본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%95%94%EC%B9%98%EB%A3%8C%EC%A0%9C
최신순
조회순
2018 KAIST 핵심 특허기술 이전 설명회 개최
KAIST(총장 신성철)가 환자의 면역반응을 활성화시켜 인체 본연의 면역 시스템이 암세포를 사멸시키도록 유도하는 ‘면역 활성화 항암치료제’와 실시간 AI(딥러닝) 기술을 활용해 저해상도 영상을 고해상도 영상(4K UHD)으로 즉시 변환시키는 ‘초고화질 영상변환 하드웨어기술’ 등 당장 사업화 가능성이 높은 6개의 핵심 특허기술을 소개한다. KAIST는 10일 오후 1시부터 서울 삼성동 코엑스에서 산학협력단(단장 최경철) 주관으로 ‘2018 KAIST 핵심 특허기술 이전 설명회’를 개최한다고 3일 밝혔다. 이 설명회는 KAIST 연구진이 보유한 우수 기술을 기업에게 이전해 일자리 창출은 물론 기업 경쟁력을 높이는 산학협력 모델을 조성키 위해 마련됐다. 산학협력단 관계자는 “지난 3월 KAIST가 오는 2031년까지 세계 10위권 선도대학으로의 진입을 선포한 ‘KAIST 비전 2031’의 5대 혁신분야 중 하나인 기술사업화 혁신방안의 일환으로 이번 설명회를 준비했다”며 “핵심 특허기술을 선정해 기업에게 이전하는 설명회를 매년 개최할 방침”이라고 밝혔다. KAIST는 선정된 기술을 이전받는 기업들에게는 기술보증기금과 협력을 통해 기업금융연계 지원서비스를 제공할 계획이다. 이들 기업은 또 KAIST로부터 비즈니스 모델 개발과 특허-R&D 연계 전략분석, 국내·외 마케팅 우선 추진 등 다양한 서비스를 지원을 받게 된다. 올해 KAIST가 선보이는 기술은 4차 산업혁명의 중심이 되는 바이오, 나노, 인공지능, 반도체 분야의 핵심 특허기술로 ①새로운 방식의 나노 패터닝 플랫폼 기술(정희태 교수·생명화학공학과) ②면역 활성화 항암치료제후보 물질 확보(최병석 교수·화학과) ③미생물을 이용해 바이오연료 등을 대량생산할 수 있는 기술(이상엽 특훈교수·생명화학공학과) 등 이다. 이밖에 ④컴팩트한 싱글샷 초분광 카메라 기술(김민혁 교수·전산학부) ⑤AI(딥러닝) 기반 고속 초고해상도 업스케일링 기술(김문철 교수·전기및전자공학부) ⑥방사선에 강인한 모스펫 소자(이희철 교수·전기및전자공학부)도 6개 핵심 특허기술에 포함됐다. 특히, 김문철 교수와 김민혁 교수의 특허기술은 지난 8월 31일부터 9월 5일까지 독일 베를린에서 열린‘국제 가전 박람회(IFA 2018)’에서도 전시, 소개돼 참가자들로부터 많은 주목을 받은 기술이다. KAIST가 올해 선정한 6개 핵심기술은 산업계에 파급 효과가 큰 기술로 향후 다양한 분야로의 응용 가능성과 시장규모·기술혁신성 등을 고려해 선정됐다. KAIST는 이를 위해 지난 4월부터 교수들이 직접 연구·개발해 특허를 보유한 교내 우수 기술을 대상으로 공모를 진행하고 접수된 특허기술을 대상으로 변리사·벤처 투자자·사업화 전문가 등 15명 내외로 구성된 심사단의 자문과 평가를 거쳤다. 9월 10일 진행되는 설명회에는 기술개발 및 기술이전을 포함한 상호 협력방안을 논의하기 위해 기업 관계자 및 투자자 등 200여 명이 초청될 예정이다. 연구자인 이상엽 특훈 교수 등 교수 6인도 모두 참석해 각 특허기술별로 15분씩 발표와 함께 현장에서 기술이전에 관한 상담 등도 진행한다. 이와 함께 신성철 총장을 비롯해 강낙규 기술보증기금 이사장 직무대행, 이준표 한국소프트뱅크 대표이사, 차기철 KAIST 동문회장 등 내·외빈이 참석해 4차 산업혁명 시대를 맞아 대학이 보유 중인 첨단기술에 관한 기술사업화의 중요성을 강조할 계획이다. 최경철 KAIST 산학협력단장은“이번 기술이전 설명회를 계기로 KAIST가 보유한 핵심 특허기술을 기업에게 적극적으로 소개하고, 양질의 일자리 창출과 함께 글로벌화 등 기업발전의 기회가 될 수 있는 산학협력의 성공적인 모델로 발전시켜 나갈 것”이라고 말했다. 최 단장은 이어“아직 발굴되지 않은 핵심 특허기술과 각종 사업추진 관련 아이디어 등을 지속적으로 발굴해 대학의 핵심기술을 활용한 기술사업화를 활성화하고 산학협력 사업을 적극적으로 추진해나갈 계획”이라고 밝혔다.
