리튬메탈전지로 12분 충전·800km 주행 실현
우리 연구진이 리튬메탈전지의 난제였던 덴드라이트 문제를 해결하며 전기차 배터리 기술의 새 시대를 열었다. 기존 리튬이온전지가 최대 600km 주행에 머물렀다면, 새 전지는 1회 충전 800km, 누적 30만 km 이상 수명, 12분 초고속 충전을 가능하게 했다.
우리 대학 생명화학공학과 김희탁 교수와 LG에너지솔루션이 공동으로 진행하고 있는 프론티어 연구소(Frontier Research Laboratory, 이하 FRL) 연구팀이 ‘리튬메탈전지(Lithium metal battery)’의 성능을 획기적으로 늘릴 수 있는 ‘응집 억제형 신규 액체 전해액’ 원천기술을 개발했다고 4일 밝혔다.
리튬메탈전지는 리튬이온 전지(Lithium-ion battery)의 핵심 재료 중 하나인 흑연 음극을 리튬메탈(Lithium metal)로 대체하는 것으로, 리튬메탈은 여전히 전지의 수명과 안정성 확보를 어렵게 하는‘덴드라이트(Dendrite)’라는 기술적 난제가 있다. 덴드라이트는 배터리 충전 시 음극 표면에 형성되는 나뭇가지 모양의 리튬 결정체로 배터리 성능과 안정성에 악영향을 미친다.
이 덴드라이트 현상은 급속 충전 시 더욱 심각하게 발생하며 전지의 내부 단락(short-circuit)을 유발하기 때문에, 아직 급속 충전 조건에서 재충전할 수 있는 리튬메탈전지의 기술은 구현이 매우 어려웠다.
FRL 공동연구팀은 리튬메탈이 급속 충전 시 덴드라이트 형성의 근본적 원인이 리튬메탈 표면에서 불균일한 계면 응집반응 때문임을 규명하고, 이 문제를 해결할 수 있는 ‘응집 억제형 신규 액체 전해액’을 개발했다.
신규 액체 전해액은 리튬 이온(Li⁺)과의 결합력이 약한 음이온 구조를 활용해 리튬 계면 상의 불균일성을 최소화하며, 급속 충전 시에도 덴드라이트 성장을 효과적으로 억제하는 특징이 있다.
이 기술은 높은 에너지밀도(Energy Density)를 유지하면서도, 기존의 리튬메탈전지에서 한계로 지적되던 느린 충전 속도를 극복해, 긴 주행거리를 확보하면서도 빠른 충전에서도 안정적인 작동이 가능하다는 특징이 있다.
LG에너지솔루션의 CTO 김제영 전무는 “LG에너지솔루션과 KAIST가 FRL을 통해 이어온 지난 4년간의 협력이 유의미한 성과를 창출하고 있다”며 “앞으로도 산학 협력을 더욱 강화해 기술적인 난제를 해결하고 차세대 배터리의 분야에서도 최고의 성과를 창출해 나가겠다”고 말했다.
생명화학공학과 김희탁 교수는 “이번 연구는 계면 구조에 대한 이해를 통해 리튬메탈전지의 기술적 난제를 돌파하는 핵심 토대가 됐고 리튬메탈전지가 전기차에 도입되기 위한 가장 큰 장벽을 넘어섰다”라고 평가했다.
이번 연구는 KAIST 생명화학공학과 권혁진 박사가 제1 저자로 세계적인 학술지 ‘네이처 에너지(Nature Energy)’에 9월 3일 자 게재됐다.
※ 네이처 에너지(Nature Energy) : 2024년 Clarivate Analytics가 발표한 Journal impact factor에서 에너지 분야 182개 학술지 중 1위, 총 2만 1천여 개 학술지 중 23위를 기록
※ 논문명 : Covariance of interphasic properties and fast chargeability of energy-dense lithium metal batteries
※ DOI: 10.1038/s41560-025-01838-1
한편, 이번 연구는 KAIST와 LG에너지솔루션이 차세대 리튬메탈전지 기술 개발을 위해 2021년 설립한 프론티어 연구소(Frontier Research Laboratory, FRL, 연구소장 김희탁 교수)를 통해 이뤄졌다.
2025 Green Growth & Sustainability Workshop 성료
우리 대학은 8월 22일(금) 문지캠퍼스에서 「2025 KAIST Green Growth & Sustainability Workshop」을 성공적으로 개최했다고 밝혔다. KAIST 녹색성장지속가능대학원(GGGS)이 주관한 이번 워크숍은 KAIST 재학생들의 기후변화 대응 및 지속가능성 연구 성과를 공유하고, 탄소중립과 녹색성장을 지향하는 교내 다양한 학문 간 융합연구를 촉진하며, 학술교류를 활성화하기 위해 올해 처음으로 마련됐다.
오전 행사는 우리 대학 이광형 총장의 축사로 문을 열었으며, 오후에는 김명자 우리 대학 이사장이 ‘기후 다중위기 시대의 KAIST’를 주제로 기조강연을 진행했다. 김 이사장은 지구 역사 및 인류 문명·산업 발전사를 되짚으며, 인류가 기후변화와 팬데믹 등 미래를 위협하는 여러 요소들이 서로 얽힌 ‘기후 다중위기(poly-crisis)’ 상황에 처해 있음을 언급했다. 이어, 기후 다중위기가 심화되는 현 시점에서 과학기술과 KAIST의 역할을 재조명하고, 녹색성장과 지속가능성을 중심으로 한 혁신적인 융합연구와 과학기술을 사회적 합의 및 글로벌 거버넌스로 연결하는 리더십의 중요성을 강조했다.
8월 22일 하루 동안 기후기술과 에너지전환, 녹색산업정책, 기후금융과 ESG, 저탄소 인프라 및 모빌리티 혁신, 탈탄소 시나리오와 기후AI 등을 주제로 한 총 8개의 세션에서 각 4편씩, 총 32편의 연구가 발표되었으며, 이에 대한 심도 있는 토론이 이어졌다.
김지효 교수와 김하나 교수가 공동좌장으로 진행한 오전 분과세션 1A, 2A에서는 ▲CSRD 체계 하 ESG 보고서의 비정상적 공시 양상 분석(Philippine C. M. Sarre, GGGS), ▲솔루션 저널리즘에서의 신뢰 형성이 기후 행동으로 이어지는 과정 분석(조혜원, 문술미래전략대학원), ▲왜 친환경 특허는 더 자주 실패하는가? : 갱신 패턴 비교에 따른 실증적 증거(임채은, GGGS), ▲한국 철강 산업 탈탄소화가 국내외 공급망에 미치는 환경·사회·경제적 영향 평가(성재욱, GGGS) 등이 다뤄졌다.
