-
단백질로 엮어낸 이중나선 개발
우리 대학 바이오및뇌공학과 최명철 교수 연구팀이 나노소재의 기초물질로 활용할 수 있는 단백질을 새롭게 발굴했다고 30일 밝혔다. 연구팀이 몸속에서 미세소관을 구성하는 `튜불린(Tubulin) 단백질'을 나노공학의 측면에서 재조명해 거둔 성과다.
바이오및뇌공학과 이준철 박사과정과 송채연 박사(現 아모레퍼시픽 R&D 센터)가 공동 제1 저자로 그리고 최명철 교수가 교신저자로 참여한 이번 연구결과는 국제학술지 `스몰(Small)'에 지난 9월 17일 字 표지논문(Back Cover)으로 게재됐다. (논문명: Tubulin Double Helix: Lateral and Longitudinal Curvature Changes of Tubulin Protofilament)
자연계와 산업계의 나노소재들은 놀라울 정도로 크고 복잡한 구조를 가진다. 이 구조들의 기본 형성원리는 작고 단순한 단위체들의 고유 형태가 전체구조를 결정한다는 원리다. 일반적으로 다양한 곡면 구조를 만들려면 서로 다른 모양을 가지는 최소 두 종류의 분자들을 이어 붙여야 한다. 예를 들어, 세포막의 경우 발아와 융합 과정에서 막의 곡률이 역동적으로 변하는데, 이는 형태가 다른 여러 종류의 인지질 분자들이 혼합돼 있어 가능한 특성이다.
최 교수 연구팀은 생명 현상의 중요한 역할을 담당하는 *미세소관의 특이한 성질에 주목했다. 바로 미세소관이 성장과 붕괴 과정에 필요한 다양한 곡면을 오직 한 종류의 단위체인 튜불린 단백질만으로 구현하기 때문이다.
☞ 미세소관 (Microtubule): 튜불린 단백질로 이루어진 긴 튜브 형태의 나노 구조물이다. 물질 수송의 고속도로, 세포 분열 과정의 분자기계 역할을 수행한다.
연구팀은 튜불린이 수직한 두 방향으로 접히는 독특한 성질에 핵심이 있다고 판단, 튜불린의 형태 변형을 인공적으로 제어하겠다는 점에 아이디어를 얻은 후 곧장 연구를 시작했다. 튜불린 단백질의 접힘을 제어하는 분자스위치를 찾고자 한 것이다.
튜불린이 강한 음전하를 띤 단백질이라는 점을 감안해 양전하 중합체인 폴리라이신(poly-L-lysine)이 미세소관의 구조를 변형하는 과정을 관찰했다. 가속기 X선 산란장치를 이용해 옹스트롱(Å, 100억 분의 1미터)의 정확도로 측정하자 DNA 이중나선 구조의 결정적 증거가 된 로절린드 프랭클린의 *`포토 51'과 유사한 결과를 확인했다.
☞ 포토 51 (photo 51): 로절린드 프랭클린이 촬영한 DNA의 엑스선 회절 이미지로, 프랜시스 크릭과 제임스 왓슨이 DNA 이중나선 구조를 밝히는데 결정적인 증거가 되었다.
이 결과는 튜불린들이 꼭 두 줄씩 길게 늘어선 `튜불린 이중나선' 구조의 형성을 의미하는 것으로 연구팀은 튜불린을 두 방향으로 접을 수 있는 분자스위치를 찾아낸 것이다.
분자스위치의 크기와 개수를 조절함에 따라, 최 교수 연구팀은 단일 벽 나노튜브에서 이중벽 나노튜브로 변환하거나 이중나선의 간격을 자유자재로 조절이 가능한 성과를 거둘 수 있었다.
연구팀 관계자는 "우리 몸속 세포물질을 그대로 이용하되, 자연의 설계를 뛰어넘어 혁신적인 나노건축물을 구현해낸 것ˮ이라고 의미를 부여했다. 최 교수 연구팀의 이번 연구 결과는 튜불린 단백질을 나노소재의 기초물질로 활용하게 해줄 핵심 전략을 제시했다는 점에서 의미가 있다.
최명철 교수는 "이 논문을 계기로 튜불린을 나노소재로 활용하는 연구들이 본격적으로 시작될 것ˮ 이라면서 "새로운 바이오-나노기술의 특이점이 될 선도적 연구ˮ라고 이번 연구에 대한 의미를 부여했다.
최 교수는 이어 "나노미터 크기의 광학/전기/의료 소재를 개발하는 플랫폼으로는 물론 모터 단백질 키네신과 결합해 분자기계를 개발하는 등 활용 가능성이 무궁무진하다ˮ고 강조하면서 "향후 다양한 형태와 특성을 가진 나노소재를 만들어낼 `튜불린 나노공학'의 발전 기반 조성과 함께 이번 연구를 통해 발견한 분자스위치는 알츠하이머병 등 뇌질환의 새로운 치료 전략으로 활용될 것ˮ이라고 기대감을 내비쳤다.
앞서 연구팀은 이 분자스위치를 이용한 튜불린 나노소재의 의료적 가치를 입증한 바 있다. 튜불린 나노튜브를 항암 약물의 일종인 미세소관 표적 치료제의 만능 전달체로 활용할 수 있다는 결과를 지난 8월 20일 字 `어드밴스드 머티리얼스(Advanced Materials)'誌에 표지논문으로 발표했다.
