-
우리별 위성 연구팀, 우주기술 발전을 위해 30억 기부
'우리별 위성 연구팀(이하 연구팀)'이 30억 원 상당의 발전기금을 기부 약정했다. 우리별 1호 발사 30주년을 기념하기 위해 추진된 이번 기부는 1989년 공동 연구협약을 바탕으로 영국 서리대학에서 인공위성 기술을 연구했던 박성동 전 쎄트렉아이 의장을 포함해 산·학·연 각계에서 활동하고 있는 27명이 뜻을 모았다. 이들은 모두 KAIST 인공위성연구소가 해외의 우주기술 선진 대학으로 파견했던 유학생 출신이다. 연구팀은 최근까지도 꾸준하게 소통하며 인공위성 관련 기술을 습득할 수 있도록 지원해준 KAIST에 감사하는 마음과 사회로부터 받은 혜택에 보답할 수 있는 여러 방법을 논의해왔다.
발전재단 관계자는 "우리별 1호 발사 30주년이라는 뜻깊은 의미를 담아 30억 원의 발전기금을 약정한 것으로 알고 있다"라고 전했다. 약정식은 지난 7월 19일에 진행됐으며, 연구팀은 약정 금액 상당의 쎄트렉아이 주식을 향후 KAIST에 증여할 예정이다. '우리별 위성 연구기금'으로 명명된 이번 기부금은 우주 분야의 혁신적·창의적 기술 연구를 위해 사용된다. 정부 등으로부터 공식적인 예산을 받는 연구 과제가 되기 전 단계의 아이디어나 시작품을 개발하는 수준의 선행연구를 뒷받침하는 용도다. 우리 대학은 이를 위해 인공위성연구소장을 포함해 인공위성연구 개발에 헌신했던 10인 내외의 교수들로 선정위원회를 구성해 지원이 필요한 과제를 수시로 평가하고 선정할 계획이다.
박성동 전 쎄트렉아이 의장은 "다양한 분야를 연구하는 교수와 학생들의 전문성을 융합해서 활용하는 연구야말로 KAIST가 대학이라서 할 수 있는 고유의 역할"이라며, "미래지향적이고 선제적인 연구에 도전하는 인재들을 응원하는 일에 이번 기부가 마중물이 되길 기대한다"라고 밝혔다.
이광형 KAIST 총장은 "우리별 위성 개발이라는 거대한 모험에 뛰어들어 성공의 역사를 써 내려간 연구팀의 의지를 이어받아 우주기술 분야의 차별성과 수월성을 확보하기 위한 노력과 지원을 아끼지 않겠다"라고 감사 인사를 전했다. 우리별 위성 연구팀은 27명은 1989년 영국 서리대학에 파견한 다섯 명의 유학생을 시작으로 1996년까지 영국 런던대학, 일본 도쿄대학, 미국 컬럼비아·아이오와 대학 등에서 위성 관련 기술을 배워 고국으로 돌아왔다. 1992년 8월 11일 우리별 1호 개발 및 발사에 성공했으며, 우리별 2호(1993)와 3호(1999)까지 발사해 우리나라가 우주기술을 확보하는 초석을 놓았다. 이후 정부의 우주 분야에 연구비 지원이 증가하고 민간에서도 투자가 확대되면서 우리별 위성 연구팀원들은 기업, 출연(연), 학계, 창업 등을 통해 우주산업의 한 축을 형성하며 국가발전에 기여하고 있다.
▲ 우리별 위성 개발팀 27인(가나다순)
김도형(세트렉아이 사업개발 실장), 김문규(에스아이아이에스 대표), 김병진(쎄트렉아이 이사회 의장), 김성헌(코넬대학교 교수), 김승범(JPL 연구원), 김이을(쎄트렉아이 대표), 김태정(인하대학교 교수), 김형신(충남대학교 교수), 남명룡(루미르 대표), 류봉균(미국 EpiSci 대표), 민승현(쎄트렉아이 우주사업부문 PM), 박강민(국방과학연구소 수석연구원), 박성동 前 쎄트렉아이 의사회의장), 박성민(이화여자대학교 교수), 박원규(쎄트렉아이 방산사업부문장), 선종호(경희대학교 교수), 신동석(쎄트렉아이 지상사업부문장), 양호순(표준연구원 책임연구원), 유상근(한비전 대표), 이서림(한국항공우주연구원 책임연구원), 이우경(항공대학교 교수), 이임평(서울시립대학교 교수), 이준호(공주대학교 교수), 이현우(쎄트렉아이 연구위원), 장현석(SI Detection 대표), 전홍준(독일 OHB 매니저), 최경일(KTSAT CTO)
2022.08.18
조회수 182
-
항체를 활용한 신개념 생체 형틀법 최초 개발
우리 대학 신소재공학과 장재범 교수 연구팀이 다세포 생물이 갖는 특정 단백질 구조체를 활용할 수 있는 새로운 개념의 생체 형틀법을 최초로 개발했다고 10일 밝혔다. 긴 시간 동안 특정 기능에 최적화된 생명체가 갖는 복잡하고 정교한 구조체를 형틀로 삼아 이를 모방한 무기물 구조체를 만드는 방법을 생체 형틀법 이라고 한다. 이는 에너지, 광학, 마이크로로봇 분야 등에 응용돼왔다.
장 교수 연구팀은 항원-항체 반응에 착안해 특정 단백질을 항체로 표적화한 뒤, 항체에 붙어 있는 1.4 나노미터(nm) 크기의 금 입자에서 다양한 금속 입자들을 성장시킴으로써 특정 단백질 구조체를 모방한 금속 구조체를 합성하는 데 성공했다. 개발된 생체 형틀법은 일반적인 항원-항체 반응과 금속 입자 성장법을 기반으로 하기 때문에 다양한 생명체에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다.
신소재공학과 송창우, 송대현 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼즈(Advanced Materials)'에 7월 7일 字 온라인 출판됐다. (논문명 : Multiscale Functional Metal Architectures by Antibody-Guided Metallization of Specific Protein Assemblies in Ex Vivo Multicellular Organisms).
생명체가 갖는 특정 기능에 최적화된 다양한 구조체들은 복잡하고 계층적 구조를 기반으로 하여 인공적인 합성 방법을 통해 재현하기 어렵다. 따라서 이러한 생체 구조체를 형틀로 해 동일한 모양의 무기물 구조체를 합성하는 생체 형틀법이 개발돼왔으며, 합성된 생체 재료들은 촉매, 에너지 저장 및 생산, 센서 등 다양하게 활용돼왔다.
하지만 개발된 생체 형틀법 중 특정 단백질 구조체를 형틀로 사용한 경우는 적으며, 있다 하더라도 바이러스나 효모와 같은 단세포 생물의 특정 단백질 구조체를 형틀로 활용한 연구들 뿐이었다.
생명체의 특정 단백질 구조체를 활용하는 생체 형틀법은 원하는 생체 구조체만을 활용 가능하며 합성하고자 하는 생체 재료의 목적에 맞는 단백질을 선택해 사용할 수 있다는 장점이 있다.
연구팀은 기존의 생체 형틀법 한계를 해결을 위해 특정 단백질을 이미징할 때 활용하는 항원-항체 반응을 생체 형틀법에 적용했다.
연구팀이 사용한 항체는 1.4 나노미터(nm) 크기의 금 입자가 달려있고 이는 금속 입자 성장을 위한 종자(seed) 역할을 하게 되어 특정 단백질을 표적화한 항체로부터 다양한 금속 입자를 성장시킬 수 있다.