명재욱 교수와 최경록 교수가 진행한 오전 분과세션 1B, 2B에서는 ▲제로갭 셀에서의 산성 CO2 전기환원 효율 개선을 위한 시스템 수준 공정 전략(김지원, GGGS), ▲대사공학을 통한 내산성 강화 Mannheimia succiniciproducens 균주의 숙신산 생산 강화(김민호, 생명화학공학과), ▲매립 침출수에서 젖산 분해 박테리아 분리 및 정량적 평가(문호성, GGGS), ▲아민계 고분자 용액을 활용한 시멘트계 재료 내부 탄산화 양생 기술 개발(한지수, 건설및환경공학과) 등이 발표됐다.
김형철 교수와 믹전해원 교수가 진행한 오후 분과세션 3A, 4A에서는 ▲한국 배출권거래제에서 기업들의 전략적 선택 분석(김희연, GGGS), ▲원자력·재생에너지 동시 3배 확대 시나리오의 타당성 평가(안지석, 기술경영학부), ▲머신러닝을 활용한 통합평가모형 에뮬레이션(Yen Shin, 융합인재학부교양융합대학원), ▲녹색채권 기반 DICE 모형 확장 연구(조은아, GGGS) 등이 논의됐다.
최하연 교수와 한동훈 교수가 진행한 오후 분과세션 3B, 4B에서는 ▲대한민국 지방정부 차원의 기후정책 종합 데이터셋 구축 (하지흔, 융합인재학부), ▲도시 모빌리티 시스템 내 초소형 전기차: 지속가능한 확산을 위한 시공간·환경 분석(김에릭민, GGGS), ▲TRIPy: 방류·온도·수질 적용이 가능한 확장형 하천 경로 모델(박세린, GGGS), ▲SOFC 음극용 고성능 스피넬–GDC 복합 나노섬유 전극 개발(문영현, GGGS) 등이 발표됐다.
시상식에서는 최우수논문상, 최우수발표상, 우수연구상, 혁신연구상 등에 대한 시상이 이뤄졌다.
최우수논문상: ▲이제건, 생명화학공학과(바이오-전기 하이브리드 시스템을 이용한 이산화탄소의 직접 젖산 전환)
최우수발표상: ▲김정원, 기술경영학부(커뮤니티 이익과 함께하는 탄소중립: 텍사스 매립가스 회수의 사회경제적 효과)
우수연구상: ▲Ahmed SS Mahmoud, 기술경영학부(자율주행차 보급이 교통·에너지·배출에 미치는 영향을 통합평가모형으로 분석), ▲남지영, 녹색성장지속가능대학원(기후, 도시 형태, 도시 이동성: 연령대에 따른 관계의 차이), ▲김창현, 기술경영학부(환경 규제가 다국적 기업 운영에 미치는 ESG 리스크 변화), ▲이홍관, 녹색성장지속가능대학원(지방 정부 에너지 정책 혼합에 따른 기업 탄소배출 추정: 비용 기반 접근)
혁신연구상: ▲정윤경, 녹색성장지속가능대학원(도로 포장 관리 시스템에서의 자율주행 트럭 최적 경로 설계), ▲김민규, GGGS(공급망 구조 변화 분석을 위한 입력-산출 그래프 신경망 프레임워크 개발), ▲이현지, 녹색성장지속가능대학원(ESG에서의 공약과 실제 이행 간의 불일치), ▲김찬미, 녹색성장지속가능대학원(중앙정부와 지방정부 간 기후정책 담론의 다층적 분석: 텍스트 마이닝 기반 접근)
수상자들은 기후위기 대응과 지속가능성 향상을 위한 창의적이고 실질적인 연구 성과로 높은 평가를 받았다.
GGGS 5기 석사과정 오규빈 학생은 “이번 워크숍을 통해 다양한 연구자들의 관점을 접하며 제 연구의 방향성을 새롭게 모색할 수 있었다”며 “앞으로도 기후위기 대응과 지속가능성 증진을 위한 학제적 협력 연구에 적극 참여하고 싶다”고 소감을 전했다.
엄지용 녹색성장지속가능대학원장은 “이번 워크숍은 KAIST 내 과학기술, 정책, 경영 분야의 다양한 연구자들이 한자리에 모여 기후위기 대응과 지속가능성을 위한 퍼즐을 함께 맞춰가는 융합연구를 선보인 첫 무대”라며, “심화되는 기후위기 속에서 KAIST가 맡은 사명을 범 캠퍼스적 협력을 통해 체계적으로 실행하기 시작했다는 점에서 매우 뜻깊게 생각한다”고 말했다.
그린수소 생산 촉매 수명 예측 세계 첫 성공
태양광, 풍력 등 재생에너지를 활용한 수소 생산 시스템에서는 에너지원의 특성상 전력 공급이 일정하지 않아, 수전해 장치*의 부하가 지속적으로 변화한다. KAIST 연구진이 이런 전력 부하의 변동이 불가피한 그린 수소 생산 환경에서, 전기 에너지 효율을 높이고 낮은 전압에서도 수소 생산 효율을 높이는 촉매의 열화(성능 저하)를 정량적으로 진단할 수 있는 세계 최초의 방법론을 제시했다.
*수전해 정치(Water Electrolyzer): 물을 전기 분해하여 수소와 산소를 생산하는 장치로 탄소 배출 없이 수소를 생산할 수 있어 그린 수소 생산의 핵심 기술로 주목받고 있음
우리 대학 생명화학공학과 정동영 교수 연구팀이 수전해 시스템에서 촉매의 실질적인 수명을 예측할 수 있는 새로운 평가 지표인 ‘운영 안정성 지수’를 개발했다.
연구팀은 수전해 시스템이 꺼지거나 낮은 부하로 운전될 때 발생할 수 있는 촉매 및 지지체의 열화 현상 촉매의 손상이나 성능 저하 현상을 규명하고, 이를 정량화할 수 있는 새로운 평가 지표인 ‘운영 안정성 지수(Operational Stability Factor, OSF)’를 제안했다.