미국 산타바바라 캘리포니아대와 공동으로 진행된 이번 연구는 한국연구재단 (중견연구, 방사선기술)과 한국원자력연구원·KAIST의 지원을 받았으며 포항 방사광 가속기의 소각 X선 산란 장치를 이용해 실험을 수행했다.
2020.10.30
조회수 26003
-
스티브 박 교수, 균일한 성능 갖는 인공피부 제작기술 개발
〈 스티브박 교수, 오진원 석사 〉
우리 대학 신소재공학과 스티브박 교수, 기계공학과 김정 교수, 한국전자통신연구원(ETRI) 심주용 박사 공동 연구팀이 균일한 성능과 이력현상이 낮은 인공 피부 제작 기술을 개발했다.
연구팀이 개발한 기술은 향후 인공 피부, 헬스케어 장비 등 다양한 분야에서 적용 가능할 것으로 기대된다.
오진원 석사가 1 저자로 참여한 이번 연구결과는 국제학술지 ‘스몰(Small)’ 8월 16일 자 표지논문에 게재됐다. (논문명 : Highly Uniform and Low Hysteresis Piezoresistive Pressure Sensors based on Chemical Grafting of Polypyrrole on Elastomer Template with Uniform Pore Size)
최근 인공 피부 제작을 위한 촉각 센서 연구가 활발히 진행되고 있다. 촉각 센서 관련 연구는 센서의 민감도, 자극 측정 범위, 반응 속도 등 센서의 성능 개선에 집중돼 있다. 그러나 센서의 상용화를 막는 가장 큰 걸림돌은 센서 간 낮은 균일성과 이력현상이다. 이 문제를 해결하기 위한 연구가 계속되고 있다.
이력현상이란 촉각 센서에 압력이 가해질 때와 제거될 때 센서의 전기적 신호의 변화 양상이 차이를 나타내는 현상을 말한다. 즉, 센서에 같은 압력이 가해져도 다른 전기적 신호를 보일 수 있음을 뜻한다. 따라서 이력현상이 커지면 촉각 센서의 압력 측정 정확성이 떨어지게 된다.
센서 간 높은 균일성은 촉각 센서의 상용화에 필수적이다. 같은 조건으로 제작된 센서의 압력에 대한 민감도가 서로 다르면 센서의 측정 신뢰도가 떨어지게 되고 낮은 재현성으로 인해 상용화가 불가능하다.
연구팀은 낮은 이력현상과 센서 간 높은 균일성을 확보하기 위해 미세유체공정과 화학증착 기법을 활용했다. 연구팀은 미세유체공정을 통해 균일한 크기의 기공을 갖는 고분자 스펀지를 제작했다.
스펀지 기공의 크기는 1.43 %의 변동계수 값을 보였다. 연구팀은 전산 시뮬레이션을 통해 스펀지의 기공의 크기의 변동계수 값이 클수록 센서 간 균일성이 낮아짐을 확인했다.
연구팀은 제작한 고분자 스펀지에 화학증착 기법을 통해 전도성 고분자를 코팅했다. 화학증착 기법은 증착 시간을 통해 증착되는 고분자의 양을 조절할 수 있어 균일한 코팅이 가능하다.
그 결과 제작된 센서는 센서 간 성능의 변동계수 값이 2.43 %로 높은 균일성을 보였다. 또한, 고분자 스펀지와 전도성 고분자가 강한 공유 결합을 형성해 2 % 수준의 낮은 이력현상을 보임을 확인했다.
스티브 박 교수는 “이 기술은 실질적으로 센서의 상용화에 필요한 센서의 균일성을 높이며 이력현상은 감소시킬 수 있는 기술로, 센서의 상용화에 핵심기술로 활용할 수 있을 것으로 기대한다”라고 말했다.
이번 연구는 KKI 국제공동연구와 글로벌특이점연구의 지원을 통해 수행됐다.
□ 그림 설명
그림1. small 표지
그림2. 균일한 크기의 기공을 가지는 고분자 스펀지 SEM 이미지 (우) 같은 조건으로 제작 된 10개의 센서의 압력에 대한 저항 변화
2019.08.20
조회수 12819
-
김학성 교수, 세포 내 단백질 전달 효율 높이는 DNA 기반 나노구조체 개발
우리 대학 생명과학과 김학성 교수, 류이슬 박사 연구팀이 강원대 이중재 교수, 한국원자력연구원 강정애 박사와의 공동 연구를 통해 DNA를 기반으로 나노 구조체를 개발해 세포 속으로의 단백질 전달 효율을 높이는 기술을 개발했다.
이번 연구 결과는 국제 학술지 ‘스몰(Small)’에 2018년 12월 28일일자 표지논문으로 게재됐다.
단백질 치료제는 저분자 화합물에 비해 반응 부위를 구별해내는 특이성이 우수해 차세대 의약품으로 활발히 개발되고 있다. 단백질 치료제가 탁월한 효과를 내기 위해서는 치료용 단백질이 세포 내로 효율적으로 전달되는 기술이 선행돼야 한다.
지금까지는 화학적 합성법 등으로 단백질 전달체를 제작해 왔지만 생체 독성, 낮은 전달 효율, 복잡한 제조공정과 효과가 일관적이지 않은 재현성 등이 해결돼야 할 과제로 남아있다.
연구팀은 생체 분자인 DNA를 기반으로 나노 구조체를 제작해 생체 친화적이면서 특정 세포로의 높은 전달 효율을 보였다. 특히 다양한 단백질을 전달할 수 있는 범용적인 기술로서 폐암 동물 모델에서도 항암 물질을 전달해 높은 항암 효과를 입증했다.
