본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%97%B0%EA%B5%AC%EB%8B%A8
최신순
조회순
기술경영학부 사회과학 AI 및 빅데이터 연구단(AI-SSRG), 제1회 KAIST AI 사회과학 연구 부트캠프 개최
우리 대학 기술경영학부 사회과학 AI 및 빅데이터 연구단(AI-SSRG, AI & Big Data Social Science Research Group, 책임교수 김원준 기술경영전문대학원장)이 올해 11월 5일부터 12월 3일까지 `제1회 KAIST AI 사회과학 연구 부트캠프(KAIST AI Social Science Research Boot Camp)'를 진행 예정이다. 사회과학 AI 및 빅데이터 연구단(AI-SSRG)은 경영·경제 AI/빅데이터 분야의 전 세계 연구자 및 석·박사과정 학생을 대상으로 경영정보시스템(Management Information System), 마케팅(Marketing), 회계 및 금융(Accounting & Finance), 혁신 및 전략(Innovation & Strategy), 경제(Economics) 등을 주제로 제1회 KAIST AI-SSRG 부트캠프를 진행한다. 이번 제1회 KAIST AI-SSRG 부트캠프에는 Bristol 대학교의 한석진(Sukjin Han) 교수, KAIST의 김형철(Kevin Kim), 김지희(Jihee Kim) 교수, Boston 대학교의 이도균(Dokyun Lee) 교수, Yale 대학교의 이선경(Sun Kyoung Lee) 박사, 뉴욕대학교(NYU)의 샤오 류(Xiao Liu) 교수, Northwestern 대학교의 윤혜진(Hyejin Youn) 교수 등 사회과학 AI/빅데이터(Social Science on AI/Big Data) 연구 분야를 이끄는 국제 석학 및 연구자들이 대거 참여할 예정이다. Bristol 대학교의 한석진 교수는 경제학 방법론과 인공지능 기법을 융합적으로 연구하여 새로운 분야를 열고 있는 경제학자이고, 이번 부트캠프 1회차에서 AI 기술을 적용한 특허 및 혁신 분야 연구 주제 및 방법론을 강의할 예정이다. 뉴욕대학교 샤오 류 교수는 하이테크 마케팅, 금융서비스 혁신 분야 마케팅 연구를 선도하는 학자로, 부트캠프 2회차에서 “Dynamic Coupon Targeting Using Batch Deep Reinforcement Learning: An Application to Livestream Shopping” 제목으로 마케팅 분야 AI 연구를 강의할 예정이다. KAIST의 김형철 교수는 자본시장 관련 선도적인 연구를 이끌어가는 회계분야 연구자로, 이번 부트캠프 3회차에서 정보 수집과 정보 통합 간의 상호 작용에 관한 주제로 발표할 예정이다. Northwestern 대학교 윤혜진 교수는 복잡계 물리학 기반 경영 및 경제의 연구를 융복합적으로 연구하는 선도적 연구자로, 부트캠프 4회차에서 혁신 및 전략 세션에서 빅데이터를 이용한 사회과학 연구를 주요 주제로 다룰 예정이다. 부트캠프 마지막 회차인 경제학 세션에서는 Bristol 대학교 한석진 교수, Yale 대학교 이선경 박사, KAIST의 김지의 교수가 각각 도시의 성장 요인, 글자 모양 및 제품 차별화, 인공위성 이미지와 경제활동 등 다양한 주제로 강의할 예정이다. 기술경영학부 김원준 교수(기술경영전문대학원장)는 "KAIST가 전세계 석학과 석·박사과정 학생들 간 연구 교류를 통하여 AI에 대한 사회과학 연구의 중요한 국제적 허브로 발전해 나가고자 하며, 제1회 KAIST AI 사회과학 연구 부트캠프는 그 중요한 발판이 될 것이다ˮ라고 밝혔다. 이어, 김 교수는 "사회과학 AI 및 빅데이터 연구 분야의 세계 저명 연구자들 간의 연구 교류를 통하여, 급변하고 있는 세계적 혁신의 패러다임에 대응하여 우리 사회가 지향해야 할 방향을 제시하는데 기여하겠다ˮ고 강조했다. 이번 부트캠프는 11월 5일부터 한국시간 매주 금요일 오전 9시에 온라인으로 진행되며, 전 세계로부터 신청을 받아서 선발된 인원을 중심으로 진행이 될 예정이다.