2018.09.03
조회수 10198
유방암 세포의 자살을 유도하는 최적의 약물조합 발견
조광현 교수 - Science 자매지 표지논문 발표,“IT와 BT의 융합연구로 세포내 분자조절네트워크 제어를 통해 가능”- 국내 연구진이 대다수 암 발생에 직접 관여하는 것으로 알려진 암억제 유전자(p53)의 분자조절네트워크를 제어하여 유방암 세포의 사멸을 유도하는 최적의 약물조합을 찾아내, 향후 신개념 암치료제 개발에 새로운 단초를 열었다. 특히 이번 연구는 IT와 BT의 융합연구인 시스템 생물학 연구로 가능했다는 점에서 의미가 크다. 우리 학교 바이오및뇌공학과 조광현 석좌교수가 주도하고 최민수 박사과정생, 주시 박사, 정성훈 교수 및 시첸 박사과정생이 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약/도전연구)과 기초연구실사업의 지원으로 수행되었다. 연구결과는 세계 최고 과학전문지인 ‘사이언스’의 첫 번째 자매지로서 세포신호전달분야의 권위지인 ‘Science Signaling’지 최신호(11월 20일자) 표지논문으로 선정되었고, 사이언스지의 ‘편집자의 선택(Editor"s Choice)’에 하이라이트 특집기사로 소개되는 영예를 얻었다. (논문명: Attractor Landscape Analysis Reveals Feedback Loops in the p53 Network That Control the Cellular Response to DNA Damage) 유방암은 미국이나 유럽 등 선진국에서 발병하는 여성암 중 가장 흔한 암으로, 40~55세 미국 여성의 사망원인 1위를 차지한다. 지난 10월 15일에는 영국 일간지 ‘데일리메일’이 2040년까지 유방암 환자 수가 현재의 3배가 넘는 168만 명으로 늘어나 일명 “유방암 대란”이 일어날 수도 있다는 충격적인 연구결과를 보도하기도 하였다. 우리나라 보건복지부 자료에 따르면, 국내에서도 미국 등과 같이 유방암 발병빈도가 매년 증가하는 추세인데, 이것은 서구식 식습관과 저출산, 모유수유 기피 등 생활패턴의 변화에 기인한 것으로 알려져 있다. p53은 ‘유전자의 수호자’로도 잘 알려진 암 억제 단백질로서 33년 전 처음 발견된 후 지금까지 암 치료를 위해 집중적으로 연구되는 분자이다. p53은 세포의 증식 조절과 사멸 촉진 등 세포의 운명을 결정하는데 중요한 역할을 한다. 우리 몸의 세포가 손상되거나 오작동하면, p53은 세포주기의 진행을 중단시켜 손상된 DNA의 복제를 억제하고, 손상된 세포의 복구를 시도한다. 이 때 만일 세포가 복구될 수 없다고 판단되면, p53은 세포가 스스로 자살하도록 유도한다. 그러나 암세포는 이러한 p53의 기능이 정상적으로 작동되지 않아 이를 인위적으로 조절하여 암 치료에 응용하려는 시도가 꾸준히 이어져왔다. 그러나 지금까지 임상실험에서는 기대와는 달리 효과가 미미하거나 부작용이 발생하는 등 여러 문제점들이 나타났다. 이는 p53이 단독으로 작동하는 것이 아니라 복잡한 신호전달 네트워크 속에서 다수의 양성과 음성 피드백(positive and negative feedbacks)에 의해 조절되고 있었으나, 지금까지 p53만을 단독으로 집중 연구했기 때문이다. 즉, 다양한 피드백 조절에 의해 p53의 동역학적(dynamics) 변화와 기능이 결정되므로, 네트워크 전체를 이해하고 제어하는 시스템 생물학적 접근이 반드시 필요하다. 조광현 교수가 이끈 융합 연구팀은 p53을 중심으로 관련된 모든 실험 데이터를 집대성하여 p53의 조절 네트워크에 대한 수학모형을 구축하였다. 