제조공정도 복잡하지 않다. 먼저 금 나노입자 표면에 DNA를 부착한다. 다음으로 징크 핑거를 이용해 각 DNA 가닥에 암세포를 표적하는 생체 분자와 항암 단백질을 결합해 제작했다.
DNA와 징크 핑거 간의 상호작용을 이용하므로 DNA 서열과 길이를 조절해 나노 구조체에 탑재되는 단백질의 양을 손쉽게 조절할 수 있다.
김학성 교수는 “생체 적합한 소재인 DNA와 단백질의 상호작용을 이용해 세포 내로 단백질을 효율적으로 전달하는 새로운 나노 구조체를 개발한 것이다”라며, “세포 내 단백질 치료제의 전달뿐 아니라 동반 진단용으로 광범위하게 활용될 것으로 기대된다”라고 말했다.
이번 연구 성과는 과학기술정보통신부‧한국연구재단 기초연구사업(글로벌연구실, 중견연구, 생애첫연구) 지원으로 수행됐다.
□ 그림 설명
그림1. small 표지
그림2. 나노 구조체 제조 과정 모식도
그림3. 나노 구조체의 세포 내 단백질 전달 효과
그림4. 나노 구조체의 현미경 관찰 사진
2019.01.21
조회수 11344
-
김신현 교수, 달걀 속 살충제 성분, 현장 즉시 검출 기술 개발
〈 김신현 교수, 김동재 박사과정 〉
우리 대학 생명화학공학과 김신현 교수 연구팀과 재료연구소(소장 이정환) 김동호 박사 공동 연구팀이 생체 시료에 들어있는 미량의 분자를 직접 검출할 수 있는 센서를 개발했다.
연구팀은 개발한 센서를 통해 다양한 종류의 살충제 성분을 검출하는데 성공했다. 특히 국내 및 유럽에서 문제가 됐던 달걀 속 살충제 성분인 피프로닐 술폰(Fipronil sulfone)을 시료 전처리 없이 검출할 수 있음을 증명했다.
연구팀의 센서는 전하를 띠는 하이드로젤 미세입자 내부에 금 나노입자 응집체를 캡슐화한 형태로 생체 시료 내에 존재하는 분자를 직접 분석해야 하는 광범위한 분야에 적용 가능할 것으로 기대된다.
김동재 박사과정이 1저자로 참여한 이번 연구는 나노분야의 국제 학술지 ‘스몰(Small)’ 10월 4일자 내부표지 논문으로 게재됐다.(논문명 : SERS-Active Charged Microgels for Size- and Charge-Selective Molecular Analysis of Complex Biological Samples, 생체 시료의 분자 크기 및 전하 선택적 분석을 위한 표면증강라만산란용 마이크로젤)
분자가 레이저에 노출되면 ‘분자 지문’이라고 불리는 고유의 라만(Raman) 신호를 보인다. 하지만 일반적으로 라만 신호의 세기는 매우 낮아 실질적인 분자 감지에 사용이 어렵다.
연구팀은 금속 나노구조의 표면에서 발생하는 표면 플라즈몬 공명 현상이 강한 세기의 기장을 형성하는 점을 이용해 라만신호를 현저히 증가시켰다. 이를 표면증강라만산란 현상이라고 한다.
이 표면증강라만산란 현상에 의해 금속 나노구조 표면에 존재하는 분자의 라만신호는 크게 증가시킬 수 있지만 이를 일반적인 생체 시료에 직접 적용하는 것은 어렵다. 생체 시료에 존재하는 다양한 크기의 단백질들이 금속 표면에 비가역적으로 흡착해 실제 분석이 필요한 분자의 접근을 막기 때문이다.
일반적으로 사용되는 생체 시료 분석법은 대형 장비를 이용한 시료 전처리 과정이 필수이다. 하지만 이로 인해 시료의 신속한 현장 분석이 어려워 시간과 비용을 증가시킨다.
연구팀은 시료의 정제 과정 없이 분자를 직접 검출하기 위해 하이드로젤에 주목했다. 하이드로젤은 친수성(親水性) 나노 그물 구조를 이루고 있어 단백질처럼 크기가 큰 분자는 배제하고 작은 크기의 분자만을 내부로 확산시킨다. 또한 하이드로젤이 전하를 띠는 경우 반대 전하를 띠고 있는 분자를 선택적으로 흡착시켜 농축할 수 있다.
연구팀은 이러한 원리를 센서 구현에 적용시키기 위해 미세유체기술을 이용했다. 이를 통해 금 나노입자 응집체를 형성하는 동시에 전하를 띠는 하이드로젤 미세입자 안에 캡슐화 하는데 성공했다.
하이드로젤 미세 입자는 생체 시료에 도입돼 단백질로부터 금 나노입자 응집체를 보호하고, 동시에 반대 전하를 띠는 표적 분자를 응집체 표면에 선택적으로 농축시킨다. 이를 통해 표적 분자의 라만 신호는 단백질의 방해 없이 증대되며 시료의 전처리 과정 없이 빠르고 정확한 분자 검출이 가능해진다.
김신현 교수는 “새롭게 개발한 라만 센서는 식품 내 살충제 성분 검출 뿐 아니라 혈액과 소변, 땀 등 인체 속 시료에 들어있는 약물, 마약 성분 등 다양한 바이오마커의 직접 검출에도 사용 가능하다”고 말했다.
재료연구소 김동호 박사는 “시료 전처리가 필요없기 때문에 현장에서 시료의 직접 분석이 가능해 시간과 비용의 혁신적 절감이 가능해질 것이다”고 말했다.