2021.11.05
조회수 2836
수리과학과 김재경 교수, 기초과학연구원 수리생물학 분야 신규 연구그룹 이끈다
우리 대학 수리과학과 김재경 교수가 3월 1일 자로 기초과학연구원(IBS)의 수리 및 계산과학 연구단의 3번째 CI(Chief Investigator)로 임명됐다. 기초과학연구원(IBS)은 생물학 분야 다양한 난제들을 수학적 관점에서 풀어낼 새로운 연구그룹을 출범시킨다. 김재경 교수 국내에서는 아직 생소한 수리생물학 분야의 유망주로 주목받는 연구자다. 생물학 시스템을 수학적으로 이해하고, 질환의 발병 원인 규명, 치료제 개발 등에 기여할 수학 모델링을 개발하고 있다. 특히, 세포 간 상호작용을 규명한 수리생물학 연구로 국제 수학계와 생물학계 모두에서 주목을 받기 시작했다. 김 교수는 생물학자들과의 공동연구를 통해 여러 생물학적 난제를 해결해, 수학자로서는 드물게 생물학 분야 국제학술지에 많은 논문을 게재했다. 수학 모델링을 기반으로 ▲안정적인 생체 리듬을 유지할 수 있는 생물학적 회로 설계(Science, 2015), ▲생체시계의 속도가 유지되는 원리를 60여 년 만에 밝힌 연구(Molecular Cell, 2015) 등이 대표적이다. 최근에는 다국적 제약회사인 화이자와 함께 신약 개발 과정에서 동물실험과 임상시험 간 차이가 발생하는 원인 및 사람마다 약효의 차이가 발생하는 원인을 규명한 성과를 올렸다(Molecular Systems Biology, 2019). 김 교수가 이끄는 의생명 수학 그룹은 불안정한 일주기 리듬과 수면 원인을 규명하는 연구를 수행할 계획이다. 수면 질환 치료의 새로운 패러다임을 제시하는 것이 목표다. 수학과 생물학의 접점에 놓인 연구를 진행하는 만큼, 기존 생명과학 분야 연구단과의 공동연구를 통한 시너지 효과도 기대된다. 김 교수는 “수면은 우리에게 너무 익숙하지만, 수면이 발생하는 메커니즘은 아직까지 명확히 규명되지 않았다”며 “의생명과학자와 협력을 통해 복잡한 수면의 근본 원리를 규명하고, 수면 질환의 원인과 치료법을 밝히는 획기적 연구를 수행할 수 있도록 최선을 다하겠다”고 말했다. 기초과학연구원(IBS)은 매년 연구단장에 준하는 선정 절차를 통해 유망한 젊은 연구자들을 CI로 선정하고 있다. CI로 선정된 연구책임자는 IBS의 PRC(Pioneer Research Center) 연구단 내 독립적인 연구그룹을 구성한다. PRC는 IBS 연구단의 한 종류로 최대 5명의 CI가 각 연구그룹을 이룰 수 있고, 5년간 그룹별로 10~15억 원의 연구비가 지원된다. 김 교수의 선임으로 IBS는 2개의 PRC 연구단(바이오분자 및 세포구조 연구단, 수리 및 계산과학 연구단) 내 4개 CI 연구그룹을 구성하게 됐다. IBS는 젊은 연구자에 대한 투자를 확대함으로서 차세대 연구리더 육성이라는 목표에 한 발 더 다가서게 됐다. 노도영 IBS 원장은 “1000년의 역사를 가진 수리생물학은 수학과 생물학이 합작해 생명현상을 분석하는 학문이지만, 국내에서 활동을 시작한 건 10년 정도 밖에 되지 않는다”며 “새로 IBS에 합류한 김재경 CI를 중심으로 수학과 생물학의 교류가 활발해지고, 수리생물학 분야가 발전하여 많은 생물학적 난제들을 해결해나가길 기대한다”고 말했다.
2021.02.26
조회수 87873
초음파를 내비게이션으로 사용하는 광학현미경 개발
생체 내부를 꿰뚫어볼 수 있는 새로운 현미경이 나왔다. 바이오 및 뇌공학과 장무석 교수 연구팀이 기초과학연구원 분자 분광학 및 동력학 연구단 최원식 부연구단장 연구팀과의 공동 연구를 통해 초음파를 이용해 기존 현미경으로 볼 수 없었던 생체 내부의 미세구조를 관찰하는 기법을 개발했다. 연구결과는 국제학술지 네이처 커뮤니케이션즈(Nature Communications)2월 5일자 온라인 판에 게재됐다. 사람의 눈은 250㎜ 떨어진 거리에 70㎜의 간격을 두고 놓인 물체를 구분할 수 있다. 이보다 작은 미세구조를 관찰하기 위해서는 광학현미경이 필요하다. 광학현미경은 눈으로 볼 수 없는 작은 미세구조를 확대해서 보여준다. 하지만 생체조직을 관찰할 때는 이야기가 달라진다. 빛이 생체 조직을 투과할 때 직진광과 산란광이라는 두 종류의 빛이 생겨난다. 직진광은 말 그대로 생체 조직의 영향 없이 직진하는 빛이며, 산란광은 생체 조직 내 세포나 세포 내 구조의 영향에 의해 진행 방향이 무작위로 굴절된 빛이다. 광학 현미경으로 생체 조직 깊은 곳을 관찰하려면 직진광에 비해 산란광이 강해져 이미지 정보가 흐려진다는 치명적인 단점이 있다. 안개 속을 볼 수 없듯, 생체 조직의 수많은 세포와 구조들이 빛을 산란시켜 이미지를 흐리게 만들기 때문이다. 