운영 안정성 지수는 수전해 장비가 반복적으로 작동 및 정지(on/off)하는 과정에서 발생하는 촉매 열화 정도를 수치로 반영함으로써, 실제 운전 조건에서의 내구수명을 보다 정확하게 예측할 수 있도록 설계되었다.
예를 들어, 운영 안정성 지수가 100%이면 부하 변동 중에도 촉매가 전혀 손상되지 않는다는 뜻이고, 99%이면 매번 시스템이 꺼질 때마다 1%씩 촉매가 손상된다는 의미다.
향후 이 지표를 통해 내구성을 고려한 운전 조건의 최적화를 가능해지며, 장수명 수전해 시스템 운영 전략 수립에 중요한 기준으로 활용될 수 있다.
정동영 교수는 “운영 안정성 지수(OSF)는 수전해 촉매의 장기 수명을 수치로 예측할 수 있는 강력한 평가 기준으로, 향후 내구성 진단을 위한 국제 표준으로 발전할 가능성이 크다”고 밝혔다.
해당 논문은 생명화학공학과 박사과정 김진엽 연구원이 제1 저자로 에너지 분야 최고 권위지 중 하나인 ‘에이시에스 에너지 레터스(ACS Energy Letters, IF=19.3)’지에 5월 2일 자로 게재됐다.
※ 논문명: Operational Stability Factor: A Comprehensive Metric for Assessing Catalyst Durability in Dynamic Water Electrolyzer Conditions DOI: https://doi.org/10.1021/acsenergylett.5c00406
※ 저자정보:김진엽(KAIST 생명화학공학과 박사과정, 제1 저자), 노종수(KAIST 생명화학공학과 박사과정, 공저자), 정동영(KAIST 생명화학공학과, 교신저자)
한편, 이번 연구는 한국연구재단 소재 글로벌 영커넥트 사업, KAIST 도약과제의 지원을 받아 수행됐다.
빛을 전기로, 에너지전환 핵심, 핫홀을 잡다
빛이 금속 나노 구조체에 닿으면 순간적으로 생성되는 플라즈모닉 핫전하(plasmonic hot carrier)는 광에너지를 전기 및 화학에너지 같은 고부가가치 에너지원으로 변환하는 중요한 매개체이다. 이 중 핫홀(hot hole)은 광전기화학 반응에 효율을 증폭시키지만 피코초(1조분의 1초) 수준의 극초단 시간 내에 열적으로 소멸되어 실용적인 응용이 되기 어려웠다. 한국 연구진이 핫홀을 더 오래 유지하고 흐름을 증폭시키는 기술을 개발하면서 차세대 고효율 광에너지 전환 기술의 상용화를 앞당기는 성과를 거두었다.
우리 대학 화학과 박정영 석좌교수 연구팀은 인하대 신소재공학과 이문상 교수 연구팀과 공동연구를 통해, 핫홀(hot hole) 흐름을 증폭시키고 이를 실시간으로 국소 전류 분포 맵핑을 하여 광전류 향상 메커니즘을 성공적으로 규명했다고 12일 밝혔다.
연구팀은 금속 나노 그물망을 특수한 반도체 소재(p형 질화갈륨) 기판 위에 배치한 나노 다이오드 구조를 만들어 기판 표면이 핫홀 추출을 촉진하도록 설계했다. 그 결과, 핫홀 추출 방향과 동일한 질화갈륨 기판에서는 다른 방향의 질화갈륨 기판보다 핫홀의 흐름 증폭 효과가 약 2배 증가시키는 데 성공했다.
또한, 광전도성 원자힘 현미경(Photoconductive Atomic Force Microscopy, pc-AFM) 기반의 광전류 맵핑 시스템을 활용해 나노미터(머리카락 두께의 10만 분의 1) 수준에서 핫홀의 흐름을 실시간 분석했다. 핫홀의 흐름이 주로 금 나노 그물망에 빛이 국소적으로 집중되는 ‘핫스팟’ 에서 강하게 활성화되지만, 질화갈륨 기판의 성장방향을 바꿈에 따라 핫스팟 이외의 영역에서도 핫홀의 흐름이 활성화되는 현상을 확인했다.
이 연구를 통해 연구진은 빛을 전기 및 화학 에너지로 변환하는 효율적인 방법을 찾았으며, 이를 활용하면 차세대 태양전지, 광촉매, 수소 생산 기술 등이 크게 발전할 것으로 기대된다.
박정영 교수는 “나노 다이오드기법을 이용하여 핫홀의 흐름을 처음으로 제어할 수 있었고 이를 이용하여 다양한 광전소자 및 광촉매 응용에 혁신적인 기여를 할 수 있을 것이다. 예를 들면 태양광을 이용한 에너지 변환 기술(태양전지, 수소 생성 등)에 획기적인 발전을 기대할 수 있으며 실시간 분석 기술을 개발하여 초소형 광전소자(광센서, 나노 반도체 소자) 개발에 응용이 가능”하다고 말했다.
화학과 이현화 박사와 텍사스 오스틴 대학 화학공학과 박유진 박사후연구원이 제1 저자로, 인하대학교 신소재공학과 이문상 교수와 KAIST 화학과 박정영 교수가 공동 교신저자로 참여한 이번 연구성과는 국제학술지‘사이언스 어드밴시스(Science Advances)’에 3월 7일 자로 온라인 게재됐다.
(논문 제목: Reconfiguring hot-hole flux via polarity modulation of p-GaN in plasmonic Schottky architectures)
DOI : https://www.science.org/doi/10.1126/sciadv.adu0086
한편, 이 연구과제는 한국연구재단(NRF)의 지원을 받았다.
‘기능성 탄소 보호층’을 통한 차세대 고성능 리튬-황 전지 개발
우리 대학 생명화학공학과 이진우 교수 연구팀이 서울대학교 한정우 교수 연구팀, LG 에너지솔루션 미래기술연구센터와 공동연구를 통해 차세대 고성능 리튬-황 전지를 개발하는데 성공했다.
리튬-황 전지는 차세대 이차전지 후보군 중 하나로, 상용 리튬이온전지에 사용되고 있는 양극 소재에 비해 황이 가볍고 가격이 저렴하면서도 많은 양의 에너지를 한 번에 저장할 수 있어, 무인기 및 드론과 같이 가볍고 오래 작동될 수 있는 응용분야에 필요한 핵심 기술로 손꼽히고 있다.