또한 대규모 컴퓨터 시뮬레이션 분석을 통해 p53의 동역학적 변화 특성에 따른 세포의 운명(증식 또는 사멸) 조절과정을 밝혀내고 이를 효과적으로 제어할 수 있는 방법을 찾아냈다. 그리고 이 방법을 적용한 시뮬레이션 결과를 단일세포실험으로 검증하였다. 조광현 교수팀은 수많은 피드백으로 복잡하게 얽혀 있는 p53 조절 네트워크의 다양한 변이조건에 따른 컴퓨터 시뮬레이션 분석과 세포생물학실험으로, p53의 동역학적 특성과 기능을 결정하는 핵심 조절회로를 발견하고, 이와 같은 p53의 동역학적 특성 변화에 따라 세포의 운명이 달라질 수 있음을 규명하였다. 또한 유방암 세포의 네트워크 모형에서, 위의 분석결과로부터 찾아낸 핵심회로를 억제하는 표적약물(Wip1 억제제)과 기존의 표적항암약물(뉴트린, nutlin-3)을 조합하면 유방암 세포의 사멸을 매우 효율적으로 유도할 수 있음을 발견하였다. 그리고 실제 유방암 세포(MCF7)를 이용한 세포실험을 통해 직접 확인하였다. 조광현 교수는 “세포내 중요한 역할을 담당하는 분자들은 대부분 복잡한 조절관계 속에 놓여있기 때문에 기존의 직관적인 생물학 연구로 그 원리를 밝히는 것은 근본적인 한계가 있다. 이번 연구는 시스템 생물학으로 그 한계를 극복할 수 있음을 보여주는 대표적인 사례로, 특히 암세포의 조절과정을 네트워크 차원에서 분석하여 새로운 치료법을 개발할 수 있는 가능성을 제시하였다”고 연구의의를 밝혔다. 한편, 조 교수의 이번 연구 논문은 23일자 사이언스 편집자의 선택(Editors" Choice)으로 선정되는 영예를 얻기도 했다. 여러 양성 및 음성 피드백으로 복잡하게 구성된 p53 조절네트워크
2012.11.23
조회수 12981
맞춤형 인산화 단백질 생합성 성공
- 사이언스誌 발표,“각종 질병원인 규명, 신약개발의 새로운 장을 열다”- 세포내 신호전달체계를 재설계하여 세균으로부터 맞춤형 인산화 단백질을 생산하는 기술이 세계 최초로 국내연구진에 의해 개발되었다. 이번 연구는 교육과학기술부의 “글로벌프론티어사업(탄소순환형 차세대 바이오매스 생산/전환 기술연구단)”의 지원을 받아 우리 학교 화학과 박희성 교수 주도로 수행되었다. 단백질 인산화는 생체 내에서 일어나는 단백질 변형의 일종으로, 세포내 신호전달과 그 결과 발생하는 세포의 생장․분열․사멸을 결정하는 중요한 역할을 한다. 예를들어, 성장세포가 성장호르몬 등 외부의 자극을 받으면 세포내 단백질에 인산이 첨가되고(단백질 인산화) 인산화된 단백질이 다른 단백질을 인산화 시키는 일련의 신호전달 과정을 거쳐 세포분열을 일으키게 된다. 인산화 과정에서 인산화 단백질에 돌연변이가 발생하면 세포의 정상적인 신호전달이 손상되고 세포의 무한 분열을 초래하여, 암을 포함한 각종 질병의 직접적인 원인이 된다. 이러한 인산화 과정은 매우 복잡하고 다이내믹하게 진행되므로, 세포내 신호전달의 극히 일부만 알려져 있고, 지금까지 단백질의 인산화를 조절할 수 없었다. 이 때문에 질병 원인 규명 연구와 신약개발에 많은 어려움을 겪고 있다. 박 교수는 예일대 Soll 교수팀과 공동연구를 통해 세균의 단백질 합성관련 인자들을 재설계하고, 진화방법으로 리모델링하여 인산화 아미노산(단백질 구성인자)을 단백질에 직접 첨가하는 기술을 개발하여 맞춤형 인산화 단백질을 생산하는데 성공했다. 연구팀은 이 기술을 이용하여 다양한 암을 유발시키는 단백질로 알려진 MEK1 인산화 단백질 합성에도 성공할 수 있었다. 박 교수는 “이번 연구를 통해서 단백질의 인산화 조절과 인산화 단백질의 대량 생산이 가능해 졌다.”며, “인산화 단백질을 통해 암을 포함한 각종 질병의 원인규명 연구와 차세대 암치료제 개발연구가 체계적이고 실질적으로 이루어질 것으로 기대된다.” 고 연구의 의의를 밝혔다. 