연구팀은 인간 세포 내부의 미세소관, 미토콘드리아, 핵, 세포막, 세포질에 존재하는 특정 단백질에서만 금 입자를 성장시키는 데 성공했으며, 세포 수준뿐만 아니라 조직 수준인 쥐의 뇌, 신장, 심장에서도 개발한 방법을 적용할 수 있다는 것을 보였다.
나아가 연구팀은 금 입자뿐만 아니라 은, 금-백금, 금-팔라듐 입자를 세포 내부 미세소관 구조체를 따라 합성함으로써 합성된 세포를 액상 반응의 촉매로 활용 가능하다는 것을 증명했다. 또한, 세포 표면에 철 입자를 성장시킨 후 자석으로 조절할 수 있음을 보여 향후 이러한 금속 입자가 성장된 세포들을 조절하거나 군집 행동을 구현하는 것이 가능함을 보였다.
연구팀이 개발한 신개념 생체 형틀법은 다세포 생물뿐만 아니라 항체 염색이 가능한 식물, 균류, 바이러스 등의 생명체에도 활용 가능해 다양한 생체 구조체를 모방한 생체 재료 합성에 이용될 것으로 기대된다.
제1 저자인 송창우 박사과정은 "이번 연구는 기존의 생체 형틀법으로 구현할 수 없었던 다세포 생물의 특정 구조체를 모방한 금속 구조체를 합성한 최초의 사례이며, 이를 통해 생체 형틀법을 활용할 수 있는 생체 구조체의 범위를 넓혔다ˮ 라며 "합성된 생체 재료는 이번 연구에서 보여준 촉매뿐만 아니라 전기화학 및 바이오센서에도 활용 가능할 것으로 예상된다ˮ 라고 말했다.
한편 이번 연구는 한국연구재단 과학난제도전 융합연구개발사업, 우수신진연구사업, 뇌과학원천기술개발사업 등의 지원을 받아 수행됐다.
2022.08.10
조회수 613
-
무한대 화소 수준의 초고해상도 AR/VR 디스플레이 기술 개발
우리 대학 전기및전자공학부 김상현 교수 연구팀이 *모놀리식 3차원 집적의 장점을 활용한 1,600PPI*에 상응하는 마이크로LED 디스플레이를 구현하는 데 성공했다고 29일 밝혔다. 1,600 PPI는 초고해상도 증강현실(AR)/가상현실(VR) 디스플레이에 적용 가능한 해상도로써 2020년 출시된 오큘러스(Oculus) 社(現 메타(Meta))의 메타 퀘스트 2(Meta quest 2, 442 PPI)의 3.6배에 해당하는 디스플레이 해상도다.
☞ 모놀리식 3차원 집적: 하부 소자 공정 후, 상부의 박막층을 형성하고 상부 소자 공정을 순차적으로 진행함으로써 상하부 소자 간의 정렬도를 극대화할 수 있는 기술로 궁극적 3차원 집적 기술로 불린다.
☞ PPI: Pixel per Inch. 디스플레이에서 1인치에 포함되는 픽셀의 갯수
전기및전자공학부 박주혁 박사과정과 금대명 박사가 제1 저자로 주도하고 백우진 박사과정과 대만의 제스퍼 디스플레이(Jasper Display)의 존슨 쉬(Johnson Shieh) 박사와 협업으로 진행한 이번 연구는 반도체 올림픽이라 불리는 하와이 호놀롤루에서 열린 `VLSI 기술 & 회로 심포지엄 (2022 IEEE Symposium on VLSI Technology & Circuits)'에서 지난 6월 16일에 발표됐다. (논문명 : Monolithic 3D sequential integration realizing 1600-PPI red micro-LED display on Si CMOS driver IC)
VLSI 기술 심포지엄은 국제전자소자학회(International Electron Device Meetings, IEDM)와 더불어 대학 논문의 채택 비율이 25%가 되지 않는 저명한 반도체 소자 분야 최고 권위 학회다.
최근 디스플레이 분야는 각종 TV, 모니터 및 모바일 기기뿐만 아니라 스마트 워치, 스마트 글라스 등의 웨어러블 디바이스까지 그 응용처가 크게 확장됐다. 이처럼 디스플레이의 활용이 점차 다양화되고 고도화됨에 따라 요구되는 픽셀의 크기가 점점 작아지고 있는데, 특히 증강현실(AR)/가상현실(VR) 스마트 글라스 등과 같이 사람의 눈과 매우 가까운 거리를 유지하는 디스플레이의 경우 *픽셀화가 없는 완벽한 이미지의 구현을 위해서는 4K 이상의 고해상도가 요구된다.
☞ 픽셀화(Pixelation): 컴퓨터 그래픽에서 비트맵을 구성하는 작은 단색 정사각형 디스플레이 요소인 개별 픽셀이 보이는 현상.
앞서 언급한 초고해상도 디스플레이를 구현하기 위한 차세대 디스플레이 소자로서 무기물 기반의 인듐갈륨나이트라이드/갈륨나이트라이드(InGaN/GaN), 혹은 알루미늄 갈륨 인듐 인화물/갈륨 인듐 인화물(AlGaInP/GaInP)로 대표되는 3-5(III-V)족 화합물 반도체를 활용한 마이크로 LED 소자가 핵심 소재 및 부품으로써 주목받고 있다. 마이크로 LED는 현재 TV, 모바일 기기에 많이 사용되고 있는 OLED, LCD 디스플레이에 비해 높은 휘도와 명암비, 긴 픽셀 수명 등의 장점이 있어 차세대 디스플레이 소자로서 장점이 뚜렷하다.
☞ III-V 화합물 반도체: 주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체로 전하 수송 특성 및 광 특성이 매우 우수한 소재.
하지만 무기물 기반 마이크로 LED를 활용해 디스플레이를 제작하기 위해서는 적색, 청색, 녹색의 각 색상의 픽셀을 각각의 기판에서 분리해 디스플레이 패널로 옮기는 패키징 작업이 필수적이다.
기존에 사용돼온 픽앤플레이스(Pick-and-place) 방법은 각각의 픽셀을 일일이 기계적으로 옮겨서 디스플레이 패널에 결합하는 방법으로 픽셀의 크기가 수십 마이크로미터 미만 수준으로 작아지게 되면 기계적인 정렬 정밀도가 저하되고 전사 수율이 감소해 초고해상도 디스플레이에는 적용이 어려울 것이라는 평가를 받고 있다.
연구팀은 이러한 문제의 해결을 위해 디스플레이 구동용 규소 상보적 금속산화물 반도체(이하 Si CMOS) 회로 기판 위에 적색 발광용 LED를 모놀리식 3차원 집적하는 방식을 적용했다. 위 방식은 Si CMOS 회로 위에 마이크로 LED 필름층을 먼저 웨이퍼 본딩을 통해 전사한 뒤, 포토리소그래피 공정으로 픽셀을 구현하는 방법으로, 기계적 픽셀 전사 공정이 제외된다. 이후 연구팀은 Si CMOS 회로상에서 상단에서 하단 방향으로(Top-down) 연속적인 반도체 공정 과정을 통해 고해상도 디스플레이 데모에 성공했다.
이 과정에서 연구팀은 조명용으로 활용돼왔던 무기물 기반 LED 반도체가 아닌 디스플레이용 LED 반도체층을 설계해 발광을 위한 활성층의 두께를 기존의 1/3로 감소시켜, 픽셀 형성에 필요한 식각 공정의 난도를 크게 낮추어 이번 연구성과를 얻어냈다.
또한, 연구팀은 하부 디스플레이 구동 회로의 성능 저하 방지를 위해 350oC 이하에서 상부 III-V 소자를 집적하는 웨이퍼 본딩 등의 초저온 공정을 활용해 상부 소자 집적 후에도 하부 드라이버 IC(Driver IC)의 성능을 그대로 유지할 수 있었다.