이번 연구결과는 재료연구소의 기관 주요사업과 한국연구재단의 중견연구자지원사업 및 글로벌연구실사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. small 저널 내부표지
그림2. 시료 전처리 없이 분자 선택적 라만 분석이 가능한 하이드로젤 기반 라만 센서의 원리
그림3. 분자 전하 선택적 농축 및 배제를 보여주는 현미경 사진
2018.10.18
조회수 11946
-
박인규, 정연식 교수, 모바일 기기 탑재 가능한 고성능 수소센서 개발
〈 가오민 연구원, 박인규 교수, 조민규 연구원 〉
우리 대학 기계공학과 박인규 교수, 신소재공학과 정연식 교수 공동 연구팀이 폴리스티렌(Polystyrene) 구슬의 자기 조립(self-assembly) 현상을 이용해 고성능의 실리콘 기반 수소센서를 개발했다.
연구팀이 개발한 수소 센서는 제작 과정이 단순하고 비용이 저렴해 모바일 기기에 탑재할 수 있어 전력 소모에 어려움을 겪는 모바일 분야에 기여할 수 있을 것으로 기대된다.
가오 민(Gao Min) 연구원, 조민규 박사후 연구원, 한혁진 박사과정이 참여한 이번 연구는 나노 분야 국제 학술지 ‘스몰(Small)’ 3월 8일자 표지논문에 선정됐다.
청정에너지인 수소 가스는 차세대 에너지원으로 각광받고 있다. 현재도 냉각 시스템이나 석유 정제시설 등 다양한 산업분야에서 활용되고 있지만 무색, 무취의 가연성 물질이기 때문에 조기 발견이 어려워 고성능 수소 센서를 개발하는 것이 중요하다.
그러나 기존 수소 센서들은 부피가 크고 소모 전력이 높으며 제작비용이 상대적으로 높은 단점이 있다.
공동 연구팀은 수백 나노미터 (nm) 직경의 폴리스틸렌 구슬들을 자기조립 현상을 이용해 규칙적으로 실리콘 기판 위에 배열시켰다. 이를 이용해 수십 나노미터 수준의 그물 모양 패턴을 구현해 초소형 고성능 수소 센서를 개발했다.
이 기술은 수소가스가 센서에 노출되면 팔라듐 나노입자와 반응해 팔라듐의 일함수(work function)가 변화하고 그에 따라 실리콘 나노 그물 내 전자의 공핍 영역(depletion region)의 크기가 변화하면서 전기 저항이 바뀌는 원리이다.
이번에 개발한 수소 센서는 최소 선폭 50 나노미터 (nm) 이하의 실리콘 나노 그물 구조 센서를 저비용으로 구현할 수 있다.
일반적으로 수소 센서의 성능은 민감도, 반응속도, 선택성 등에 따라 구분된다. 연구팀의 센서는 0.1%의 수소 농도에서 10%의 민감도와 5초의 반응속도를 기록해 기존 실리콘 기반 수소 센서보다 50% 이상 빠르고 10배 이상 높은 민감도를 보였다.
박인규 교수는 “기존의 값비싸고 복잡한 공정을 거치지 않고도, 단순한 방법으로 초미세 나노패턴 구현이 가능하며, 수소센서 뿐만 아니라 다양한 화학, 바이오센서에도 응용이 가능할 것이다”고 말했다.
과학기술정보통신부의 나노소재기술개발사업, 한국연구재단의 국민위해인자에 대응한 기체분자식별․분석기술개발사업, 해양수산부의 해양수산환경기술개발사업, KUSTAR-KAIST 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 스몰(Small) 2018년 3월 8일자 Issue 표지논문
그림2. 완성된 수소센서의 일반 사진 (왼쪽), 전자현미경 사진 (중간, 오른쪽)
그림3. 수소 농도 변화에 따른 수소센서의 감지 그래프
2018.04.04
조회수 20477
-
조용훈 교수, 금속나노구조 이용해 효율 높인 퀀텀닷 LED 개발
우리 대학 물리학과 조용훈 교수 연구팀이 금속나노 배열 구조를 이용해 퀀텀닷(Quantum Dot) 발광다이오드(LED)의 효율을 향상시킬 수 있는 기술을 개발했다.
이 기술을 통해 차세대 디스플레이 기술이 한 단계 발전하는 데 기여할 것으로 기대된다.
현재 사용되는 퀀텀닷 기반의 디스플레이는 청색 LED를 광원으로 사용해 녹색과 적색 퀀텀닷을 여기(勵起, 광자 에너지가 분자로 옮아가 높은 에너지상태로 방출되는 상태)해 색 변환을 하는 방식이다.
이러한 방식은 높은 가격의 퀀텀닷을 이용하기 때문에 디스플레이 소자의 단가가 높아진다. 또한 액체 상태인 퀀텀닷을 소재에 적용하기 위해 공기 중에 말리면 발광 효율이 급격히 저하된다.
연구팀은 문제 해결을 위해 금속 나노구조가 청색 LED의 빛을 받으며 발생하는 국소 표면 플라즈몬 효과를 이용해 퀀텀닷의 발광효율을 증가시켰다. 더불어 발광 휘도를 높일 수 있는 LED 구조를 이론적으로 제시하고 구현하는 데 성공했다.
이 구조는 기본 청색 LED를 여기 광원으로 이용한다. 알루미늄 금속 나노구조와 녹색 퀀텀닷을 여기해 녹색 발광 휘도를 증가시키고, 은 금속 나노구조와 적색 퀀텀닷을 여기해 적색 발광 휘도를 증가시키는 방식이다.