반면, 초음파 영상은 태아를 감별할 수 있을 정도로 생체 내부 깊은 곳까지 이미징할 수 있지만, 해상도가 낮아 미세한 구조를 볼 수 없다는 단점이 있다. 연구진은 광학 현미경과 초음파 영상의 장점을 결합하여, 생체 내부 깊은 곳을 높은 해상도로 관찰할 수 있는 초음파 결합 광학 현미경을 개발했다. 초음파 결합 현미경은 생체 조직 내부를 잘 침투하는 초음파를 집속시킨 후, 초음파의 초점을 지나는 빛만 측정하는 방식으로 산란광의 세기를 크게 감쇄시킬 수 있다. 초음파가 광학현미경에게 관찰 경로를 알려주는 일종의 내비게이션 역할을 하는 셈이다. 초음파는 생체 조직을 응축, 팽창시켜 굴절률을 변조하는 방식으로 빛의 진행에 영향을 준다. 연구진은 이런 초음파의 특성을 응용해 초음파의 초점을 통과하는 빛만을 선택적으로 측정하는 기술을 개발하고, 이 기술을 공간 게이팅(space-gating)이라 명명했다. 초음파는 생체 내부의 ‘빛 거름망’ 역할을 하며 무작위로 산란되던 빛을 차폐한다. 공간 게이팅 기술을 통해 연구진은 산란광을 100배 이상 감쇄시키며 생체 조직 내에서 광학 이미지가 흐려지는 문제를 극복할 수 있었다. 장무석 교수는 “촘촘한 거름망을 사용하면 더 고운 가루만 남는 것처럼 초음파의 초점을 작게 할수록 산란광을 더 많이 감쇄시킬 수 있다”며 “향후 산란광을 1000~1만 배 수준까지 감쇄시켜 더 선명한 이미지를 얻게 될 것으로 기대한다”고 말했다. 연구진은 개발한 현미경을 이용해 별도의 형광 표지 없이 부화한지 30일 된 성체 제브라피시의 척추 안쪽 근육 조직 이미지를 얻는데 성공했다. 기존 기술은 제브라피시의 장기, 척추 등 내부 구조에서 산란 현상이 일어나 절단을 통해서만 내부 근육 결을 관찰할 수 있었다. 이와 달리 개발된 현미경은 자연 상태 그대로 살아있는 제브라피쉬 내부 조직을 꿰뚫어볼 수 있다. 연구진은 인체 조직에도 사용할 수 있는 공간 게이팅 기술을 구현해나갈 계획이다. 향후 현미경을 소형화하고 이미징 속도를 증가시키면, 실시간 질병 진단에도 응용할 수 있을 것으로 기대된다. 이번 연구를 이끈 최원식 부연구단장은 “초음파 결합 광학 현미경은 기존 광학 현미경의 얕은 이미징 깊이 문제를 해결하는 획기적인 기술”이라며 “공간 게이팅 기술을 더욱 발전시켜 빛의 산란 현상을 이해하고, 의생명 광학 기술 분야 활용 범위를 넓혀나갈 것”이라고 말했다.
2020.02.21
조회수 7764
급속충전 가능한 소듐이온 하이브리드 전지 개발
우리 대학 EEWS 대학원 강정구 교수 연구팀이 우수한 성능으로 급속 충전이 가능한 소듐 이온 기반의 하이브리드 전지를 개발했다. 연구팀은 질소가 올려진 메조 다공성 금속산화물 기반 전극을 이용해 높은 에너지 밀도와 고출력을 갖는 소듐 이온 에너지 저장 소자를 구현했다. 이 기술은 현재 주로 사용되는 리튬 이온 배터리보다 경제성 및 접근성 등에서 우수성을 가져 급속 충전이 필요한 휴대용 전자기기 등에 적용할 수 있을 것으로 기대된다. 강정구 교수 연구팀의 이번 연구 결과는 재료 분야 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 1월 27일 자에 게재됐다. (논문명: Synthesis of nitrogen-doped mesoporous structures from metal-organic frameworks and their utilization to enable high performances in hybrid sodium-ion energy storages) 현재 가장 높은 점유율의 상업용 배터리는 리튬 이온 물질 기반의 저장 소자로 넓은 전압 범위와 에너지 밀도가 높다는 장점이 있다. 그러나 배터리 발화 및 짧은 수명 등의 문제와 리튬 광물의 높은 가격, 부족한 희토류 원소 매장량, 느린 전기화학적 반응 속도 등의 한계 때문에 충·방전이 오래 걸리고 고출력 특성을 요구하는 전기 자동차 및 차세대 모바일 기기에 적용하기 위해 많은 개선이 필요하다. 반면 소듐 이온 기반 에너지 저장 소자는 안전하고 친환경적이며 가격이 상대적으로 매우 저렴하고 자원의 접근성이 높아 리튬 이온을 대체하면서 기존의 문제점을 극복할 수 있는 차세대 에너지 저장 소자로 주목받고 있다. 하지만 현재까지는 응용 분야에서 요구하는 성능에 미치지 못해 활용 폭이 좁다. 특히 기존의 금속산화물은 전기 전도성이 낮고 비표면적이 좁아 많은 양의 이온이 접근하는 데 한계가 있어 고성능을 구현하기에 어려움이 있었다. 연구팀은 질소가 도핑된 3차원 형태의 열린 메조 다공성 금속산화물 나노 구조체와 질소 도핑된 그래핀을 결합해 소듐 이온 기반 시스템에서 고용량과 고출력의 에너지 저장장치를 개발했다. 