이번 연구 결과는 적색 마이크로 LED를 3차원 적층 방식으로 집적해 세계적인 수준의 해상도인 1,600 PPI 구현에 성공한 연구로서 연구에서 활용된 모놀리식 3차원 집적에 관한 연구 결과는 차세대 초고해상도 디스플레이 구현을 위한 좋은 가이드가 될 것으로 예상된다.
김상현 교수는 "향후 유사 공정을 확대 적용해 적색, 녹색, 청색이 모두 포함된 풀 컬러 디스플레이 제작도 가능할 것으로 생각한다ˮ라고 말했다.
한편 이번 연구는 삼성 미래기술육성센터의 지원을 받아 수행했다.
2022.07.29
조회수 1052
-
고도로 응축된 빛-물질의 새로운 플랫폼 구현
우리 대학 국내외 연구자들과 협업을 통해 고도로 구속된 빛이 전파될 수 있는 새로운 플랫폼을 2차원 물질 박막을 통해 구현했다고 18일 밝혔다. 이 연구 결과는 향후 강한 빛-물질 상호작용에 기반한 차세대 광전자 소자 개발에 기여할 것으로 예상된다.
원자 한 층으로 이루어진 2차원 물질들이 여러 겹으로 쌓이게 되면 기존의 2차원 물질과 다른 특성을 보이게 된다. 이러한 방식으로 만들어진 결정을 반데르발스 결정이라고 한다. 포논-폴라리톤은 전기를 띠는 물질 속 이온의 진동이 전자기파에 결합된 형태를 말하며, 전자기장이 입사광의 파장에 대비해 극도로 응축된 형태를 띈다. 특히, 고전도도를 가지는 금속 위에 놓여진 반데르발스 결정에 생성되는 포논-폴라리톤은 응축성이 극대화된다는 결과가 최근 보고됐다. 금속 위의 유전체에서 빛의 응축성이 극대화되는 것은 폴라리톤 결정 속 전하가 영상 전하 영향으로 금속에 반사돼 `영상 포논-폴라리톤' 이라는 새로운 형태의 폴라리톤이 생성되기 때문이다.
영상 포논-폴라리톤의 형태로 전파되는 빛은 강한 빛-물질 상호작용을 유도할 수 있다는 장점이 있으나 금속 표면이 거칠 경우 생성이 억제돼, 영상 포논-폴라리톤에 기반한 광소자의 실현 가능성은 제한적인 것으로 평가받아왔다.
이러한 한계점을 돌파하고자, 첨단 제작 기술과 측정기술을 보유한 다섯 연구팀이 협업을 통해 단결정 금속 위 영상 포논 폴라리톤 측정에 성공했다.
우리 대학 전기및전자공학부 장민석 교수 연구팀은 높은 민감도를 가지는 주사 근접장 현미경(Scanning near-field optical microscope, SNOM)을 통해 단결정 금 위 63nm(나노미터) 두께의 육각형 질화붕소(hexagonal boron nitride, h-BN)에서 전파되는 쌍곡 영상 포논-폴라리톤(hyperbolic image phonon polariton, HIP)을 측정했다. 이 측정 결과를 통해 유전체 속에서 전파되는 영상 포논-폴라리톤은 중적외선 빛이 100배 응축된 형태임을 확인했다.
장민석 교수와 메나브데 세르게이(Sergey Menabde) 연구교수는 수-파장을 진행하는 HIP의 이미지를 얻었으며, 육각형 질화붕소(h-BN) 결정에서 전파되는 강한 구속 상태의 고차 HIP 신호를 세계 최초로 관측하는데 성공했다. 이 결과를 통해 연구진은 반데르발스 결정에서 포논-폴라리톤이 전파 수명 손실 없이 고응축 상태에 이를 수 있다는 것을 보였다.
이 실험 결과는 원자 수준으로 평편한 금 단결정이 육각형 질화붕소(h-BN)이 올라갈 기판으로 사용됐기 때문에 얻을 수 있었던 결과로 평편한 금 단결정은 표면 산란을 억제하며, 극도로 작은 전압 손실(ohmic loss)를 보유하기 때문에 중적외선 대역에서 영상 포논-폴라리톤이 손실없이 전파되기 위한 최적의 환경을 제공한다. 연구진에 의해 측정된 영상 포논-폴라리톤은 저손실 유전체에서 전파되는 포논-폴라리톤 대비 2.4배 응축된 형태와 비슷한 전파 수명을 지니기 때문에, 약 두 배의 성능 지표를 가진다.
실험에 사용된 원자 수준의 평편도를 가지는 금 단결정은 남덴마크대학교(University of South Denmark) 나노광학센터(Center for Nano Optics) 연구소의 모텐슨(N. Asger Mortensen) 교수 연구팀이 화학적으로 제작했다.
중적외선 파장 대역에는 수많은 유기물질의 흡수 스펙트럼이 위치하기 때문에 센서에 사용될 가능성이 높다. 하지만 현재의 상용화된 센서는 낮은 민감도를 가지고 있어, 유기물질은 매우 고농도의 상태에서만 검출된다. 하지만 고응축 상태의 포논-폴라리톤의 강한 빛-물질 상호작용을 이용할 시 한개의 유기 분자도 검출 할 수 있을 것으로 예상되며, 금 단결정에 전파되는 포논-폴라리톤의 긴 전파 수명 또한 검출 기능을 향상할 것으로 예측된다.
장민석 교수 연구팀은 영상 포논-폴라리톤과 영상 그래핀 플라즈몬 사이의 유사성을 밝혀내기도 했다. 두 전파 모드는 모두 극도로 응축된 전자기장을 보이고, 짧아진 폴라리톤 파장에 무관하게 전파 수명이 일정했다. 이 측정 결과는 유전 박막으로 이루어진 저차원 폴라리톤에 대비해 영상 폴라리톤이 강점을 가진다는 것을 시사한다.
연구를 주도한 장민석 교수는 "이번 연구결과는 영상 폴라리톤, 특히, 영상 포논-폴라리톤의 장점을 잘 보여준다. 특히 영상 포논-폴라리톤이 갖는 저손실성과 강한 빛-물질 상호작용은 차세대 광전자 소자 개발에 응용될 수 있을 것으로 보인다. 연구팀의 실험 결과가 향후 메타표면, 광스위치, 광 센서 등의 고효율 나노광학 소자의 실용화를 앞당기는 데 도움이 되기를 바란다ˮ고 연구의 의의를 설명했다.
메나브데 세르게이 연구교수가 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스(Science Advances)'에 7월 13일 字 게재됐다. (논문명: Near-field probing of image phonon-polaritons in hexagonal boron nitride on gold crystals)
한편 이번 연구는 삼성미래기술육성센터와 한국연구재단의 지원을 받아 진행되었으며, 한국과학기술연구원, 일본 문부과학성, 덴마크 빌룸(Villum) 재단의 지원을 받았다.
