어, 유기물질은 매우 고농도의 상태에서만 검출된다. 하지만 고응축 상태의 포논-폴라리톤의 강한 빛-물질 상호작용을 이용할 시 한개의 유기 분자도 검출 할 수 있을 것으로 예상되며, 금 단결정에 전파되는 포논-폴라리톤의 긴 전파 수명 또한 검출 기능을 향상할 것으로 예측된다.
장민석 교수 연구팀은 영상 포논-폴라리톤과 영상 그래핀 플라즈몬 사이의 유사성을 밝혀내기도 했다. 두 전파 모드는 모두 극도로 응축된 전자기장을 보이고, 짧아진 폴라리톤 파장에 무관하게 전파 수명이 일정했다. 이 측정 결과는 유전 박막으로 이루어진 저차원 폴라리톤에 대비해 영상 폴라리톤이 강점을 가진다는 것을 시사한다.
연구를 주도한 장민석 교수는 "이번 연구결과는 영상 폴라리톤, 특히, 영상 포논-폴라리톤의 장점을 잘 보여준다. 특히 영상 포논-폴라리톤이 갖는 저손실성과 강한 빛-물질 상호작용은 차세대 광전자 소자 개발에 응용될 수 있을 것으로 보인다. 연구팀의 실험 결과가 향후 메타표면, 광스위치, 광 센서 등의 고효율 나노광학 소자의 실용화를 앞당기는 데 도움이 되기를 바란다ˮ고 연구의 의의를 설명했다.
메나브데 세르게이 연구교수가 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스(Science Advances)'에 7월 13일 字 게재됐다. (논문명: Near-field probing of image phonon-polaritons in hexagonal boron nitride on gold crystals)
한편 이번 연구는 삼성미래기술육성센터와 한국연구재단의 지원을 받아 진행되었으며, 한국과학기술연구원, 일본 문부과학성, 덴마크 빌룸(Villum) 재단의 지원을 받았다.
2022.07.18
조회수 3883
-
호르몬 조절 수용체 구조와 작용 메커니즘 규명으로 뇌기능 향상 물질 개발 가속
우리 대학 생명과학과 송지준 교수 연구팀이 초저온 전자 현미경(cryo-Electron Microscopy)을 이용해 호르몬 조절 물질인 소마토스타틴(somatostatin)과 그 수용체인 소마토스타틴 리셉터 2(Somatostatin Receptor 2, 이하 SSTR2) 복합체의 3차원 원자 해상도 구조를 규명해 호르몬 조절 메커니즘을 밝혔다고 6일 밝혔다.
소마토스타틴은 성장호르몬의 분비를 억제하는 작용이 있는 호르몬으로 내장과 뇌에 관련된 호르몬이며, 호르몬 분비 조절, 세포의 증식, 뇌 신경 물질 전달에 관한 작용을 한다.
송 교수 연구팀은 연세대학교 이원태 교수 연구팀, 피씨지-바이오텍 연구팀과의 공동연구를 통해, 소마토스타틴과 결합해 다양한 호르몬의 분비를 억제하는 SSTR2 복합체 구조를 3차원 원자 해상도로 초저온 전자현미경을 이용해 규명하고, 소마토스타틴이 SSTR2를 통해 호르몬 분비를 억제하는 메커니즘을 규명했다. 이러한 연구 결과는 호르몬 분비의 이상에서 유발되는 말단비대증, 신경 뇌분비 종양을 제어하는 방법을 개발하는데 적용될 수 있을 것으로 기대된다.
생명과학과 윤어진 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 저명 학술지 `이라이프(eLife)' 에 4월 22일에 출판됐다. (논문명 : Cryo-EM structure of the human somatostatin receptor 2 complex with its agonist somatostatin delineates the ligand binding specificity)
SSTR2은 세포막에 존재하는 막 단백질로, 세포 밖의 소마토스타틴을 신호로 인식해 세포 내로 전달하는 역할을 한다. 최근 생명과학과 이승희 교수 연구팀에서도 소마토스타틴이 인지기능 향상에 기여한다 것을 밝힌 바 있다. 이렇게 소마토스타틴의 생체 내 기능 및 질병에 역할의 중요성에도 불구하고, 소마토스타틴이 세포막에 존재하는 수용체와 결합하는 자세한 메커니즘에 대해서는 알려지지 않았고, 신약 개발에 필수적인 역할을 하는, 3차원 원자구조는 알려지지 않았다.
송지준 교수 연구팀은 소마토스타틴이 수용체인 SSTR2와 결합하는 원리를 규명하기 위해, 초저온 전자현미경을 이용해 소마토스타틴이 결합된 SSTR2 복합체의 원자 3차원 구조를 규명했다. 또한 연구팀은 소마토스타틴과 수용체가 결합한 3차원 구조를 바탕으로 소마토스타틴과 결합하는데 중요한 아미노산들을 발견하고, 이들의 기능성을 세포 내에서 확인했다.
연구팀은 더 나아가 인공지능을 이용한 구조예측 프로그램인 알파폴드(AlphaFold)를 이용해 소마토스타틴 수용체의 이성질 형태(같은 분자식을 갖는 화합물이지만 분자 구조가 다른 형태)인 SSTR1, SSTR3, SSTR4, SSTR5의 구조를 예측해 이성질 형태 각각의 소마토스타틴 결합 메커니즘을 밝혀냈다.
이번 연구 결과는 소마토스타틴 수용체의 작용 메커니즘을 이용해 말단비대증, 신경뇌분비 종양의 제어 및 뇌기능을 향상할 수 있는 물질 개발에 이용될 수 있을 것으로 기대된다.
한편 이번 연구는 한국연구재단 바이오-의료기술개발사업의 지원을 받아 수행됐다.
2022.05.09
조회수 3895