하지만, 실질적으로 높은 수준의 에너지 밀도를 지닌 리튬-황 전지를 개발하기 위해서는 전지 내부에 들어가는 무거운 전해액의 사용량을 줄여야 하는데, 전해액 양이 줄어들면 양극에서 발생하는 황의 전기화학적 반응성이 대폭 줄어들어 높은 에너지를 지닌 리튬-황 파우치셀을 구현하는데 어려움이 있다.
이진우 교수 연구팀은 이번 연구를 통해 리튬황전지 양극에 추가되어 황의 전기화학적 반응성을 개선해줄 수 있는 금속 나노입자의 표면에 얇은 기능성 탄소 보호층을 도입함으로써, 양극에서 발생하는 황의 전기화학 전환 반응의 반응성과 수명 안정성을 대폭 향상시키는데 성공하였다. 이 탄소 보호층은 반응 생성물인 리튬 폴리설파이드와 금속 나노입자 간의 직접적인 접촉을 차단해 기존에 발생했던 부반응 및 상변화를 예방하여 수명을 크게 향상시킬 수 있다. 또한, 해당 탄소 보호층은 전자 전달에 도움이 되는 질소 원자가 첨가되어 있어, 금속 나노입자와의 전자교환이 원활히 이루어진다. 금속 입자의 종류를 제어함으로써, 탄소 보호층 내의 질소 원자의 최적화된 전자구조를 유도함으로써, 양극 반응성 또한 크게 향상시킬 수 있다.
이번 연구에서 개발된 기능성 탄소 보호층을 양극 첨가제에 활용함으로써, A h 수준의 리튬-황 파우치셀에서 400 W h kg-1 수준의 에너지 밀도 (전지의 단위 무게 당 저장할 수 있는 총 에너지 양) 를 확보하는 성과를 거뒀다. 더욱이, 기능성 탄소 보호층 합성법이 간단하면서도 대량화에 적합해, 향후 적절한 후속 연구를 통해 리튬-황 전지 산업 분야에서 활용될 가능성도 열려있다.
생명화학공학과 이진우 교수는 “차세대 고성능 리튬-황 전지 개발을 위해서는 전지 내부에 제한된 전해액 사용량에도 황 전환 반응의 속도와 수명 안정성을 모두 높은 수준으로 확보하는게 핵심이다”고 설명하면서, “양극 기능성 소재의 전자구조 최적화 및 표면 안정성을 제어할 수 있는 기술을 개발하려는 노력이 지속되어야 한다”고 설명하였다.
이번 연구결과는 이진우 교수 연구실의 김서아 박사, 임원광 박사, 그리고 한정우 교수 연구실의 정현정 박사가 공동 제 1저자로 참여하였으며, 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’에 2025년 2월 14일 字 온라인판에 게재됐다 (논문명: Protective catalytic layer powering activity and stability of electrocatalyst for high-energy lithium-sulfur pouch cell)
일상 움직임으로 웨어러블 기기가 충전된다
국제 공동 연구진이 운동 에너지를 전기 에너지로 효율적으로 변환하여 웨어러블 기기의 자가 충전이 가능하게 하는 새로운 방법을 개발했다. 이제 일상적인 움직임, 즉 저주파 운동에서도 효율적으로 에너지를 수확할 수 있게 되었다.
우리 대학 신소재공학과 서동화 교수 연구팀이 싱가포르 난양공대(NTU, Nanyang Technological Univ.) 전자공학과 이석우 교수 연구팀과의 국제공동연구를 통해 새로운 전기화학적 에너지 수확 방법을 개발했으며, 이를 통해 기존 기술 대비 10배 높은 출력과 100초 이상 지속되는 전류 생성에 성공했다고 10일 밝혔다.
운동 에너지를 전기 에너지로 변환시키는 보통 압전(Piezo-electric)과 마찰전기(Tribo-electric) 방식으로 순간적으로 높은 전력을 발생시킬 수 있지만, 내부 저항이 높기 때문에 전류가 짧게 흐르는 한계가 있다. 이에 따라, 보다 효율적이고 지속 가능한 에너지 하베스팅(수확) 기술이 요구되고 있다.
연구팀은 물과 이온성 액체 전해질에 전극을 각각 담가 이온의 이동으로 발생하는 전위차(전기적 위치에너지)를 이용하여 전력을 수확하는 새로운 방식을 개발했다.
또한, 연구팀은 이온이 전해질과 전극 계면에서 산화ㆍ환원 반응을 통해 에너지를 어떻게 발생시키는지 더 깊이 이해하기 위해 *제1원리 기반 분자동역학 시뮬레이션을 수행했다.
*제1원리 기반 분자동역학 시뮬레이션: 양자역학 법칙을 사용해 전자들의 거동을 계산하는 것을 말하며 원자들 사이의 상호작용을 계산으로 구한 뒤, 이를 통해 시간에 따른 원자들의 움직임을 예측하는 것임
그 결과, 이온이 각 전해질에서 주변 용매와 상호작용하는 방식과, 전해질 환경 따른 전극 내부에서의 주변 상호작용 에너지가 다르게 나타났음을 확인했다. 이러한 종합적인 상호작용이 에너지 차이를 발생시키며, 이를 통해 전해질 간 전위 차이를 설명하는 중요한 원리를 제시했다.
연구진은 이 시스템을 여러 개 직렬로 연결하면 출력 전압을 크게 높일 수 있다는 것도 확인했다. 그 결과 계산기를 작동시킬 수 있을 정도인 935mV의 전압을 달성했으며, 이는 저전압 기기나 웨어러블 디바이스와 같은 장치에 적용 가능하다.
또한, 물리적 마모 없이 장시간 안정적으로 작동할 수 있어, 이 기술은 사물인터넷(IoT) 기기나 자가 충전형 전자기기에도 실용적으로 적용될 가능성이 크다.
서동화 교수는 "이번 연구의 핵심은 일상적인 움직임, 즉 저주파 운동에서도 효율적으로 에너지를 수확할 수 있다는 점”이라며 "시뮬레이션과 실험의 협업을 통해 에너지 수확 원리를 깊이 이해함으로써 설계 가이드라인을 도출할 수 있었고, 이는 상용화 가능성을 크게 높였다”고 설명했다.