2022.07.18
조회수 866
-
KAIST-생명연, 합성생물학 연구 및 바이오파운드리 구축 위해 협력
우리 대학과 한국생명공학연구원(원장 김장성, 이하 생명연)이 합성생물학과 바이오파운드리 분야의 발전을 위한 본격적인 협력에 나선다. 합성생물학(synthetic biology)은 공학 기술을 활용해 생명체가 가진 특성을 변화시키거나, 자연적으로 존재하지 않는 특성을 새롭게 설계하고 제작하는 연구 분야다. 자연에서 유래한 생명체는 저마다 고유하고 복잡한 시스템으로 이루어져 있어서 인간이 구조 그대로를 재현해내기 어렵다. 또한, 생물학 연구는 방법이 매우 복잡해 연구개발 속도가 느리다는 것이 기존 바이오 분야가 봉착한 기술적 한계였다. 합성생물학은 인공지능과 자동화된 설비, 표준화된 부품과 모듈을 사용해 연구개발의 속도와 효율을 동시에 개선할 수 있어 미래 바이오산업을 이끌어갈 핵심기술로 주목받고 있다. 미국, 영국, 일본, 중국 등의 국가들은 정부의 투자를 발판삼아 합성생물학에 인공지능, 로봇 기술 등을 적용해 제조공정을 자동화하는 바이오파운드리를 일찌감치 구축하고 기술 주도권 확보를 위한 경쟁을 가속화하고 있다. 두 기관은 주요 과학기술 강국들을 추격해 기술격차를 좁히고 관련 핵심기술을 선제적으로 확보해야 한다는 공감대를 바탕으로 이번 협력을 도모했다. 또한, 국내 열악한 바이오파운드리 환경을 개선하기 위해서는 지속적이면서도 안정적인 서비스 제공할 수 있으며, 기술 수요자들이 쉽게 접근할 수 있도록 공공인프라를 구축해야 한다는 공동의 목표를 추진하고 있다. 이를 위해 두 기관은 지난 6일 '합성생물학 연구 및 바이오파운드리 공동 구축을 위한 업무 협약' 체결을 완료했다. KAIST는 20여 년 전부터 합성생물학과 학문적 배경이 유사한 시스템생명공학과 시스템대사공학 분야를 개척해왔다. 세계 최초이자 최고효율을 내는 다양한 세포공장 개발하는 등 세계적 수준의 연구역량을 보유하고 있으며, 합성생물학 분야 인력양성을 위한 프로그램 확충 등을 추진하고 있다.생명연은 10여 년 전부터 합성생물학 전문 연구조직인 '합성생물학전문연구단'을 운영해 관련 원천기술을 확보해왔으며, 최근 ‘합성생물학연구소’로 조직을 확대 개편했다. 파일럿 규모의 연구용 바이오파운드리를 구축하는 등 미생물 세포공장, 산업용 효소, 생분해성 플라스틱 소재 등을 개발하는 연구를 진행하고 있다. 두 기관은 글로벌파운드리연맹(global biofoundries alliance, GBA)에도 함께 참여하는 등 우리나라 바이오파운드리 분야의 구심점 역할을 수행하고 있다.
이번 협력은 정부가 추진 중인 바이오파운드리 사업을 유치하기 위한 계획 수립은 물론 공동 연구 인프라 조성과 향후 원활한 사업 운영 및 활용까지 두 기관이 전방위로 긴밀한 유대를 맺는 교두보가 될 전망이다.
이광형 KAIST 총장은 "합성생물학의 속도와 규모, 경제성을 극대화하는 바이오파운드리 구축은 바이오산업 시대에 우리나라가 국제적인 리더십을 확보하는 가장 확실한 전략"이라고 강조했다. 이어, "국내 바이오 분야의 첨단 연구개발을 이끄는 두 기관이 손을 잡고 국가의 미래 경쟁력을 좌우할 핵심 인프라를 구축하는 일에 우수한 역량을 보탤 수 있길 기대한다"라고 밝혔다.
김장성 생명연 원장 또한 "바이오가 직면한 기술적 한계 극복과 미래 바이오로의 패러다임 전환에 핵심기술로 여겨지는 합성생물학 기술의 성패는 세계적인 경쟁력을 가진 바이오파운드리의 구축에 달려있다"라며, "관련 분야의 우리나라 대표 연구 주체인 KAIST와 생명연의 협력으로 바이오경제 실현에 한 걸음 내딛을 수 있기를 바란다"라고 전했다. 한편, 지난해 우리 정부는 다양한 기관과 기업이 연구에 활용할 수 있도록 바이오파운드리를 국가 핵심 인프라로 구축하겠다는 계획을 밝혔다. 또한, 바이오 제조 혁신을 위한 합성생물학 생태계 조성 및 지원 계획도 수립된 상태다. 현재, 바이오파운드리 구축 및 활용기술 개발 사업은 예비타당성조사가 진행 중이다.
2022.07.14
조회수 811
-
4차원에서 다른 두 2차원 곡면 발견
우리 대학 수리과학과 박정환 교수가 카일 헤이든(Kyle Hayden) 콜롬비아 대학교 교수, 김승원 서울대학교 연구원, 매기 밀러(Maggie Miller) 스탠포드 대학교 연구원, 아이작 선버그(Isaac Sundberg) 막스플랑크 연구소 연구원과 함께 40년간 해결되지 않았던 위상수학계 난제를 해결했다고 5일 밝혔다.
매듭이란 3차원 공간 안에 원이 꼬여서 들어가 있는 형태를 말한다. 물리적으로는 신발 끈을 복잡하게 묶은 후에 끈의 양 끝을 하나로 붙인 원을 생각하면 된다. 매듭은 1차원적 기하학적 대상이다. 그리하여 모든 매듭은 사이퍼트 곡면이라는 2차원 곡면의 경계가 되는데 하나의 매듭이 여러 개의 서로 다른 사이퍼트 곡면의 경계가 되기도 한다. 많은 경우 위상수학에서는 하나의 차원이 더 해지면 서로 달랐던 기하학적 대상들이 같아지고는 한다. 현재 인디애나 대학교에서 명예교수로 있는 찰스 리빙스턴(Charles Livingston)은 이런 현상이 사이퍼트 곡면에서도 일어날 것이라고 1982년에 추측하였다. 즉, 그는 어떤 매듭의 두 사이퍼트 곡면이 3차원에서는 다르더라도 4차원 공간에서는 항상 같아질 것으로 추측한 것이다. 이 추측의 하나의 배경은 다년간 3차원 공간에서 다르다고 증명되었던 수많은 사이퍼트 곡면들을 많은 수학자가 4차원 공간에서 관찰하였지만, 대부분의 경우 4차원 공간에서는 같아진다는 사실을 증명하였기 때문이다.
박 교수는 동료 연구자와 함께 리빙스턴 추측이 거짓이라는 사실의 증명을 하였다. 이 증명을 포함하고 있는 ‘4차원 공안의 사이퍼트 곡면(Seifert surfaces in the 4-ball)’ 논문을 최근 프리프린트(학술지 출판 전에 사전 공개되는 논문)로 공개했다.
이들은 <그림 1>에서 보이는 두 개의 사이퍼트 곡면을 사용하였다. 이 두 개의 사이퍼트 곡면은 <그림 2>의 닫힌곡면을 두 개로 나누어서 얻어진 것이다. 즉, <그림 2>는 이 두 개의 사이퍼트 곡면이 같은 매듭을 경계로 한다는 사실을 설명해 주고 있다.
이 두 개의 사이퍼트 곡면이 다르다는 사실은 두 가지의 다른 방법을 사용하여 증명하였다. 첫 번째 방법은 위상수학에서 기본적으로 사용되는 피폭 공간이라는 개념을 사용하였다. 두 번째 방법은 존스 다항식(Jones polynomial)을 일반화한 코바노프 호몰로지(Khovanov homology)를 사용하였다. 특히, 위 연구자들은 코바노프 호몰로지를 이용하여 4차원 공간 안의 2차원 곡면들에 관한 다양한 연구를 진행하고 있다. 예를 들어, 이번에 발표한 논문에는 위상적으로는 4차원에서 같아지지만 매끄러운 구조를 유지하면서 같아질 수 없는 두 개의 사이퍼트 곡면의 존재성도 증명하였다. 이는 4차원 공간에서만 일어나는 미묘하고 신비한 현상을 대변한다. 박 교수와 연구자들은 이 논문은 계기로 앞으로 4차원 공간의 2차원 곡면에 대한 더 활발한 연구를 할 수 있을 것으로 기대하고 있다.