이는 금속 나노구조를 통해 특정 휘도를 얻기 위해 필요한 퀀텀닷의 양을 많이 줄일 수 있다는 의미이고 결과적으로 소재의 단가를 낮출 수 있다.
이번 연구는 소재의 구조를 이론적으로 모델링했기 때문에 목적에 따라 금속 나노구조를 간단하게 새로 디자인해 조절할 수 있다.
조 교수는 “향후 퀀텀닷 디스플레이에 금속 나노구조를 도입하는 기술이 적절히 도입된다면 소재에 필요한 퀀텀닷의 양을 줄이고 효율적인 색 변환을 통해 단가를 줄일 수 있을 것으로 기대된다”고 말했다.
박현철 박사과정이 1저자로 참여한 이번 연구는 나노과학 분야 국제 학술지 ‘스몰(Small)’ 12월 27일자 표지 논문에 선정되었으며, 한국연구재단의 중견연구자 지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 스몰(Small)저널의 12월 27일자 표지 논문 그림
.
그림2. 금속 나노구조가 있을 경우와 없을 경우의 발광 세기 차이를 보인 스펙트럼
2018.01.15
조회수 12985
-
김일두 교수, 호흡으로 폐암, 당뇨 조기 진단하는 초소형 센서 개발
혈액 체취나 영상촬영을 하지 않고도 사람의 호흡만으로 폐암, 당뇨 등 각종 질병을 실시간으로 파악할 수 있는 초소형 감지 센서 기술이 개발됐다.
우리 대학 신소재공학과 김일두 교수신소재공학과 연구팀은 사람의 호흡 내에 질병과 관련된 극미량의 특정 가스의 농도를 실시간으로 정확하게 분석할 수 있는 세계 최고 수준의 고감도·초소형 센서를 개발하였다고 밝혔다.
이를 통해, 현재 병원에서 혈액 체취나 조직 검사, MRI 등을 통해 고비용으로 진단하고 있는 폐암이나 당뇨 등의 질병을 개인 스마트폰이나 웨어러블 장치를 통해 수시로 저렴하게 진단할 수 있는 길을 열었다.
사람이 숨을 쉬면서 내뱉는 호흡 속 가스 성분 중에는 다양한 휘발성 유기화합물 가스들이 포함되어 있으며, 이중 일부 가스는 질병과 밀접한 연관이 있는 것으로 알려져 있다.
대표적으로 아세톤, 톨루엔, 황화수소 가스는 각각 당뇨병, 폐암, 구취 환자에서 더 높은 농도로 배출되며, 이러한 호흡 속 특정 가스의 농도를 정확하게 분석할 수 있다면 여러 질병들을 간편한 방법으로 조기에 진단할 수 있다.
그러나, 입안에는 수분을 포함하여 수백 종의 가스들이 존재하기 때문에, 그간 개발된 센서는 사람 호흡 속에 포함되어 있는 극미량(10 – 2,000ppb)의 특정 가스를 선택적으로 검출하는데 한계가 있었다.
연구팀은 수백 종의 가스 중 질병과 관련된 특정 가스만 선택적으로 탁월하게 검출할 수 있는 고성능 촉매를 개발하였으며, 이를 나노 섬유 형상의 센서 소재에 적용하여 개인 스마트폰과 연동이 가능한 초소형·고감도 질병 진단 센서를 구현하는데 성공하였다.
김일두 교수는 “질병 진단 센서는 차량이나 모바일 기기 등에 활용하여 개인 질병을 지속적으로 모니터링 할 수 있을 뿐만 아니라, 향후 대기 오염 분석, 실내 공기질 분석 등 가스 센서와 관련된 산업분야에서 사물인터넷(IoT) 제품과 융합되어 새로운 시장을 창출할 것으로 기대된다.”라고 연구의의를 밝혔다.
이번 연구는 김일두 교수 외 최선진·김상준 연구원이 주도하였고, 미래창조과학부 글로벌프런티어사업(스마트 IT 융합시스템 연구단)의 지원으로 수행되었다.
연구 결과는 재료과학분야 세계적 국제학술지인 ‘스몰(small)’ 표지논문에 2월 17일(수) 게제 되었으며, 관련 특허는 국내기업에 기술이전 되어 향후 조기 상용화가 이뤄질 것으로 기대된다.
□ 그림 설명
그림1. 스마트폰과 연결된 호기가스 분석 센서 및 호흡지문 패턴 인식을 통한 질병 진단
그림2. 동글 타입(Dongle-type), 패치 타입(Patch-type), 및 시계 타입(Watch-type) 센서 모듈을 이용한 휴대형, 실시간 호기가스 분석 센서
그림3. 'small' 표지에 게재된 논문
2016.03.07
조회수 17215
-
도장 찍듯이 자유롭게 그래핀 옮기는 기술 개발
우리 학교 전기및전자공학과 최성율 교수 연구팀이 단원자층 그래핀을 금속촉매기판에서 직접 떼어내는 동시에 원하는 기판에 도장을 찍듯 자유롭게 옮길 수 있는 기술을 개발하는데 성공했다.
이 기술을 활용하면 기존의 직접박리 기반 전사공정으로 달성하기 어려웠던 그래핀 박막 적층, 구조물 표면이나 유연한 기판으로 전사, 4인치 웨이퍼 크기의 대면적 전사 등이 가능해진다. 향후 웨어러블 스마트기기 등 다양한 분야에 사용되는 그래핀 전자소자 상용화에 활용될 전망이다.