이번 연구는 이동훈 난양공대 전자공학과 박사과정, 송유엽 KAIST 신소재공학과 박사과정 학생이 공동 제1 저자로 참여했다. 연구 결과는 네이처 커뮤니케이션에 지난 10월 19일 자로 온라인 출판됐다.
(논문명 : Electrochemical kinetic energy harvesting mediated by ion solvation switching in two-immiscible liquid electrolyte)
DOI: 10.1038/s41467-024-53235-z
한편, 이번 연구는 한국연구재단의 나노 및 소재 기술개발사업, 중견연구사업의 지원을 받아 이뤄졌고, 한국과학기술정보연구원의 슈퍼컴퓨터를 지원받아 수행됐다.
KAIST, 아람코와 이산화탄소 기술 상용화 협의
“KAIST는 아람코와의 공동 연구를 통해 뛰어난 성과를 거두고 있으며, 최근 개발한 기술을 글로벌 선도 기업인 아스펜테크(AspenTech)에 성공적으로 기술 이전하였습니다. 현재는 아람코와 함께 직접 공기 포집 기술의 상용화를 위한 논의를 활발히 진행 중이며, 이를 통해 지속 가능한 글로벌 에너지 전환을 위한 중요한 해결책을 제시할 수 있기를 기대합니다.”(KAIST 이광형 총장)
우리 대학은 세계 최대 석유회사인 사우디아라비아 아람코 (Aramco)와 설립한 ‘Aramco-KAIST 이산화탄소 연구센터’에서 지난 11월 25일 사우디아라비아 다란에 위치한 아람코 본사 연구센터(Aramco R&DC)와 함께 이산화탄소 및 지속가능한 에너지 기술에 대한 공동 워크숍을 성공리에 개최했다고 3일 밝혔다.
2013년부터 기후 변화의 주범인 이산화탄소(CO2) 문제 해결을 위해 설립한 아람코-KAIST 이산화탄소 연구센터는 많은 양의 에너지를 사용하지 않고도 이산화탄소를 포집/전환 하는 기술 및 지속가능한 에너지에 대한 혁신적인 기술개발을 추진해 오고 있다.
워크숍에는 정희태 센터장(KAIST 생명화학공학과 교수)을 포함해 12명의 KAIST 교수 및 14명의 연구원이 참석했다.
이번 공동 워크숍에서는 △직접 공기 포집 △수소 저장 △ 전기화학적 이산화탄소 전환 △에너지 저장시스템을 주제로 KAIST 주제 발표 및 아람코와 토의가 진행됐다.
올해로 공동 연구센터를 운영한지 11년을 맞는 ‘Aramco-KAIST 이산화탄소 연구센터’는 매년 다양한 우수한 연구 성과를 토대로 교류를 이어오고 있으며, 2024년까지 150건 이상의 국제 학술 논문 및 80건 이상의 지식재산권을 발표해 왔다.
2023년에는 센터의 이름 따서 만들어진 이산화탄소 포집-활용 평가 소프트웨어(ArKaTac3: Aramco-KAIST Tool for CO2 Capture and Conversion)를 개발하여 공정 시뮬레이션 분야의 글로벌 선도 기업인 아스펜테크 (AspenTech)에 성공적으로 기술이전되어 현재 기업에서 그 기술을 활용하고 있다.
우리 연구진은 아람코 연구센터(R&DC)의 다양한 연구 시설을 방문해 향후 실질적인 연구 협력 및 상용화에 대한 논의를 진행했다. 두 기관은 이번 공동 워크숍 개최를 기반으로 앞으로도 다양한 기후 기술, 이산화탄소 포집-전환 기술 및 지속가능한 에너지 기술 등에서 더욱 긴밀한 연구개발 협력을 추진하기로 뜻을 모았다.
이어 11월 26일부터 28일까지 아람코가 주관하는 국제 지속가능 화학 산업 엑스포인 ‘켐인딕스(ChemIndix) 2024’에 ‘Aramco-KAIST 이산화탄소 연구센터’부스를 개설하고, 그 간의 공동 연구 성과를 현지에 널리 알렸다.
아람코의 기술 및 혁신 담당 수석 부사장인 아마드 알코웨이터‘Ahmad O. Al-Khowaiter’부사장이 부스에 직접 방문해 다양한 연구 성과를 확인했다.
정희태 센터장은 “KAIST는 오랫동안 아람코와 연구에 대한 신뢰 관계를 이어오고 있다. 앞으로는 우수한 연구 성과를 바탕으로 KAIST-아람코 간 글로벌 연구개발 협력 및 연구 인력 교류 증진에 더욱 힘쓸 예정이다”라고 말했다.
1700% 뛰어난 신축성, 고성능 웨어러블 열전소자 개발
열 에너지를 전기로 전환시키는 열전 소자는 버려지는 폐열을 활용할 수 있어 지속 가능하고 친환경적인 에너지 플랫폼으로 주목받고 있다. 한국 연구진이 우수한 신축성과 최고 수준 성능을 보이는 열전소자를 개발하여 웨어러블 소자를 위한 체온을 이용한 차세대 에너지 공급원으로의 가능성을 한층 더 앞당겼다.
우리 대학 생명화학공학과 문홍철 교수팀이 POSTECH 화학공학과 박태호 교수팀과 공동연구를 통해 열역학적 평형 조절을 통한 기존 N형 열전갈바닉 소자*성능 한계 극복 기술을 구현했다고 14일 밝혔다.
*열전갈바닉 소자: 생성되는 전자 흐름의 방향에 따라 N형과 P형으로 구분 가능 네거티브(negative)를 의미하는 N형은 전자가 저온에서 고온 쪽으로, 포지티브(positive)를 의미하는 P형은 고온에서 저온 쪽으로 전자가 이동
열전 소자의 성능을 최대한 끌어올리기 위해 P형과 N형 소자의 통합이 필수적이다. 최근 우수한 성능을 지닌 P형 열전 소자에 대한 연구는 많이 진행되었지만 N형 열전 소자는 상대적으로 연구가 부족했다. 그마저도 N형 열전 소자는 P형에 비해 성능이 떨어져 통합형 소자 구현 시 성능 밸런스가 맞지 않아 성능 극대화에 걸림돌이 되었다.