2022.07.05
조회수 1033
-
2022 실리콘밸리 글로벌 창업 부트 캠프 성료
우리 대학이 예비 창업자 및 초기 창업자를 위한 '2022 실리콘밸리 글로벌 창업 부트 캠프(Global Entrepreneurship Summer Camp, 이하 GESC)'를 개최해 성공적으로 마무리했다. 국제협력처 글로벌사업기획센터(처장 임만성)와 창업원(원장 김영태)이 공동주최한 '2022 KAIST GESC' 프로그램은 교내에서 처음 시행하는 실리콘밸리 산-학 연계 창업 부트캠프 프로그램이다. 실리콘밸리 현지를 방문해 창업 기업의 사례를 체험하는 기회를 제공하고, 향후 실리콘밸리로 진출할 수 있는 네트워크를 마련해주고자 시범적으로 기획되었다.
이를 위해, 재학생을 포함한 예비 창업자와 법인설립 1년 이내의 초기 창업자 등 총 20명을 이달 초 선발했다. 선발된 학생 중에는 KAIST에 재학 중인 에티오피아·멕시코·인도네시아·키르기스스탄 등 다양한 국적의 외국인 학생들도 포함되어 있어 국적을 초월한 글로벌 팀워크의 중요성을 상기하는 계기가 되었다. 참가자들은 일주일간의 국내 교육을 수료한 후 지난 27일부터 미국 스탠퍼드 대학교, 실리콘밸리 코트라 무역관(관장 박용민) 및 현지 기업을 방문해 실리콘밸리 내 우리 대학 동문 및 현지 전문가들과 협력하는 창업 교육 및 스타트업 현장 체험을 진행했다. 실리콘밸리 코트라 무역관에서는 현지의 엑셀러레이터(accelerator)와 KAIST의 학생팀을 연계시켜 각 팀의 비즈니스 아이템과 모델이 글로벌 시장가치를 창출하는 사업으로 발전할 수 있도록 돕는 시간이 마련됐다. 특히, 실리콘밸리에서 성장하고 있는 모션투에이아이(Motion2AI, 대표 김병수), 임프리메드(ImpriMed, 대표 임성원), 메딕 라이프 사이언스(Medic Life Sciences, 대표 한규호) 등의 기업이 창업에 대한 열정과 도전정신을 불어넣어줄 강연과 스타트업 현장 방문 등으로 함께했다. 창업 교육 워크숍의 일부를 주관한 스탠퍼드 대학교 기술 벤처 프로그램(The Stanford Technology Ventures Program, 이하 STVP)의 모윤 르이 펑(Mo-Yun Lei Fong) 원장은 "KAIST와의 협력해 기획된 이번 워크숍을 통해 미래의 기업가들을 글로벌 시민으로 육성하고자 하는 STVP의 비전을 실현하고 특히, 한국의 학생들에게 글로벌 기업가가 되기 위해 반드시 필요한 통찰력에 대하여 알려주는 기회가 마련되어 기뻤다"라고 밝혔다. 이어, "STVP 또한 이번 프로그램을 기획하면서 한국 대학과의 네트워크가 구축되었고, KAIST 학생들과의 소통하며 한국의 문화와 아이디어를 이해하고 글로벌 문화와 관련된 커리큘럼을 개선할 수 있었다"라고 덧붙였다. 선발된 학생들은 국내·외에서 2주간 진행한 글로벌 창업교육에서 습득한 내용을 바탕으로 사업계획서를 작성하고, 미국 현지 창업 액셀러레이터인 '플러그 앤 플레이(Plug and Play)'에서 투자자를 초청해 지난 1일 최종 피칭을 펼쳤다. 최종 피칭에 앞서 이종문 암벡스 벤처 파트너스(AmBex Venture Partners) 회장이 특별 강연해 학생들에게 글로벌 기업가 정신을 바탕으로 한 사회적 기여의 중요성을 역설했다.참가자들은 최종 피칭에서 메타버스 데이트 서비스 · AI 소음차단 베개 · VR 원격회의 오피스 · AI 한국어 튜터링 앱 등 다양한 기술을 적용한 창의적인 사업 아이템을 발표했으며, 2주간이라는 짧은 기간 동안 준비해 우수한 수준의 피칭을 선보여 심사위원들의 호평을 받았다. 그중 1위는 항공우주공학과, 기술경영학부, 수리과학과, 생명화학공학과 등 다양한 학과의 학생으로 구성된 '보드 KAIST 요트 클럽(Bored KAIST Yacht Club)'팀의 '메타-에버랜드(Meta-Everland)'가 선정됐다. 이승희 기술경영학부 석사과정 학생은 "우리팀의 아이템은 메타데이트를 통해 실시간으로 오프라인과 유사한 데이트를 경험할 수 있게 하는 서비스"라며, "이번 프로그램을 통해 창업이 어려운 것이 아닌, 누구나 재미있게 도전해 볼 수 있는 경험이라는 사실을 알게 되었다"라고 전했다. 이어, "실리콘밸리 현지에서 활동하고 있는 투자자나 엑셀러레이터의 심사와 조언을 받으며 흥미로운 아이디어만 가지고도 투자자나 심사위원의 관심을 받을 수 있다는 중요한 사실을 깨달았다"라고 소감을 밝혔다. 피칭 1위를 차지한 팀은 흥미로운 사업 아이템과 우수한 팀워크로 프로그램 기간 중 멘토로 활동한 현지 엑셀러레이터로부터 실리콘밸리 현지의 사업파트너를 소개받기도 했다. 또한, 프로그램에 함께 참가한 황병훈 생명화학공학과 석사과정 학생은 "실리콘밸리 최전선에서 일하고 있는 사람들이 어떤 태도나 마음가짐으로 일하고 있는지 알게 되어 졸업 후 진로와 스타트업 창업을 생각하는 시야가 많이 확장되었다"라고 소감을 전했다. 몬드라곤 마리나(MONDRAGON MARINA) 글로벌 정보통신 기술 프로그램 석사과정 학생은 "실리콘밸리에서 활동하고 있는 스타트업 CEO를 만나 대화하며 실리콘밸리와 한국의 창업 에코 시스템의 다른 점을 배울 수 있어 뜻깊었다"라고 말했다.
윤상수 주샌프란시스코 총영사는 "이번 프로그램이 지속적으로 발전한다면 과학기술을 통한 혁신적인 기술 가치를 창출할 수 있을 것으로 기대된다"라고 말하며 "총영사관에서도 프로그램이 잘 지속될 수 있도록 협조할 계획이다"라고 덧붙였다.
실리콘밸리 교육에 학생들을 인솔한 임만성 국제협력처장은 "KAIST에서 처음으로 시행한 실리콘밸리 산-학 연계 창업 부트캠프인 만큼 학생들이 더욱더 넓은 시야를 가지고 글로벌 창업의 꿈을 키우는 멋진 기회가 되었을 것으로 생각한다"라고 말했다.
프로그램을 공동 주최한 김영태 창업원장은 "이번 교육 프로그램을 통해 개발된 우수한 사업 아이템이 글로벌 시장에서 경쟁력을 갖출 수 있도록 창업원의 다양한 프로그램을 통해 지원할 계획"이라고 전했다. 한편, 글로벌사업기획센터와 창업원은 이번 프로그램의 성공적인 개최를 발판삼아 글로벌 시장에서 경쟁력을 갖춘 예비 창업가를 육성하기 위한 'KAIST GESC' 프로그램을 지속 발전시킬 예정이다.