이번 연구에서 개발한 메조 다공성의 금속산화물 나노 구조체는 5~10나노미터 크기의 나노 입자들 사이에 다량의 열린 메조 기공이 형성돼 있고, 기공들이 나노 입자 사이에 3차원적으로 연결된 구조를 이뤄 질소 도핑 방법을 활용해 부족한 전기 전도도를 높일 수 있다. 이러한 메조 다공성 구조는 전해질이 기공을 통해 전극에 깊은 곳까지 수월한 침투가 가능하므로 전극 물질의 전체적인 표면이 에너지 저장에 활용돼, 높은 용량의 에너지 저장이 가능함과 동시에 충·방전 시간 역시 줄일 수 있다. 연구팀은 질소가 도핑된 다공성 금속산화물과 그래핀을 각각 음극과 양극에 각각 적용해 고성능의 소듐 이온 하이브리드 전지를 구현했다. 이 하이브리드 저장 소자는 소듐 기반의 배터리에 비해 같은 수준의 저장용량을 유지하면서 300배 이상 빠른 출력 밀도를 보이며, 수십 초 내 급속 충전이 가능해 소형의 휴대용 전자기기 등에 활용 가능할 것으로 기대된다. 강 교수는 “소듐 기반이기 때문에 저가 제작이 가능하고 활용성이 뛰어나 기존보다 높은 에너지 밀도를 갖는 에너지 저장장치의 상용화에 기여할 것이다”라며 “저전력 충전 시스템을 통해 급속 충전이 가능해 전기자동차와 휴대 가능한 전자 기기에 적용할 수 있을 것이다”라고 말했다. 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반 미래소재연구단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 소듐 이온 하이브리드 에너지 저장 장치의 구성 및 저장 메커니즘을 나타낸 모식도 그림2. 소듐 이온 하이브리드 저장 장치의 성능과 태양광 모듈을 활용한 실제 구동 이미지
2020.02.06
조회수 6974
김희탁 김상욱 교수, 멤브레인 필요 없는 새로운 물 기반 전지 개발
우리 대학 생명화학공학과 김희탁 교수와 신소재공학과 김상욱 교수 공동 연구팀이 전기화학 소자의 핵심 부품인 멤브레인을 사용하지 않고도 에너지 효율 80% 이상을 유지하면서 1천 번 이상 구동되는 새로운 개념의 물 기반 아연-브롬 전지를 개발했다. 이번 연구를 통해 일본, 미국의 수입에 의존해 온 다공성 분리막이나 불소계 이온교환막을 사용하지 않는 기술로, 해당 기술에 대한 대외 의존도를 낮출 수 있을 것으로 기대된다. 이주혁 박사과정과 변예린 박사후연구원이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced materials)’12월 27일자 표지논문에 선정됐다.(논문명: High-Energy Efficiency Membraneless Flowless Zn-Br Battery: Utilizing the Electrochemical-Chemical growth of Polybromides) 최근 태양광, 풍력 등 신재생에너지의 불안정한 전력 공급을 해결하기 위해 전기 에너지를 미리 저장했다가 필요한 시간대에 사용할 수 있는 에너지저장장치(ESS)가 주목받고 있다. 현재는 리튬이온전지가 에너지저장장치용 이차전지로 사용되고 있으나 발화성 유기 전해액 및 리튬계 소재로 인한 발화의 위험성을 지니고 있다. 지난 2017년부터 올해 10월까지 총 21건의 에너지저장장치 화재사고가 발생했으며, 전체 에너지저장장치 시설 1천 490개 중 35%인 522개의 가동이 중단되기도 했다. 이러한 이유로 물을 전해질로 사용한 비 발화성 물 기반 이차전지 기술이 에너지저장장치용 차세대 이차전지로 주목받고 있다. 특히 다양한 물 기반 전지 기술 중 아연과 브롬을 활물질로 사용하는 아연-브롬 레독스 흐름 전지는 높은 구동 전압 및 높은 에너지 밀도를 가져 1970년대부터 지속해서 개발돼왔다. 그러나 아연-브롬 레독스 전지는 브롬이 아연과 반응해 전지 수명을 단축시키는 문제로 인해 상용화가 지연됐다. 이러한 반응을 억제하기 위해 펌프를 이용해 브롬이 함유된 전해질을 외부 탱크로 이송해 왔으나, 이는 펌프 구동을 위한 에너지 소모 및 브롬에 의한 외부 배관이 부식되는 문제를 동반한다. 브롬을 포획하는 전해질 첨가제 및 브롬의 이동을 차단할 수 있는 멤브레인에 대한 개발이 진행됐으나, 가격증가 및 출력 저하의 문제점이 발생했다. 김희탁 교수와 김상욱 교수 공동 연구팀은 일본, 미국에 의존하던 값비싼 멤브레인 소재와 어떠한 첨가제도 사용하지 않는 새로운 물 기반 아연-브롬 전지를 개발했다. 전해질 내의 이온과 외부 전기회로 사이의 전자를 주고받는 한정된 역할만 수행하던 전극의 기능에 멤브레인과 첨가제가 담당하던 브롬을 포획할 수 있는 기능을 추가했다. 