그래핀을 원하는 기판으로 옮기기 위해 현재 가장 널리 사용하는 방법인 습식전사법은 전사과정 중에 그래핀이 물리적으로 손상되고 표면이 오염 될 수 있어 전사된 그래핀의 전기적 특성이 심각하게 훼손될 수 있다는 단점이 있다.
최 교수 연구팀은 금속촉매기판 위에 성장된 그래핀을 수용성 고분자 용액으로 처리한 후 동일한 수용성 고분자 지지층을 그 위에 형성시켰다. 이 과정을 통해 지지층과 그래핀 사이에 강한 결합력이 형성되고 그 후 지지층을 탄성체 스탬프로 떼어내면 지지층과 함께 그래핀이 금속촉매기판으로부터 분리된다.
이렇게 분리된 그래핀은 탄성체 스탬프에 고립상태로 존재하기 때문에 원하는 기판 어디에든 도장 찍어내듯 자유롭게 옮길 수 있다. 또 금속촉매기판을 재활용 할 수 있고 유해한 화학물질을 전혀 사용하지 않기 때문에 친환경적인 전사법 이라는 장점도 가지고 있다.
최 교수는 이번 연구에 대해 “개발된 그래핀 전사방법은 그 공정이 범용적이고 대면적 전사도 가능하므로 그래핀 전자소자 상용화에 기여할 수 있을 것”이라며 “이 방법이 가지고 있는 높은 전사 자유도로 인해 향후 그래핀과 2차원 소재 접합 나노소자 구현에도 다양하게 활용될 것으로 기대된다”고 연구의의를 밝혔다.
이번 연구는 KAIST 전기및전자공학과 최성율 교수와 양상윤 연구교수가 주도하고 같은 과 조병진 교수, 한국전자통신연구원 최춘기 박사가 참여했으며, 미래창조과학부가 추진하는 글로벌 프론티어 사업인 ‘나노기반 소프트일렉트로닉스 연구단’의 지원으로 수행됐다.
연구 결과는 나노 및 마이크로 과학 분야의 국제 학술지 스몰(small) 1월 14일자 표지논문으로 게재됐다. 끝.
그림1. 본 연구결과를 설명하는 Small紙의 2015년 1월 14일자 표지 사진
그림2. 본 연구에서 개발된 ‘높은 자유도를 갖는 그래핀 직접박리/전사법’
그림3. 개발된 전사법으로 전사된 그래핀: (좌) 단원자층 그래핀을 3번 반복 전사하여 얻은 3층 그래핀 (3-layerd graphene), (우) 그래핀 트랜지스터 제작을 위해 금속 전극 구조물 표면에 전사한 그래핀
그림4. 대면적 전사된 그래핀: (좌) 4인치 실리콘 웨이퍼에 전사된 그래핀, (우) 플라스틱 (polyethersulfone, PES) 유연기판에 전사된 그래핀 (크기 7cm x 7cm)
2015.01.19
조회수 14786
-
DNA 기반 반도체 핵심 원천기술 개발
박현규 교수
- 분자 비콘을 이용해 모든(8가지) 논리게이트 구현하는 데 성공 -- 스몰(Small)誌 7월호 표지논문으로 실려 -
초소형 미래 바이오전자기기를 구현하기 위한 핵심기술 개발됐다.
우리 학교 생명화학공학과 박현규 교수 연구팀이 DNA를 이용해 모든 논리게이트를 구현하는 데 성공, 나노분야의 세계적 학술지 ‘스몰(Small)’ 7월호(23일자) 표지논문으로 실렸다.
현재 최첨단 기술로도 10nm(나노미터) 이하의 실리콘 기반 반도체 제작은 불가능한 것으로 알려져 있지만, DNA는 굵기가 2nm 정도로 가늘기 때문에 보다 저렴하면서도 획기적인 집적도를 가진 반도체를 만들 수 있을 것으로 기대된다.
2나노급 반도체가 개발되면 우표 크기의 메모리 반도체에 고화질 영화 10000편을 저장하는 등 현재 상용화중인 20나노급 반도체보다 약 100배의 용량을 담을 수 있게 된다.
DNA는 네 종류의 염기인 아데닌(adenine, A), 시토신(cytosine, C), 구아닌(guanin, G), 티민(thymine, T)이 연속적으로 연결돼 있는데 A는 T와, G는 C와 각각 특이적으로 결합하는 특성을 갖고 있다.
특정 DNA는 특이적으로 결합하는 염기서열을 지닌 또 다른 DNA와 결합해 이중나선 구조를 형성하는 데, 연구팀은 이러한 DNA의 특이적 결합 특성과 구조 변화에 따른 형광신호 특성이 있는 고리모양의 분자 비콘을 이용했다.
연구팀은 생체 DNA물질을 디지털 회로에서 사용되는 논리게이트와 같은 역할을 담당하도록 입력신호로 사용해 고리모양의 DNA가 열리거나 닫히도록 했다.
고리모양 DNA가 열린 형태에서는 형광신호가 증가하고 닫힌 상태에서는 형광 신호가 감소하며 이로 인해 발생하는 형광신호의 변화를 출력신호로 사용했다.
연구팀은 제한적인 시스템만을 구현하는 기존의 논리게이트의 문제점을 극복, 8가지 모든 논리게이트(AND, OR, XOR, INHIBIT, NAND, NOR, XNOR, IMPlCATION)를 구현하는 데 성공해 반도체 기술로써의 적용 가능성을 높였다.