2022.07.04
조회수 990
-
GSI, 〈불평등과 불공정의 과학〉 온라인 국제포럼 개최
우리 대학은 '불평등과 불공정의 과학(Science of Inequality and Injustice)'을 주제로 오는 6일(수) 오전 9시부터 제7회 글로벌전략연구소(GSI) 온라인 국제포럼을 개최한다. 세계화가 본격화되며 소득·자산·기회의 불평등이 국제적인 화두로 부상했다. 이후 코로나19의 전 세계적인 유행을 기점으로 불평등과 더불어 불공정의 문제가 사회통합과 발전을 저해하는 핵심 이슈로 심화되었다. 그동안 이러한 논의는 인문학과 사회과학 분야에서 주도해왔으나, 최근 들어 자연과학과 공학 분야에서도 불평등과 불공정의 메커니즘을 과학적으로 분석하고 규명하려는 움직임이 활발하게 이루어지고 있다.
이광형 총장은 포럼 개회사를 통해 "학제 간 연구와 과학기술을 활용해서 사회문제를 해결하는 것은 KAIST가 가장 잘할 수 있는 분야이자 부여받은 임무"라고 강조하고 "불평등과 불공정을 과학적 사고로 해결하기 위한 논의의 장이 되길 기대한다"라고 독려할 예정이다.
이를 위해 미국 하버드대 · 듀크대 · MIT 미디어랩 등 관련 분야에서 활발하게 연구하고 있는 전문가들이 기조연설에 나선다. 이들은 최신 연구사례를 공유하고 정책 수립 및 제도 개선 방안을 모색할 계획이다. 첫 번째 기조 연사인 애드리안 베얀(Adrian Bejan) 미국 듀크대학교(Duke University) 기계공학과 특훈교수는 불평등 문제를 물리학적으로 접근한다. 불평등은 불공정이나 정의의 개념과는 달리 ‘열역학 법칙’이라는 물리적 메커니즘으로 설명할 수 있는 자연 현상임을 강조한다. 사회 현상에서는 불평등은 주로 부(富)의 비대칭적 분배 형태로 나타난다. 이러한 불평등을 감소시키는 메커니즘으로 혁신을 확산할 때, 혁신이 부재할 때보다 부를 더욱 평등하게 분배할 수 있다는 견해를 공유할 예정이다.
이어, 브루스 보고시안(Bruce Boghosian) 미국 터프츠대학교(Tufts University) 수학과·컴퓨터과학과 교수는 '부의 집중과 *과두정치의 기원 및 성격(The origin and nature of wealth concentration and oligarchy)'을 주제로 강연한다. ☞ 과두정치(寡頭政治): 적은 수의 우두머리가 국가의 최고 기관을 조직하여 행하는 독재적인 정치 체제
최근 수학자들과 통계물리학자들은 부의 집중 현상 및 정치 체제를 바라보는 새로운 과학적 접근법을 제시했다. 이 성과는 경제학·정치학·공공정책학·윤리학 분야의 최신 연구에 차용되었으며, 보고시안 교수는 전문지식 없는 청중들도 쉽게 이해할 수 있는 내용으로 강연을 구성해 전달할 예정이다. 또한, 도시에서 사회적 네트워크의 다양성과 탄력성을 잃게 만드는 취약성을 주제로 에스테반 모로(Esteban Moro) 스페인 마드리드 카를로스 3세 대학교(Universidad Carlos III de Madrid) 수학과 교수이자 MIT 방문 교수가 기조 연설한다. 모로 교수는 도시의 취약성이 불평등과 여러 소외현상에 미치는 영향력을 보여주기 위해 행동 및 이동 데이터를 분석한 최신 연구사례를 소개한다.
마지막으로, 과세와 분배정책 전문가인 스테파니 스탠체바(Stefanie Stantcheva) 미국 하버드대(Harvard University) 정치경제학 교수가 강연한다. 세금·이민 정책·사회적 이동성 등 공공정책에 대한 사람들의 인식 및 태도를 연구하기 위해 진행했던 대규모 사회 경제 조사 및 실험 사례를 ’사회경제학: 정책 입장의 이해(social economics: understanding policy views)’라는 주제로 전달할 계획이다.
이날 포럼에서는 이원재 KAIST 문화기술대학원 교수가 기조 강연을 논평하며, 모든 연사가 참여하는 원탁 토론을 진행한다. 불평등의 가속과 불공정의 심화로 증대되는 사회문제의 대응책을 찾아보고 새롭게 출범한 한국 정부에 적용할 수 있는 정책적 대안도 함께 논의할 예정이다.
김소영 KAIST KPC4IR 센터장은 "전 세계가 함께 고민해야 하는 불평등과 불공정의 문제를 과학적으로 접근하고 이해하기 위해 이번 포럼을 준비했다"'라고 말했다. 이어, "국제적인 전문가들이 직접 경험한 연구사례를 바탕으로 정책의 방향을 전환하고 구체적인 전략을 함께 생각해볼 수 있는 계기가 되기를 바란다"라고 밝혔다. 영어로 진행되는 이번 포럼은 6일 오전 9시부터 '유튜브 KAIST 채널'에서 온라인으로 실시간 중계되며, 한글 동시통역 자막을 제공한다. 한편, 이번 포럼은 KAIST 글로벌전략연구소(Global Strategy Institute, GSI)와 한국4차산업혁명정책센터(Korea Policy Center for the Fourth Industrial Revolution, 이하 KPC4IR)가 공동 주최한다.
2022.07.01
조회수 804
-
과학기술정책대학원, 과학기술외교 워크숍 성료
우리 대학 과학기술정책대학원(원장 최문정)이 지난 24(금)~25(토) 이틀 동안 외교부 관계자 및 과학기술외교안보 전문가들과 함께 서울 웨스틴 조선호텔에서 '과학기술외교 워크숍'을 개최했다.
팬데믹, 탄소중립, 디지털 전환, 미중 패권경쟁 등 과학기술과 외교안보를 둘러싼 국제적인 이슈의 등장으로 두 분야의 시너지가 절실히 요구되고 있다. 그러나 이러한 시대상과는 다르게 전문성을 갖춘 인력이 절대적으로 부족한 실정이다. 이번 워크숍은 과학기술외교 역량 강화를 위한 중장기적인 관학협력을 모색하기 위해 마련됐다.
개회사를 맡은 이승섭 교학부총장은 "기정학의 부상으로 국제정치에서 과학기술이 핵심 변인으로 등장함에 따라 기술주권 확보와 과학기술외교 역량을 담보할 수 있는 전문인력이 중요하다"라고 강조했다. 이어 "과학기술 인재의 산실인 KAIST가 이러한 인력양성에 중요한 역할을 담당해야 한다"라고 필요성을 역설했다. 외교부에서 과학기술외교를 포함해 경제안보를 총괄하는 윤성덕 경제외교조정관이 환영사를 맡아 새 정부의 과학기술외교 역량 제고를 위한 노력을 소개했다. 또한, 윤 조정관은 ▴과학기술협력대사 임명 ▴미국과의 신흥· 핵심기술 협력 ▴과학기술외교 예산 확보 등의 노력과 더불어 기존 외교관들의 과학기술외교 역량을 강화할 수 있는 KAIST와의 협력 방안도 언급했다.
이어진 주제 발표 시간에는 최문정 KAIST 과학기술대학원장의 사회로 한국의 과학기술 외교 전문 인력 현황을 조망하고 선진국 해외공관의 과학기술정책관 운영 사례가 소개됐다.
첫 번째 발표자로 나선 김소영 KAIST 한국4차산업혁명정책센터장은 과학외교의 세 측면에 대한 이론적인 배경을 설명하고 한국의 과학기술 인력 양성 현황을 분석해 정책적으로 제언했다.