질소가 삽입된 미세기공 구조를 전극 표면에 도입해 미세기공 내부에서 비극성 브롬을 극성 폴리브롬화물로 전환한 뒤, 질소 도핑 카본과 폴리브롬화물간 쌍극자-쌍극자 상호 작용을 통해 폴리브롬화물을 기공 내부에 고정했다. 이 기술은 멤브레인의 기능을 전극이 담당하므로 고가의 멤브레인이 필요 없으며, 브롬을 외부 탱크가 아닌 전극 내부에 저장함으로써 펌프 및 배관을 제거할 수 있어 가격 저감 및 에너지 효율을 증대했다. 연구팀이 개발한 다기능성 전극을 이용한 멤브레인을 사용하지 않는 물 기반의 아연-브롬 전지는 리튬-이온 전지보다 45배 저렴할 뿐 아니라, 에너지 효율 83% 이상을 보이며 1천 사이클 이상 운전이 가능하다. 김상욱 교수는 “차세대 물 기반 전지의 한계를 극복하기 위한 나노소재 기술을 이용한 새로운 해결책을 제시했다”라고 말했다. 김희탁 교수는 “이번 연구를 통해 기존보다 안전하고 경제적인 에너지저장장치의 개발이 가속화되기를 기대한다”라고 말했다. 이번 연구는 KAIST 나노융합연구소, 에너지클라우드 사업단, 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단의 지원을 받아 수행됐다. 그림 1. 브롬 활물질을 전극내부에서 폴리브롬화물로 전환하여 저장하는 다기능성 전극의 메커니즘의 모식도와 멤브레인을 장착하지 않고 구동되는 전지의 실제 모습 그림 2. 질소가 도핑된 미세기공이 코팅된 다기능성 전극의 제조 과정
2020.01.08
조회수 10452
AI 플래그십 오픈 워크숍 2019 개최
이용훈·김종환·김대식·정송·황성주·김준모 등 KAIST를 대표하는 스타 교수들과 한보형 서울대 교수, 문태섭 성균관대 교수 등 우리나라에서 내로라하는 AI 관련 분야 대표학자 연구팀에서 그동안 개발해 온 연구성과와 기술이 한 자리에서 공개된다. 우리 대학은 15일 오후 1시부터 판교 테크노밸리 글로벌R&D센터 대강당에서 `AI 거대 물결의 파고를 넘을 산학기술 교류'를 주제로 300여 명의 기업인과 인공지능 연구자들이 참여하는 `AI 플래그십 공개 워크숍(Flagship Open Workshop) 2019' 행사를 개최한다고 11일 밝혔다. KAIST 김종환 교수는“4차산업혁명 시대 핵심산업으로 부상한 AI 산업 발전을 위해 관련 기업들과 최신의 정보 및 기술을 공유하고 기술 이전과 상담창구를 통한 구체적인 사업화 방향을 모색하기 위해 이번 공개 워크숍을 마련했다”고 개최배경을 설명했다. 이번 워크숍은 2016년부터 산·학·연간 교류와 협력 연구를 통해 개발된 20개의 최신 AI 선도기술과 연구성과를 발표하는 ▲워크숍, 그리고 개발자와의 직접적인 교류를 통해 기술지원 상담을 진행하는 ▲포스터 세션 기술 교류 등 실무 프로그램 위주로 나눠 진행된다. 이 행사는 KAIST 기계지능 및 로봇공학 다기관 지원연구단(단장 김종환 교수·KAIST 전기및전자공학과)이 주관하고 대한민국 AI클러스터 포럼·성남산업진흥원·성남-KAIST 차세대 ICT 연구센터·KAIST 창업원 판교센터·판교미래포럼이 후원한다. 이날 워크숍에서는 4차산업혁명의 핵심동력인 AI 기술 현황을 알아보고 산업화 방향에 대한 심도 깊은 논의를 위해 ▲발달학습(Development Learning) 분야에서 김종환·김대식(이상 전기및전자공학부), 황성주(AI 대학원) 교수 연구팀 등 6개 연구진의 관련 기술을 비롯해 ▲신개념 강화학습(Reinforcement Learning) 분야에서 이상완(바이오및뇌공학과), 성영철·장동의(전기및전자공학부) 교수 연구팀 등 5개 연구진의 기술이 발표된다. 또 ▲평생학습(Lifelong Learning) 및 최적화 분야에서 신진우·양은호·김준모(이상 AI 대학원), 정세영·이용훈(이상 전기및전자공학부) 교수 등 5개 연구팀과 ▲차세대 신경망 기술 분야의 문재균·명현·박경수·유창동 교수팀 등 4개 연구팀 등 모두 4개의 분야에서 총 20개의 AI 플래그십 과제 기술이 공개될 예정이다. 이밖에 AI 기술 이전 설명회 및 포스터 세션 운영을 통해 개발자와 기업인이 직접 만나 교류하는 기술지원 상담 프로그램도 운영될 계획이다. 특히 우수 기술을 소개하는 자리에서는 시각장애인·로봇·산업·안전 VR에 활용이 가능한 세계 최초의 기술인‘3차원 환경정보 획득기술 3D Scene Graph’와 물리적인 키보드가 필요 없는 가상 키보드로 해외 언론에서 큰 주목을 받은 `I-Keyboard' 혁신 기술이 소개된다. 이와 함께, 식재료를 입력하면 AI가 요리 종류와 조리법을 추천해주는 생활 밀착형 최신기술도 함께 소개된다. 김형철 과기정통부 소프트웨어·AI PM은 "4차산업혁명의 핵심적 역할을 담당하는 KAIST와 판교밸리 입주기업 간 상호 긴밀한 협력은 우리나라 AI 산업이 한 단계 더 발전하는 큰 동력이 될 것”이라고 이번 워크숍에 대한 기대감을 보였다. □ 그림 설명 그림1. AI 플래그십 공개 워크숍(Flagship Open Workshop) 2019 프로그램 소개