이번 연구에서 연구팀은 스스로 산도(pH) 조절이 가능한 젤 소재를 개발하여 이온을 주요 전하운반체로 사용한 이온성 열전 소자 중 한 종류인 열전갈바닉 소자를 구현하였다. 연구팀이 개발한 젤 소재를 활용하여 하이드로퀴논* 레독스 반응**의 열역학적 평형을 효과적으로 제어할 수 있었고, 이를 통하여 고성능의 N형 열전 소자 특성을 구현하였다.
*하이드로퀴논: 열 에너지를 전기 에너지로 전환하는데 사용된 전기화학 반응물
**레독스 반응: 산화-환원 반응
또한 개발된 젤 소재는 가역적 가교 결합을 기반으로 약 1700%의 우수한 신축성과 함께, 상온에서도 20분 이내에 99% 이상의 높은 자가회복 성능을 구현할 수 있게 설계되었다.
본 연구에서 개발된 N형 이온성 열전 소자는 4.29 mV K-1의 높은 열전력 (thermopower)을 달성하였으며, 1.05% 의 매우 높은 카르노 상대 효율* (Carnot relative efficiency) 또한 나타내었다. 이러한 우수한 성능을 바탕으로 손목에 부착된 소자는 몸에서 지속적으로 유지되는 체온과 주변 환경의 온도 차이를 이용하여 효과적인 에너지 생산에 성공하였다.
*카르노 상대 효율: 이상적인 카르노 기관의 효율 대비 열전갈바닉 소자의 실제 열전환 효율
문홍철 교수는 “이번 연구 성과는 기존 N형 이온성 열전 시스템이 갖고 있던 한계를 극복할 수 있는 기술 개발에 해당한다”며 “이는 체온을 활용한 전원 시스템 실용화를 앞당기고, 웨어러블 소자 구동을 위한 핵심 요소 기술이 될 것이라 기대”한다고 밝혔다.
이번 연구는 에너지 분야 국제 학술지인 ‘Energy & Environmental Science’ 2024년 11월7일 표지논문(Outside Front Cover)으로 발표되었다.
※ 논문명: Realizing a high-performance n-type thermogalvanic cell by tailoring thermodynamic equilibrium
한편 이번 연구는 한국연구재단의 나노 및 소재기술개발사업 (나노커넥트) 및 중견연구자지원사업 지원을 받아 수행됐다.
세계 최초 원자 편집으로 신약 발굴 패러다임 바꿔
선도적 신약 개발에서는 약효의 핵심 원자를 손쉽고 빠르게 편집하는 신기술은 의약품 후보 발굴 과정을 혁신하는 원천 기술이자, 꿈의 기술로 여겨져 왔다. 우리 대학 연구진이 약효를 극대화하는 단일 원자 편집 기술 개발에 세계 최초 성공했다.
우리 대학 화학과 박윤수 교수 연구팀이 오각 고리 화합물인 퓨란의 산소 원자를 손쉽게 질소 원자로 편집·교정하여, 제약 분야에서 널리 활용되는 피롤 골격으로 직접 전환하는 원천 기술 개발에 성공했다고 8일 밝혔다.
해당 연구성과는 그 중요성을 인정받아 과학 분야 최고권위 학술지인 ‘사이언스(Science)’誌 에 지난 10월 3일 게재됐다. (논문명: Photocatalytic Furan-to-Pyrrole Conversion)
많은 의약품은 복잡한 화학 구조를 갖지만, 정작 이들의 효능은 단 하나의 핵심 원자에 의해 결정되기도 한다. 대표적으로, 산소, 질소와 같은 원자는 바이러스에 대한 약리 효과를 극대화 하는데 중추적인 역할을 한다.
이처럼 약물 분자 골격에 특정 원자를 도입했을 때 나타나는 효능을 ‘단일 원자 효과(Single Atom Effect)'라 한다. 선도적 신약 개발에서는 수많은 원자 종류 중 약효를 극대화하는 원자를 발굴하는 것이 핵심으로 여겨진다.
하지만, 단일 원자 효과를 평가하기 위해서는 다단계·고비용의 합성 과정이 필연적으로 요구되어 왔다. 산소 혹은 질소 등을 포함한 고리 골격은 고유의 안정성(방향족성)으로 인해 단일 원자만 선택적으로 편집하기 어렵기 때문이다.
박 교수 연구팀은 빛에너지를 활용하는 광촉매를 도입하여 해당 기술을 구현했다. 분자 가위 역할을 하는 광촉매 개발을 통해 오각 고리를 자유자재로 자르고 붙임으로써 상온·상압 조건에서 동작하는 단일 원자 교정 반응을 세계 최초로 성공시켰다.
들뜬 상태의 분자 가위가 단전자 산화 반응을 통해 퓨란의 산소를 제거하고, 질소 원자를 연이어 추가하는 새로운 반응 메커니즘을 발견했다고 연구팀 관계자는 전했다.
이번 연구의 제1 저자인 KAIST 화학과 김동현, 유재현 석박사통합과정 학생은 “빛에너지를 활용해 가혹한 조건을 대체하여 해당 기술이 높은 활용성을 가질 수 있었다”며, “복잡한 구조로 이루어진 천연물이나 의약품들을 기질로 활용해도 선택적으로 목표 편집이 수행된다”고 이번 연구의 범용성을 설명했다.
이번 연구를 이끈 박윤수 교수는 “오각 고리형 유기 물질의 골격을 선택적으로 편집할 수 있게 됨에 따라, 제약 분야의 중요한 숙제였던 의약품 후보 물질의 라이브러리 구축에 새로운 장을 열 것”이라 언급하며, “해당 기반 기술이 신약 개발 과정을 혁신하는데 쓰이기를 바란다”고 덧붙였다.
해당 내용은 ‘사이언스(Science)’誌 내의 퍼스텍티브(Perspective) 섹션에 추가로 선정되어 연구의 의의가 소개되기도 하였다. 이는 해당 연구에 참여하지 않은 저명한 과학자가 파급력 있는 연구를 선별하여 해설을 제공하는 코너다.
한편 이번 연구는 한국연구재단의 우수신진연구, KAIST 교내연구사업 도약연구 및 초세대협업연구실, 포스코청암재단의 포스코 사이언스펠로십의 재원을 바탕으로 수행됐다.
2024 대한민국 혁신창업상에 6개 기업 선정
우리 대학이 한국의 혁신 창업생태계를 한 단계 끌어올린 딥테크 스타트업의 우수 사례를 발굴하는 '2024 대한민국 혁신창업상' 수상기업을 11일 발표했다.