주한 대사관 사례 발표는 주한 스위스대사관의 알레산드라 아피첼라(Alessandra Apicella) 과학기술협력실 실장이 맡았다. 국제기구가 밀집해 과학기술 외교안보 연계가 가장 활발할 나라로 꼽히는 스위스가 'Swissnex'라는 글로벌 과학기술혁신 허브를 소개하고 이를 구축하고 운영하는 과정에서 얻은 교훈에 대해 설명했다.
두 번째 사례로는 주한 독일대사관의 알렉산더 레너(Alexander Renner) 과학기술참사관이 유럽의 대표적인 과학기술 강국인 독일 사례를 소개했다. 특히, 레너 참사관은 "한국은 과학기술 프로젝트 추진 시 협력 파트너가 될 수 있는 나라지만, 협업을 수행할 과학기술참사관 부재로 어려움을 겪는다"라고 토로했다. 이어, 패널 토론에서는 박경렬 KAIST 인공지능연구원 사회정책위원장의 사회로 정기원 외교부 기후환경외교국 에너지과학외교과장, 외교부 과학기술외교자문위원장을 맡고 있는 장용석 과학기술정책연구원 책임연구원, 한국과총에서 수년간 과학외교위원장을 역임한 김승환 POSTECH 물리학과 교수가 전문가 토론을 펼쳤다. 워크샵 이튿날에는 실제 외교 현장에서 과학기술 분야 실무를 담당했던 외교관들과 워크숍 참석자들이 한국 과학기술 외교 전문인력 현황 분석과 인력양성 정책을 토론했다.
이번 워크샵을 주관한 최문정 과학기술정책대학원장은 "국가 기술주권 확보와 인류의 지속가능발전을 위해 초국가적 도전을 함께 풀어가기 위해서는 과학기술과 외교 역량을 겸비한 인재를 양성하는 관학협력이 본격적으로 활성화되어야 한다”고 강조했다. 과학기술정책대학원 관계자는 "이번 워크숍의 후속 조치로 외교부 국립외교원, 과기정통부 국가과학기술인력개발원 등과 과학기술외교 전문인력 양성을 위한 구체적인 협력을 추진할 계획"이라고 밝혔다. 이와 동시에 외교부와 과기정통부를 중심으로 한 다부처 과학기술외교 인력양성을 위한 중장기적 사업도 기획할 예정이다.
2022.06.29
조회수 800
-
새로운 인공지능 형광 현미경 적용, 뇌 신경세포 등 3차원 고화질 영상기술 개발
우리 대학 김재철 AI 대학원 예종철 교수 연구팀이 서울대학교 장성호 교수팀, 포스텍 김기현 교수팀과 공동연구를 통해 형광 현미경의 오랜 문제인 이방성(Anisotropy)을 해결해, 3차원 영상 화질을 획기적으로 끌어올리는 인공지능 기술을 개발했다고 29일 밝혔다.
이방성 문제란 형광 현미경으로 3차원 영상을 획득하는 데 있어 빛의 성질로 인해 영상 공간 방향 간에 적게는 2~3배, 많게는 10배까지도 화질 차이가 발생하는 문제를 뜻한다. 예를 들면 3차원 영상을 보는 각도마다 화질의 차이가 발생하는 것이다.
연구팀은 수학적 기법인 최적 수송이론 기반을 둔 새로운 인공지능 시스템을 개발해 공초점 현미경과 광 시트 현미경에 적용했다. 기존 인공지능 기법들과는 다르게, 인공지능 학습 데이터가 따로 필요하지 않고, 하나의 3차원 영상만으로도 인공지능 학습에 적용할 수 있다는 점에서 획기적이라 볼 수 있으며, 생물학 연구자들에게 생물 표본의 3차원 고화질 영상 획득에 큰 도움을 줄 것으로 기대된다.
예종철 교수는 "3차원 영상 획득에 있어 극복하기 어려웠던 현미경의 물리적 한계를 인공지능 기술을 통해 뛰어넘었다는 점에서 의미가 있고, 비지도 학습 기반으로 훈련이 진행되기 때문에, 다양한 많은 종류의 3차원 영상 촬영 기법에도 확장 적용 가능하며, 또한 인공지능 연구의 새로운 응용을 개척했다는 데 의미가 있다ˮ 고 말했다.
김재철 AI 대학원의 예종철 교수가 주도하고, 박형준 연구원이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)' 6월 8일 字 온라인판에 게재됐다.
*논문명 : Deep learning enables reference-free isotropic super-resolution for volumetric fluorescence microscopy
논문 링크: https://www.nature.com/articles/s41467-022-30949-6
2022.06.29
조회수 769
-
인공지능 이용해 3차원 홀로그래피 현미경의 박테리아 신속 식별 기술 개발
우리 대학 물리학과 박용근 교수 연구팀이 홀로그래피 현미경과 인공지능을 이용한 신속 박테리아 병원균 식별 기술을 개발했다고 27일 밝혔다.
병원균의 조기 식별은 감염질환 치료에 필수적이다. 치명적인 상태로 진행되기 전에 감염균에 맞는 효과적인 항생제의 선택과 투여가 가능해지기 때문이다. 하지만 현재의 일상적 병원균 식별은 통상 수일이 소요된다. 이로 인해 감염 초기 식별 결과 없이 실증적인 처방으로 항생제를 투여하는 사례가 빈번하며, 이로 인해 패혈증의 경우 치명률이 50%에 달하며 항생제 남용으로 인한 슈퍼박테리아 문제도 발생한다.
기존 방법으로 병원균 식별이 오래 걸리는 원인은 긴 박테리아 배양 시간이다. 질량 분석기로 대표되는 식별 기술들은 일정량 이상의 박테리아 표본이 확보되어야 균종과 관련된 분자적 신호를 검출할 수 있다. 이로 인해, 환자에서 추출한 시편을 하루 이상 배양해야만 검출이 될 정도의 박테리아 개수가 확보된다.
광학 분야의 저명 학술지인 `빛: 과학과 응용(Light: Science & Applications), (IF = 17.782)'에 게재된 이번 연구(논문명: Rapid species identification of pathogenic bacteria from a minute quantity exploiting three-dimensional quantitative phase imaging and artificial neural network)에서 박용근 교수 연구팀은 3차원 홀로그래피 현미경과 인공지능 알고리즘을 활용해서 단일 세포 수준의 표본으로도 병원균의 균종을 정확히 알아낼 수 있음을 입증했다.
홀로그래피 현미경으로 측정되는 3차원 굴절률 영상 정보에 내재된 균종과 관련된 특성을 인공지능 알고리즘으로 학습해 종을 구분하는 것이 핵심 아이디어다. 연구팀은 종별로 500개 이상의 박테리아의 3차원 굴절률 영상을 측정했고, 이를 인공지능 신경망을 통해 학습시켰다.
연구팀은 개발한 방법을 이용해 주요한 혈액 감염균을 신속하게 식별함으로써 실제 진단에도 응용될 가능성을 검증했다. 구체적으로 그람 음성 및 양성, 구균 및 간균을 모두 포함한 총 19가지 균종으로 혈액 감염 사례의 90% 이상의 원인이 되는 균들이다. 한 개의 병원균 혹은 병원균 덩어리를 측정한 단일 3차원 굴절률 영상에서는 약 82.5%의 정확도로 균종 판별이 가능했다. 연구팀은 또한 여러 영상을 확보할 수 있을 때 정확도가 증가해, 7개의 박테리아 영상이 확보된다면 99.9%의 정확도를 얻을 수 있었다.