이와 함께, 각각의 논리게이트의 연결을 통한 다중 논리게이트(Multilevel circuits)와 논리게이트의 재생성을 보여주는 데도 성공했다.
박현규 교수는 “하나의 분자 비콘을 모든 게이트 구성을 위한 보편적인 요소로 사용해 저렴하면서도 초고집적 바이오 전자기기의 가능성을 높였다”며 “앞으로 분자 수준의 전자 소자 연구에 큰 변화가 있을 것으로 예상된다”고 말했다.
이번 연구를 주도한 박기수 박사과정 학생(제1저자)은 “DNA는 10개의 염기서열 길이가 3.4nm이고 굵기가 2nm밖에 되지 않는 매우 작은 물질이기 때문에 이를 이용해 전자 소자를 구현하면 획기적인 집적도 향상을 이룰 수 있다”며 “간단한 시스템 디자인을 통해 정확한 논리게이트를 구현해 내 DNA 반도체를 탑재한 바이오컴퓨터가 곧 현실로 다가올 것”이라고 말했다.XOR 게이트 : 입력 DNA A(input A)와 입력 DNA B(input B) 둘 중 하나만 있을 때는 고리모양 DNA가 열려서 형광 신호가 나오고(출력신호 1), DNA A와 B가 모두 없을 경우와 모두 있는 경우에는 고리모양 DNA가 고리모양을 유지하여 형광을 발생하지 않게 함으로써 XOR 논리게이트를 정확하게 구현했다.
2012.09.18
조회수 13474
-
보다 밝은 투명디스플레이 개발
- KAIST 이성민 박사과정 학생, 투명 LCD‧PDP‧LED 광 효율 개선에 적용 가능한 원천기술 -
- 나노 표면 플라즈몬 현상 이용해 1.6배 이상 발광효율 향상돼 -- 나노기술 분야 세계적 학술지 "스몰(Small)" 3월호 게재 -
우리 학교 전기및전자공학과 이성민 박사과정 학생(지도교수 최경철)이 나노 표면 플라즈몬 현상을 이용해 투명 디스플레이의 효율을 획기적으로 향상시킬 수 있는 원천기술을 개발했다.
이 기술을 스마트 쇼윈도우, 스마트 미러, 투명 단말기, 투명 핸드폰 등과 같은 투명한 디스플레이에 적용하면 보다 선명하게 볼 수 있는 투명디스플레이가 나올 것으로 기대된다.
현재 개발되고 있는 투명디스플레이는 출력되는 영상이 선명하지 않아 미세한 구별이 어렵기 때문에 실질적으로 상용화하기에는 역부족이라는 게 관련업계의 평이다. 왜냐하면 빛을 내는 형광체의 발광세기가 충분히 높지 않기 때문이다. 또 형광체 재료로 사용되는 희토류 금속의 가격이 폭등하고 있는 것도 상용화를 위한 걸림돌로 지적돼왔다.
이번 연구는 전기 및 전자 공학과 최경철 석좌교수팀의 이성민(31) 박사과정 학생이 주도했으며, 연구결과는 나노기술 분야 세계적 권위지 ‘스몰(Small)’ 온라인 판 3월호에 게재됐다.
최 교수 연구팀은 이번 연구를 위해 금속은 불투명하고 빛을 반사하는 특성이 있는데, 금속을 나노입자 수준으로 아주 작게 만들면 빛이 금속입자를 통과해 투명하게 보이고, 금속입자들은 공명현상을 일으켜 발광세기를 증가시키는 ‘표면 플라즈몬’ 현상에 착안했다.
이 현상을 이용해 최 교수팀은 나노크기의 은(Ag)을 희토류 금속이온이 첨가된 투명 형광물질로부터 수십 나노미터 이내에 위치하게 하면 투명 형광물질의 발광세기가 최대 63.7% 향상시킬 수 있다는 사실을 밝혀냈다.
또 이 원리를 이용하면 전기·광학적 효율도 11%나 향상돼 저전력 투명디스플레이 소자를 구현할 수 있다는 점도 이번 연구를 통해 밝혀낸 또 다른 성과다.
이 기술은 최 교수 연구팀이 지난 2009년 나노 표면 플라즈몬을 이용해 OLED의 밝기를 증가시킨 것에 대한 후속 연구 성과로 나노 표면 플라즈몬의 차세대 디스플레이에 대한 활용 가능성을 높였다는 점에서 획기적인 연구 성과로 꼽힌다.
최경철 교수는 “표면 플라즈몬은 금속박막 또는 나노입자 표면에서 일어나는 표면 자유전자들의 집단적인 진동현상”이라며 “발광체 주변에서 표면 플라즈몬 공명 특성이 나타날 경우 발광체의 발광 재결합 속도가 증가해 발광체의 발광 특성이 향상될 수 있다”고 설명했다.
특히 “이번 연구 성과는 나노 표면 플라즈몬 기술을 사용하기 때문에 소자의 투명도를 유지하면서 발광체의 광 특성을 향상시켜 투명한 LCD, PDP, LED 등 미래 투명디스플레이 소자에 확대적용이 가능하다”고 강조했다.
최 교수는 또 “이번 기술은 디스플레이 형광체에 사용되는 희토류 금속 이온의 발광 특성을 원천적으로 향상시킬 수 있는 기술로서 희토류 금속 사용량을 적게 하면서도 높은 광 효율을 얻을 수 있다”며 “최근 들어 희토류 금속 가격이 3~6배 폭등하는 세계 시장 속에서 국가 경쟁력을 강화시킬 수 있는 핵심 원천기술이 될 것”이라고 덧붙였다.(끝).