2019.11.11
조회수 9475
스마트과학관 전시연구단 성과 발표
우리 대학은 스마트과학관 전시연구단(단장 전산학부 한동수) 사업의 일환으로 동영상이 연계된 AR 사진 제작 기법·과학 청진기·로봇 안내 시스템 등의 기술을 11월 7일과 8일 대전 국립중앙과학관(관장 정병선)에서 전시했다. KAIST 지능형서비스 연구실(전산학부 한동수 교수), 원더랩(산업디자인학과 이우훈 교수), HCI 연구실(전산학부 이기혁 교수), 컴퓨터 그래픽스 및 가시화 연구실(전산학부 박진아 교수) 등이 참여하는 이번 행사에는 전시콘텐츠·전시운영기술·전시기반기술 분야에서 15개의 연구팀이 성과물을 선보였다. `VR/AR/홀로그램 과학문화 콘텐츠', `O2O 기반 실감형 버츄얼 과학관', `동영상이 연계된 AR 사진 제작 기법', `과학문화전시 큐레이션 기술과 오감자극 전시 디자인 기술' 등이 출품되어 8일에 각 연구팀의 발표가 진행됐다. 한국연구재단에서 지원하는 과학문화전시서비스 역량강화지원사업은 전국 과학관·박물관·미술관 등에 실내 위치 인식 기술·증강현실(AR)·가상현실(VR)·사물인터넷(IoT)·인공지능(AI) 등의 최신 IT 기술을 접목한 서비스를 도입해 관람객을 위한 새로운 전시 체계를 개발하는 연구를 수행하고 있다. 참여 연구팀은 각 지역의 과학관과의 협업을 바탕으로 일상생활이 곧 실험실이 되는 `리빙랩(Living Lab, 생활실험실)을 운영하며 연구와 개발을 진행 중이다. 한동수 스마트과학관 전시연구단장은 "국제과학심포지움과 함께 진행되는이번 전시는 체험하는 과학·실감하는 과학·상상을 현실로 만드는 과학을 목표로 진행하고 있다ˮ고 강조했다. 이어, 한 단장은 "실내 위치인식·로봇·인간/컴퓨터 상호작용(Human-computer interaction)·AR/VR과 같은 최신 IT 기술을 접목시킨 연구팀의 땀과 노력이 관람객들의 공감을 얻을 수 있기를 기대한다.”고 밝혔다.
2019.11.08
조회수 7324
허원도 교수, 항체를 빛으로 활성화 시키는 항체광유전학 기술 개발
〈 (좌측부터) 허원도 KAIST 생명과학과 교수, 유다슬이 KAIST 생명과학과 석박통학과정〉 빛으로 면역 반응을 조절할 수 있는 길이 열렸다. 우리대학 생명과학과 허원도 교수 연구팀은 항체를 빛으로 활성화시켜 특정 단백질을 억제하도록 만드는 광유전학 광유전학(Optogenetics) 기술을 개발하였다. 감염이나 질병으로부터 우리 몸을 보호하는 방어 체계를 면역이라고 한다. 항체는 Y자 형태의 단백질로, 면역에서 가장 중요한 역할을 하는 물질 중 하나다. 각설탕보다 가루설탕이 물에 더 잘 녹는 것처럼, 긴 항체보다 짧은 항체 조각이 세포 내에서 더 잘 녹는다. 이런 특징 때문에 항체 조각들은 오래전부터 생물학적 도구나 의약품 재료로 사용되어왔다. 연구진은 빛을 이용해 항체의 활성화를 조절하는 옵토바디(Optobody, Optogenetically activated intracellular antibody) 기술을 개발하였다. 녹색형광단백질(GFP)을 인지하는 가장 작은 항체 조각인 ‘GFP 나노바디’에 청색광을 쬐어주면 재결합되어 활성화됨을 관찰하고, 활성화된 항체 조각이 세포 이동에 관여하는 단백질을 억제함을 확인하였다. 또한 옵토바디 기술을 GFP 나노바디 이외에도 기존에 널리 사용 중인 항체 조각들에 다양하게 적용하였다. 〈 항체 조각과 Optobody 모식도〉 또한 연구진은 화학물질을 이용해 항체의 활성화를 조절하는 케모바디(Chemobody, Chemically activated intracellular antibody) 기술을 추가로 개발하였다. 둘로 쪼개져 있던 항체 조각을 라파마이신(Rapamysin) 으로 재결합시켜 활성화됨을 확인하고, 활성화된 항체 조각이 세포 이동에 관여하는 단백질을 억제하는 것을 관찰하였다. 이번 연구는 항체광유전학 기술을 개발하여, 항체 조각이 쪼개지면 비활성화되고 재결합하면 활성화된다는 것을 밝혔다는 데 의의가 있다. 각각의 단백질은 자신만의 기능을 갖는다. 활성화된 항체가 특정 단백질을 억제했을 때 감소되는 기능을 추적하면, 해당 단백질의 기능을 알 수 있다. 또한 활성화된 항체를 단백질의 실시간 활성 및 이동을 관찰하는 바이오센서로도 이용할 수 있다. 