연구진의 책임자이자 논문의 교신저자인 박용근 교수는 "홀로그래피 현미경의 세포 감별 능력을 인공지능으로 극대화해 감염 진단 기술로서의 가능성을 확인한 것이 의미ˮ라고 말했다. 제1 저자인 물리학과 김건 박사과정 학생은 "100,000분의 1 수준의 표본량으로도 질량 분석기의 균종 검출률과 비슷한 정확도를 얻었고 환자 시편에서 다양한 병원균을 식별하는 플랫폼 기술이 될 것으로 기대된다ˮ라고 덧붙였다.
이번 연구는 KAIST-삼성서울병원-토모큐브 팀의 수년간의 공동 연구를 통해 진행됐다. 물리학과 박용근 교수 연구팀의 기술에 다양한 기관의 경험과 비전을 반영함으로써 완성할 수 있었다. 삼성서울병원 진단검사의학과 이남용 교수, 진단검사의학과 허희재 교수, 감염내과 정두련 교수 연구팀, 서울성모병원 진단검사의학과 유인영 교수, 분당 차병원 응급의학과 김규석 교수, 우리 대학 나노과학기술대학원 정현정 교수 등 다양한 분야와 기관이 모여, 실험적 검증을 효과적으로 진행할 수 있었다. 또한 KAIST 교원 창업 기업인 ㈜토모큐브의 3차원 홀로그래피 기술 지원도 필수적인 역할을 했다.
한편 이번 연구는 한국연구재단 창의연구사업, 과학기술일자리진흥원의 지원을 받아 수행됐다.
2022.06.27
조회수 977
-
양자컴퓨팅 한계를 극복하는 3차원 반도체 제어/해독 소자 집적 기술 개발
우리 대학 전기및전자공학부 김상현 교수 연구팀이 *모놀리식 3차원 집적의 장점을 활용해 기존 양자 컴퓨팅 시스템의 대규모 큐비트 구현의 한계를 극복하는 3차원 집적된 화합물 반도체 해독 소자 집적 기술을 개발했다고 24일 밝혔다. ‘모놀리식 3차원 집적 초고속 소자’ 연구 (2021년 VLSI 발표, 2021년 IEDM 발표, 2022년 ACS Nano 게재)를 활발하게 진행해 온 연구팀은 양자컴퓨터 판독/해독 소자를 3차원으로 집적할 수 있음을 처음으로 보였다.
☞ 모놀리식 3차원 집적: 반도체 하부 소자 공정 후, 상부의 박막층을 형성하고 상부 소자 공정을 순차적으로 진행함으로써 상하부 소자 간의 정렬도를 극대화할 수 있는 기술로 궁극적 3차원 반도체 집적 기술로 불린다.
우리 대학 전기및전자공학부 김상현 교수 연구팀의 정재용 박사과정이 제1 저자로 주도하고 한국나노기술원 김종민 박사, 한국기초과학지원연구원 박승영 박사 연구팀과의 협업으로 진행한 이번 연구는 반도체 올림픽이라 불리는 ‘VLSI 기술 심포지엄(Symposium on VLSI Technology)’에서 발표됐다. (논문명 : 3D stackable cryogenic InGaAs HEMTs for heterogeneous and monolithic 3D integrated highly scalable quantum computing system).
VLSI 기술 심포지엄은 국제전자소자학회(International Electron Device Meetings, IEDM)와 더불어 대학 논문의 채택 비율이 25%가 되지 않는 저명한 반도체 소자 분야 최고 권위 학회다.
양자컴퓨터는 큐비트 하나에 0과 1을 동시에 담아 여러 연산을 한 번에 처리할 수 있는 차세대 컴퓨터로, 최근에 IBM과 구글 등의 글로벌 기업이 양자 컴퓨터 제작에 성공하면서 양자 컴퓨터가 차세대 컴퓨터로 주목받고 있다.
기존 컴퓨터의 정보 단위인 `비트'의 경우 1 비트당 1개의 값만 가지는 것에 반해, 양자 컴퓨터의 정보 단위인 `큐비트'는 1 큐비트가 0과 1의 상태를 동시에 가진다. 따라서 비트에 비해 큐비트는 2배 빠른 계산이 가능하고, 2큐비트, 4큐비트, 8큐비트로 큐비트 수가 선형적으로 커질수록 처리 계산 속도는 4배, 8배, 16배로 지수적으로 증가한다. 따라서 많은 수의 큐비트를 활용한 대규모 양자컴퓨터 개발이 매우 중요하다. IBM에서는 큐비트 수를 127개로 늘린 `이글'을 작년에 발표했고, IBM 로드맵에 따르면 오는 2025년까지 4,000큐비트, 10년 이내에 10,000큐비트 이상을 탑재한 대규모 양자컴퓨터 개발을 목표로 하고 있다.
특히 큐비트의 수가 많은 대규모 양자컴퓨터 개발을 위해서는 큐비트를 제어/해독하는 소자에 대한 개발이 필수적이다. 기존 컴퓨터와 다르게 양자컴퓨터는 통상 –273 oC 내외의 극저온에서 동작하는 큐비트 하나당 최소 하나의 제어와 해독 연결이 필요하다. 현재는 큐비트 수가 많지 않아 극저온에서 동작하는 큐비트와 상온의 측정 장비를 긴 동축케이블로 연결해 제어/해독하는 방식을 사용하고 있다.
하지만 수천 혹은 수만 개 이상의 큐비트를 활용하는 대규모 양자 컴퓨팅에서 이러한 방식을 활용하면 양자 컴퓨터 크기가 매우 커지고 긴 연결 거리로 인해 신호 손실도 커 대규모 양자컴퓨터 구현이 매우 어려워진다. 따라서 큐비트를 제어/해독에 활용할 수 있는 저전력, 저잡음, 초고속 특성의 극저온 소자를 큐비트와 일대일로 연결할 수 있는 시스템 구성이 매우 중요하다.
연구팀은 이러한 문제 해결을 위해 큐비트 회로 위에 저전력, 저잡음 초고속 특성이 매우 뛰어난 *III-V 화합물 반도체 *고전자 이동 트랜지스터(HEMT)를 3차원으로 집적해 수천 혹은 수만 개의 큐비트에 아주 짧은 거리에서 일대일로 연결 가능한 구조를 제시했다.
☞ III-V 화합물 반도체: 주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체로 전하 수송 특성 및 광 특성이 매우 우수한 소재.
☞ HEMT: High-Electron Mobility Transistor
연구팀은 250oC 이하에서 상부 제어/해독 소자를 집적하는 웨이퍼 본딩 등의 초저온 공정을 활용해 이후 하부 큐비트 회로의 성능 저하 없이 3차원 집적을 할 수 있도록 했다.
연구진은 이러한 3차원 집적 형태의 제어/해독 소자를 최초로 제시 및 구현했을 뿐만 아니라 소자의 성능 면에서도 극저온에서 세계 최고 수준의 차단주파수 특성을 달성했다.
김상현 교수는 "이번 기술은 향후 대규모 양자컴퓨터의 제어/판독 회로에 응용이 가능할 것으로 생각한다ˮ라며 "모놀리식 3차원 초고속 소자의 경우 양자컴퓨터뿐만이 아니라 6G 무선통신 등 다양한 분야에서 응용할 수 있어 그 확장성이 매우 큰 기술이며 앞으로도 다양한 분야에서 활용할 수 있도록 후속 연구에 힘쓰겠다ˮ라고 말했다.
한편 이번 연구는 한국연구재단 지능형반도체기술개발사업, 경기도 시스템반도체 국산화 연구지원 사업, 한국기초과학지원연구원 분석과학연구장비개발사업(BIG사업) 등의 지원을 받아 수행됐다.
2022.06.24
조회수 1225