'대한민국 혁신창업상'은 혁신적인 기술과 창의적인 아이디어로 무장한 스타트업이 우리나라의 경제를 이끌어갈 미래 성장동력으로 자리매김할 수 있도록 격려하기 위해 마련됐다.
우리 대학과 서울대, 중앙홀딩스가 협력하고 과학기술정보통신부가 후원하며, 시상식은 11일 서울대학교에서 개최된 '혁신창업국가 대한민국 국제심포지엄 2024'에서 진행됐다.
2022년 제정 후 3회차를 맞은 올해는 과학기술정보통신부 장관상을 받는 스탠다드에너지 주식회사와 메티스엑스(주)를 포함해 6개 기업이 수상의 영예를 안았다.
스탠다드에너지는 혁신적인 바나듐 이온 배터리를 개발해 친환경 에너지 산업을 선도하고 있으며 높은 에너지 효율, 배터리 수명, 안전성, 재활용성을 앞세워 세계 시장에서 입지를 넓혀갈 예정이다.
메티스엑스(주)는 CXL 기반의 지능형 메모리를 개발하는 시스템 반도체 스타트업이다. 인공지능 시대의 가장 큰 화두인 데이터 처리 및 분석을 가속해 글로벌 데이터 센터 투자 및 운영 비용을 크게 절감시키는 기술을 제공한다.
KAIST 총장상에 선정된 주식회사 고바이오랩은 마이크로바이옴 기반의 혁신적인 바이오 솔루션을 제공하고 있다. 서울대 교원 창업기업으로 새로운 프로바이오틱스 제품 등 지속적인 연구개발을 통해 바이오테크의 새로운 패러다임을 제시하고 있다.
서울대학교 총장상은 페리지에어로스페이스가 받는다. 우리 대학 소속 학생 창업가가 이끄는 기업으로 민간 기업 중에서 최초로 자체 개발한 우주발사체의 국내 시험 비행을 진행하고 있으며, 스웨덴 국영우주기업·필리핀 우주청 등과의 협력을 바탕으로 해외 시장 진출을 위해 노력하고 있다.
중앙홀딩스회장상에는 알지노믹스 주식회사가 선정됐다. RNA 편집 기술을 기반으로 미충족 의학 수요가 높은 희귀 난치질환에 대한 유전자 치료제를 개발해 바이오 기술을 혁신하고 신약 개발의 새로운 지평을 열어가고 있다.
국가과학기술연구회 이사장상을 수상하는 ㈜메디인테크는 의료 영상 분석과 진단 지원 솔루션을 제공해 의료 분야의 디지털 전환을 이끌고 있다. 혁신적인 인공지능 기반 의료 기술로 병원의 진단 효율을 높이며, 첨단 의료 기술 발전에 기여하고 있다.
이날 열린 '혁신창업국가 대한민국 국제심포지엄 2024'에서는 6개 수상기업 및 우리 대학과 서울대 딥테크 창업기업이 다양한 혁신 기술을 소개했다.
또한, ▴글로벌 벤처캐피털(VC)인 SOSV의 모한 아이어(Mohan Iyer) 제너럴 파트너 ▴일본의 테크기업 디지털 개러지(Digital Garage)의 주니치 나카지마(Junichi Nakajima) 디렉터 ▴딥테크 전문 펀드를 운용하는 도쿄대 벤처캐피털(UTEC)의 토모타카 고지 CEO(現 일본벤처캐피탈협회 회장)가 기조 강연지로 나서 딥테크 스타트업 생태계 조성을 위한 조언을 전했다.
이와 함께, ▴백승욱 루닛 설립자 겸 의장 ▴임정민 시그나이트파트너스 투자총괄 ▴정태흠 아델파이벤처스 대표, ▴오준호 레인보우로보틱스 설립자 겸 CTO가 창업 경험과 아이디어를 공유하는 강연이 열렸다. 스타트업 생태계에서 대기업과 CVC의 역할을 논의하는 대담회도 함께 진행됐다.이광형 총장은 "수상기업들은 첨단기술의 상용화를 통해 새로운 시장을 창출하고 기술혁신으로 사회적 가치를 실현한 성과를 높게 평가받았다"라고 설명했다. 이어, 이 총장은 "대한민국 혁신창업상을 통해 창업가 정신을 고취하고 혁신 창업의 중요성을 널리 알리고 기술 창업가들에게 새로운 도전과 영감을 불어넣어 딥테크 창업생태계의 조성과 확산을 촉진하는 계기가 되길 바란다"라고 강조했다.
전기 공급만으로 공기 중 CO₂를 제거하다
대기 중 이산화탄소 농도가 증가됨에 따라 지구 평균 기온도 약 1.2도 상승했으며 이는 극단적인 기상 현상, 해수면 상승, 생태계 파괴 등 심각한 환경 문제를 초래하고 있다. 우리 연구진이 공기 중 0.04%가량 존재하는 이산화탄소를 95% 이상 순도로 포집해 추후 이산화탄소 기반 연료 및 화학제품 생산 등 사용할 수 있는 기술을 개발해 화제다.
우리 대학 생명화학공학과 고동연 교수 연구팀이 순수 전기만으로 작동해 공기 중 이산화탄소를 효율적으로 제거할 수 있는 혁신적인 탄소 포집기를 개발하고 상용화하는 데 성공했다고 29일 밝혔다. 이 기술은 이번 연구를 주도한 김규남 박사과정 연구원의 학생 창업기업(소브(Sorv), 대표 김규남)을 통해 기술 상업화를 추진 중이다.
고동연 교수 연구팀은 전기 가열원이 이산화탄소 흡착제와 한꺼번에 대량 생산될 수 있는 기술을 자체적으로 개발하고, 이를 통해 벤치 규모의 직접 공기 포집(Direct Air Capture, 이하 DAC) 시스템 구현에 성공했다.
외부 열에너지의 공급 없이 전기만으로 구동할 수 있는 본 기술은 태양광, 풍력 등 다양한 재생에너지원을 직접 이용할 수 있고, 시스템의 부피가 매우 작아 기존 탄소 포집기가 적용될 수 있는 영역의 한계를 뛰어넘을 수 있다.