기존의 항체 활성을 조절하는 방법은 화학물질을 이용해 항체의 발현을 유도하는 방법에 국한되어 있었으며, 항체 활성을 정밀하게 조절하기 어려웠다. 이번 연구로 빛을 이용하여 항체 활성을 빠른 시간 내에 시공간적으로 세밀하게 조절하는 것이 가능해졌다. 향후 이 기술은 항체광유전학 분야 및 항체의약품에 크게 응용될 것으로 보인다. 허원도 교수는 “이번 연구로 개발한 항체광유전학기술은 빛으로 세포 내 단백질의 기능을 제어하는 연구에 적용할 수 있고, 더 나아가 앞으로 다양한 질병을 치료하는 항체개발과 차세대 면역항암제 개발에 많이 활용되리라 기대한다”고 말했다. 이번 연구는 기초과학연구원(IBS, 원장 대행 김영덕) 인지 및 사회성 연구단(단장 신희섭, 이창준) 산하에서 시행되었으며 연구결과는 세계적 학술지 네이처 메소드(Nature Methods, IF 28.467)에 10월 15일 0시(한국시간)에 게재되었다.
2019.10.15
조회수 9410
최성율 교수, 뉴로모픽 칩의 시냅스 구현
〈 최성율 교수 〉 우리 대학 전기및전자공학부 최성율 교수 연구팀이 멤리스터(Memristor) 소자의 구동 방식을 아날로그 형태로 변화해 뉴로모픽 칩의 시냅스로 활용할 수 있는 기술을 개발했다. 이 기술을 통해 기존의 디지털 비휘발성 메모리로만 이용되던 멤리스터를 아날로그 형태로 활용함으로써 인간의 뇌를 모사한 인공지능 컴퓨팅 칩인 뉴로모픽 칩의 상용화에 기여할 수 있을 것으로 기대된다. 장병철 박사(현 삼성전자 연구원), 김성규 박사(현 노스웨스턴대학), 양상윤 연구교수가 공동 1 저자로 참여하고 美 노스웨스턴 대학, KAIST 임성갑 교수가 공동으로 수행한 이번 연구는 나노과학 분야 국제 학술지 ‘나노 레터스 (Nano Letters)’ 1월 4일 온라인판에 게재됐다. 사람 뇌를 닮은 반도체로 알려진 뉴로모픽 칩은 기존의 반도체 칩이 갖는 전력 확보 문제를 해결할 수 있고 데이터 처리 과정을 통합할 수 있어 차세대 기술로 주목받고 있다. 멤리스터는 메모리와 레지스터의 합성어로, 메모리와 프로세스가 통합된 기능을 수행할 수 있다. 특히 뉴로모픽 칩 내부에 물리적 인공신경망을 가장 효과적으로 구현할 수 있는 크로스바 어레이(crossbar array) 제작에 최적인 소자로 알려져 있다. 물리적 인공신경망은 뉴런 회로와 이들의 연결부인 시냅스 소자로 구성되는데 뉴로모픽 칩 기반의 인공지능 연산을 수행할 때 각 시냅스 소자에서는 뉴런 간의 연결 강도를 나타내는 전도도 가중치가 아날로그 데이터로 저장 및 갱신돼야 한다. 그러나 기존 멤리스터들은 대부분 비휘발성 메모리 구현에 적합한 디지털의 특성을 가져 아날로그 방식의 구동에 한계가 있었고, 이로 인해 시냅스 소자로 응용하기 어려웠다. 최 교수 연구팀은 플라스틱 기판 위에 고분자 소재 기반의 유연 멤리스터를 제작하면서 소자 내부에 형성되는 전도성 금속 필라멘트 크기를 금속 원자 수준으로 얇게 조절하면 멤리스터의 동작이 디지털에서 아날로그 방식으로 변화하는 것을 발견했다. 연구팀은 이러한 현상을 이용해 멤리스터의 전도도 가중치를 연속적, 선형적으로 갱신할 수 있고 구부림 등의 기계적 변형 상태에서도 정상 동작하는 유연 멤리스터 시냅스 소자를 구현했다. 유연 멤리스터 시냅스로 구성된 인공신경망은 학습을 통해 사람의 얼굴을 효과적으로 인식해 분류할 수 있고 손상된 얼굴 이미지도 인식할 수 있음을 확인했다. 이를 통해 얼굴, 숫자, 사물 등의 인식을 효율적으로 수행할 수 있는 유연 뉴로모픽 칩 개발의 가능성을 확보했다. 최 교수는 “멤리스터 소자의 구동 방식이 디지털에서 아날로그로 변화되는 주요 원리를 밝힘으로써 다양한 멤리스터 소자들을 디지털 메모리 또는 시냅스 소자로 응용할 수 있는 길을 열었다”라며 “고성능 뉴로모픽 칩 개발의 가속화에 기여할 수 있을 것이다” 라고 말했다. 이번 연구는 과학기술정보통신부 한국연구재단 글로벌프론티어사업 중 (재)나노기판소프트일렉트로닉스 연구단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 플라스틱 기판 위에 제작된 유연 멤리스터 시냅스 소자 모식도
2019.02.11
조회수 6543
강경인 책임연구원, 한국연구재단 우주기술 분야 연구단장 선임
우리학교 인공위성연구소 강경인 책임연구원(51)이 2일 한국연구재단 국책연구본부 우주기술 분야 단장으로 선임됐다. 임기는 2019년 1월부터 2020년 12월까지 2년이다. 강경인 단장은 경북대 물리학과를 졸업한 후 우리학교에서 각각 통신공학 석사와 전기 및 전가공학 박사학위를 취득하고 유럽우주기술연구소 연구원을 거쳐 학교 인공위성연구소 책임연구원으로 일해 왔다.