연구결과는 생명과학분야 최고권위지인 사이언스誌 2011년 8월호 (8월26일자)에 게재됐다. 1. 세포의 단백질 생합성 기구 재설계 및 리모델링 ○ 세균의 단백질 생합성 기구들(중합효소, 아미노산, tRNA)을 재설계하고, 자연계 모방 진화기술로 새로운 확장인자를 개발한 결과 얻어진 인공기능 세포의 그림이다. DNA로부터 단백질이 생합성 되는 과정이 보여주고 있으며, 특히 새롭게 설계된 단백질 합성기구와 자연계 모방 진화기술로 개발된 확장인자의 모식도가 나타나 있다. 2. 재설계된 세포를 이용한 맞춤형 인산화 단백질 생산 ○ 그림1에서 제조된 재설계 인공기능 세포를 활용하여 복잡한 세포내 인산화과정 없이 인산화 아미노산을 단백질의 특정한 위치에 직접 첨가하는 방법으로 맞춤형 인산화 단백질을 생합성하는 그림이다. 세포내 신호전달에서 가장 중요한 역할을 하면서 돌연변이시 다양한 암을 유발시키는 인산화 단백질로 알려진 MEK1의 생합성을 보여주고 있다.
2011.08.26
조회수 10951
암 성장과 전이를 억제하는 혈관신생차단제 개발
-캔서 셀誌 표지논문 선정, “부작용 적고 효과 탁월한 신개념 항암치료제 개발 가능성 열어”- 국내 연구진이 암 성장과 전이에 필수적인 혈관신생*에 관여하는 새로운 인자를 발견하고 이를 효과적으로 차단하는 제재를 개발하여, 신개념 암 치료제 개발에 전기를 마련하였다. * 혈관신생(angiogenesis) : 몸속에 새로운 혈관이 만들어지는 현상으로, 악성 종양(암)의 성장과 전이에 매우 중요한 과정 우리학교 의과학대학원 고규영 교수와 삼성의료원 남도현 교수가 주도한 이번 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 중견연구자지원사업(도약연구)과 삼성의료원의 난치암정복연구사업의 지원을 받아 수행되었다. 이번 연구결과는 암 분야 최고 권위의 학술지인 ‘캔서 셀(Cancer Cell, IF=25.3)’ 표지 논문(8월 17일자)에 선정되었으며, 국내 연구진이 주도한 연구업적이 “캔서 셀”에 표지 논문으로 게재된 것은 이번이 처음이다. 고규영 교수팀은 기존의 혈관성장인자*(VEGF) 이외에 또 다른 성장인자(안지오포이에틴-2, Ang2)가 혈관신생을 촉진한다는 사실을 새롭게 발견하고, 두 인자를 효과적으로 차단하는 “이중혈관성장차단제”를 개발하는데 성공하였다. * 혈관성장인자 : 혈관신생을 촉진하는 인자로, 지금까지 VEGF가 대표적인 인자로 인식되었으나, 고 교수팀이 Ang2도 암의 혈관신생을 촉진한다는 사실을 새롭게 발견함. 지금까지 의학계에서는 VEGF가 혈관신생에 중추적인 역할을 수행하는 것으로 인식하여, 이를 억제하는 항암제인 아바스틴(Avastin)을 개발하여 암 환자들에게 투여해왔다. 그러나 항암 효과가 크지 않고 오히려 암을 촉진시키는(전체 환자 50%) 등 부작용이 적지 않아 치료에 어려움이 있었다. 고 교수팀은 VEGF 억제제를 투여하자 Ang2가 급격히 증가한다는 사실을 발견하고, VEGF과 Ang2을 동시에 차단하는 “이중혈관성장 차단제”를 제작하여 환자에게 투여한 결과, 기존의 VEGF만을 차단했던 제재보다 암 성장(2.1배)과 전이(6.5배)를 효과적으로 차단한다는 사실을 검증하였다. 고 교수는 “Ang2가 VEGF 못지않게 중요한 혈관신생인자라는 사실을 새롭게 확인하여, 두 인자를 동시에 효과적으로 차단하는 ‘이중 혈관성장차단제’ 개발에 성공함으로써, 효과는 탁월하지만 부작용은 적은 신개념 항암치료제 신약 개발에 새로운 가능성을 제시하였다”라고 연구의의를 밝혔다.
2010.08.18
조회수 13655
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1