공기 중 극미량 존재하는 이산화탄소를 포집하는 기술을 기술 수준 하단에서 상단까지, 즉 실험실 단계에서 상업적 규모로 확대하는 것은 매우 어려운 일이다. 첫째, 대기 중 이산화탄소 농도가 낮아 이를 효과적으로 포집하기 위해서는 매우 효율적인 흡착제가 필요하다. 둘째, 포집된 이산화탄소를 경제적이고 에너지 효율적으로 분리하는 시스템이 필요하다. 셋째, 이 모든 과정을 대규모로 구현하기 위해서는 안정하고 일관성 있는 공정이 보장돼야 한다.
연구팀은 이러한 도전에 맞서 전기 가열원이 통합된 흡착제 및 시스템을 개발해 이산화탄소 포집기의 성능을 극대화했다. 이 흡착제는 대량 생산이 가능하며, 넓은 비표면적을 제공해 이산화탄소를 더 효율적으로 흡착할 수 있다. 또한, 빠른 흡착 및 탈착 속도를 자랑하며, 구조적으로 강해 반복적인 사용에도 변형이 적다.
연구팀이 개발한 탄소 포집기는 고성능의 흡착 소재에 이산화탄소를 흡착한 후 전기로 작동하는 가열원을 통해 발생하는 열을 이용해 순수한 이산화탄소 얻어내는 방식으로, 에너지 효율이 높고 정밀한 온도 제어가 가능하다. 이 시스템의 큰 장점 중 하나는 재생에너지로만 가동이 가능할 정도로 에너지 효율적이라는 점이다. 이는 전기에 접근성이 있는 모든 지리적 환경에 배치가 가능해, 다양한 장소에서 이산화탄소를 포집할 수 있게 한다.
현재 실험실 스케일에서는 하루 약 1~3kg의 이산화탄소를 처리할 수 있을 것으로 예상된다. 이 기술은 향후 하루 포집량 1톤 규모 이상으로 스케일업 및 대규모 배치도 가능하며 대기 중 이산화탄소를 포집하는 용도 뿐만 아니라 화력발전소, 시멘트 공장, 철강 공장 등 대규모 이산화탄소 배출원을 대상으로도 중요한 역할을 할 것으로 기대된다.
김규남 박사과정 연구원은 "이번 연구는 대기 오염 문제 해결에 한 발 더 다가설 수 있는 중요한 성과이며, 앞으로도 지속적인 연구를 통해 기술을 발전시키고 실제 환경에서의 적용 가능성을 높이겠다”라고 말했다.
연구팀은 본 기술의 혁신성을 인정받아 2022년에는 랩 스타트업(Lab Startup) KAIST 최우수상 수상, 2023년에는 미국 R&D 100 어워즈(Awards)의 파이널리스트(Finalist)로 선정됐으며, 2024년 1월에는 라스베이거스에서 개최된 국제전자제품박람회(CES 2024)에 e-DAC 데모 유닛을 전시하고 부스 발표를 하며 기술의 우수성을 널리 알린 바 있다.
이번 연구는 사우디 아람코-KAIST 이산화탄소 연구센터의 지원으로 이루어졌으며, 양 기관의 지속적인 협력을 통해 더욱 혁신적인 기술 개발이 기대된다.
KAIST, 대만 포모사그룹과 본격적인 협력 시작하다
우리 대학이 대만의 3대 기업 중 하나인 포모사그룹(Formosa Plastics Group)과 첨단바이오 및 친환경에너지 분야에서 협력을 추진한다.
이를 위해 이달 13일 포모사그룹 상무위원이자, 그룹 내 바이오 및 친환경에너지 분야를 이끄는 샌디 왕(王瑞瑜, Sandy Wang) 회장이 KAIST에 방문한다. 포모사그룹의 오너가 우리 대학을 공식 내방하는 것은 이번이 처음이다.
양 기관의 협력은 지난 3월 우리 대학이 포모사그룹이 설립하고 지원하는 명지과기대(明志科技大學), 장경대학교(長庚大學) 및 장경기념병원(長庚記念醫院) 등과 포괄적인 교류 협력에 관한 업무협약(MOU)를 맺으며 시작됐다.
이를 바탕으로 더욱더 구체적인 교류 협력을 추진하기 위해 우리 대학을 찾는 샌디왕 회장은 보직자를 위한 강의인 '매세월 서연'에서 '부친 왕융칭(王永慶) 회장의 자녀교육과 기업의 사회 환원 및 실천'을 주제로 리더십 특강을 진행한다. 이어, 첨단바이오 및 친환경에너지 등 대만의 미래산업과 관련된 KAIST의 연구와 기술을 참관한 뒤 글로벌 산학협력 방안을 논의한다. 향후 두 기관은 상호 겸임교수를 임명해 학생 공동지도 및 연구 협력 등, 실질적인 글로벌 협력을 추진한다는 계획이다. KAIST 차세대 ESS 연구센터와 배터리 응용 연구를 진행하고 장경대학-장경기념병원과 연계된 줄기세포 및 유전자편집기술 분야 특화 대학원 프로그램을 개설하는 등 실효적인 중장기 협력을 도모할 방침이다. 바이오 및 친환경에너지 관련 KAIST 우수 벤처기업을 대상으로 포모사 그룹의 투자와 협력도 추진해 대만과 한국 간 혁신 산업 협력의 발판을 마련할 예정이다.
이광형 총장은 "포모사 그룹은 세계적인 네트워크를 가지고 있어 KAIST의 바이오 및 공학 기술을 세계로 진출시키는 데 매우 중요한 파트너가 될 것으로 예상한다"라면서, "이번 샌디 왕 회장의 방문으로 세계 경제 대국으로 부상 중인 대만과 긴밀한 협력관계를 이어갈 수 있을 것으로 기대한다"라고 덧붙였다. 포모사 그룹은 샌디 왕 회장의 선친인 왕융칭(王永慶) 회장이 일군 회사다. 플라스틱 PVC 생산 세계 1위 기업으로 반도체, 철강, 중공업, 바이오,배터리에 이르기까지 대만경제의 핵심 산업을 주도하고 있다. 왕융칭 회장은 자신이 일군 기업과 재산은 '국민의 것'이라는 신념 아래 재산을 사회에 환원하는 모범을 보여 대만 국민에게 존경받았다. 우리 대학과 협력을 추진하는 장경대학, 장경기념병원 및 명지과기대 역시 왕융칭 회장이 추진한 사회공헌의 일환으로 설립돼 포모사그룹으로부터 재정을 지원받고 있다.