2019.01.02
조회수 5134
권동수 교수, 제13회 대한민국 로봇대상 대통령표창 수상
우리대학 미래의료로봇연구단 소장 권동수 교수(이지엔도서지컬 대표이사)가 제13회 대한민국 로봇대상 시상식 및 로봇인의 밤에서 대통령 표창을 수상했다. 권동수 교수는 국내 최초 개발된 유연수술로봇 ‘케이-플렉스(K-FLEX)’를 통해 국제적으로 저명한 의료로봇학회인 햄린 심포지엄(Hamlyn Symposium) 2018의 ‘서지컬 로봇 챌린지’에서 베스트 어플리케이션 어워드와 오버롤 위너 수상해 로봇 분야에서 우리 나라의 위상을 높인 공을 인정받았다. 국내 최초로 의료용 로봇연구를 시작한 권 교수 연구팀은 연구결과를 제품으로 상용화시켜 사회에 공헌하고자 ‘이지엔도서지컬’을 직접 설립했다. 연구팀의 유연한 형태의 의료로봇은 기존 수술에서 접근할 수 없던 영역까지 쉽게 수술할 수 있고, 의사에게는 직관적이고 편리한 조작을 제공하며 환자들에게는 절개를 최소화해 회복을 빠르게 한다. 권 교수 “표창의 영광을 텔레로보틱스 앤드 컨트롤 랩(Telerobotics and Control Lab.(TCL)) 연구실의 졸업생과 재학생에게 돌리고 싶다”라며 “세계가 주목할 수 있는 글로벌 의료로봇기업이 될 수 있도록 힘쓰겠다”라고 소감을 밝혔다.
2018.12.21
조회수 5605
엄상일·차미영·김호민 교수, 기초과학연구원(IBS) CI로 선정돼
〈기초과학연구원 CI로 선정된 엄상일·차미영·김호민 교수(왼쪽부터)〉 우리대학 엄상일(42세)·차미영(39세)·김호민(40세) 교수가 최근 기초과학연구원이 출범한 2개 연구단의 연구책임자격인 CI(Chief Investigator)에 선정됐다. 이들은 새로운 형태의 연구단인 'PRC'(Pioneer Research Center)에서 독립적인 연구 그룹을 구성한다. PRC는 IBS 연구단의 한 종류로, 최대 다섯 명의 CI가 각 연구그룹을 이끌 수 있는데 그룹별로 5년간 10∼15억 원의 연구비가 지원된다. 엄상일·차미영 교수는 수리 및 계산과학 연구단 내의 이산수학 그룹과 데이터 사이언스 연구그룹을 각각 이끈다. 엄상일 교수는 한국인 전공자가 많지 않은 그래프 이론 분야에서 국제적 인지도를 쌓아왔다. 그래프 이론은 컴퓨터와 더불어 발전한 수학의 연구 분야다. 산업 현장에 필요한 효율적인 일정 짜기, 일상에서 흔히 사용되는 내비게이션 최단거리 알고리즘 등에 활용한다. 차미영 교수는 아시아 최초로 페이스북 데이터사이언스팀 초빙교수로 근무한 경력을 갖고 있다. 피인용 지수가 1만1천회(구글 집계 기준)를 넘어서는 등 인지도도 높다. 차 교수는 "빅데이터에 기반을 둔 가짜 뉴스 탐지를 비롯해 중요한 미래예측기술을 개발할 방침"이라고 말했다. 이밖에 김호민 교수는 바이오 분자 및 세포구조 연구단 안에서 연구를 진행한다. 구조 생물학 분야에서 혁신적 성과를 창출해온 김 교수는 단백질 구조와 작동원리를 밝혀 다양한 치료제 후보 물질을 개발하는 데 도전할 방침이다. 2개 연구단이 새롭게 출범함으로써 IBS 연구단은 모두 30개(본원 7개·캠퍼스 14개·외부 9개)로 늘어나게 됐다. 분야별로는 수학 2개, 물리 9개, 화학 6개, 생명과학 7개, 지구과학 1개, 융합 5개 등이다.
2018.12.03
조회수 7185
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
>
다음 페이지
>>
마지막 페이지 6