□ 용 어 해 설
- 투명 디스플레이 : 빛을 내는 형광물질과 광자발광, 전계발광, 음극선 발광 원리를 이용하여 구성된 디스플레이로서 투명 재료 기술을 접목하여 발광하지 않는 상태에서는 투명하다가, 발광을 하는 경우 이미지 및 동영상을 구현할 수 있는 형태의 차세대 디스플레이 소자.
- 나노 플라즈몬 현상 : 나노 크기로 형성된 금속 나노 입자에 특정 광원이 입사되었을 때, 광원의 파장에 따라 금속 나노입자의 표면에 위치한 전자가 공진적으로 진공하는 유사입자를 지칭한다. 금속 나노 입자의 재질, 모양 및 주변의 굴절률에 따라 공진하는 파장이 결정되므로 특정 색상을 띠게 되고, 유도된 표면 플라즈몬은 금속 나노 입자주위로 한정되는 특징이 있다.
- 진공 열증착법 : 10-4 Torr 이하 높은 진공상태에서 증착하고자 하는 물질에 열을 가하여 기화시킨 후, 기체상태의 물질이 목표 기판에 도달하여 박막으로 증착시키는 방법.
- 광효율 : 소비되는 전기량(전력) 대비 빛의 밝기가 어는 정도 인지는 알려주는 물리적인 양.
- 희토류 금속 : 첨단 산업에서 많이 사용되는 원소로서 란타넘 계열의 금속 원소 및 스칸듐과 이트륨을 합쳐 총 17종의 금속원소를 지칭하는데, 디스플레이 산업에서는 가시광선 영역의 빛을 발광하는 형광체를 제조하는 데 사용된다. 최근 디스플레이 산업의 원자재 가격 상승 문제와 관련하여 희토류 금속의 가격이 상승에 대한 관심이 증가하고 있다.
그림1. "나노 표면 플라즈몬‘ 이 발생하는 경우 전기적 필드가 집중되는 모습
그림2. "나노 표면 플라즈몬‘ 이용한 투명 디스플레이
그림 3 : 나노 플라즈몬 공명을 유도하기 위한 은 나노 입자의 형상
2012.03.21
조회수 25617
-
신속·간편한 유전자 진단 신기술 개발
- 독일‘스몰’지 표지논문 선정,“다양한 병원균 감염 여부 신속히 진단하는 새로운 원천기술”-
표적 DNA를 현장에서 신속, 간편하게 육안으로 진단할 수 있는 발색 진단 기술이 국내 연구자의 주도로 개발되었다.
우리 학교 박현규 교수가 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 중견연구자지원사업(도약연구)의 지원으로 수행되었다.
박현규 교수 연구팀은 자성 나노입자가 과산화효소 활성을 나타낸다는 최근 이론을 활용하여, PCR(중합효소 연쇄반응)에 의해 증폭된 DNA를 육안으로 쉽게 검출하는 발색 유전자 진단 신기술을 개발하였다.
이 기술은 진단하고자 하는 표적 DNA를 PCR 반응으로 증폭시키면, 증폭된 DNA가 자성 나노입자의 과산화효소 활성을 현저히 저해한다는 사실에 기반을 두고 있다.
즉, 표적 유전자가 없으면 자성 나노입자의 과산화효소 활성으로 특정한 발색 반응이 일어나 색 전이현상이 일어나지만, 표적 유전자가 있으면 PCR 반응에 의해 증폭되어 자성 나노입자의 과산화효소 활성을 막아 색 전이현상이 나타나지 않는다.
이러한 발색 반응 유무는 육안으로도 쉽게 식별할 수 있어, 기존의 복잡한 유전자 진단기술을 획기적으로 간편화시킨 새로운 유전자 진단기술로 평가된다.
경제성과 실용성을 갖춘 유전자 진단 기술 분야의 혁신적 원천기술로서, 임상적으로도 유용하게 활용될 수 있다는 것이 특징이다.
박 교수팀의 기술은 기존의 금 나노입자 기반 유전자 진단 기술과는 달리, 금 나노입자 표면에 DNA 분자를 결합하는 과정이나 색 전이 유도를 위해 염을 첨가하는 과정 등의 추가 처리가 불필요하기 때문에 값싸고 편리한 유전자 진단 기술 개발을 위한 새로운 원천기술로 기대하고 있다.
연구팀은 성병을 유발하는 병원균(클라미디아 트라코마티스)에 감염된 샘플을 대상으로 이 기술을 적용하여 원인균 감염 여부를 색 전이현상을 통해 육안으로 정확히 식별해냄으로써 임상 유용성을 훌륭하게 검증하였다.
박현규 교수는 “자성나노입자의 원리를 이용한 이 신기술은 다양한 병원균 감염을 신속히 진단하기 위한 새로운 원천기술로서, 각종 생체물질과 화학물질을 검출하는 기술로 확대되어 다각적으로 활용될 것으로 전망한다”고 연구의의를 밝혔다.
한편, 이번 연구결과는 나노과학 분야의 권위 있는 학술지인 독일의 ‘스몰(Small)’지 6월호(6월 6일자)에 표지논문으로 게재되는 영예를 얻었다.
2011.06.29
조회수 14616
-
고감도 나노광학측정기술 개발
- 머리카락 단면적의 70만배 보다 작은 나노유체기술과 나노광학기술을 융합한 바이오분석기술.- 신약개발 및 신경질환 조기진단기술로 활용 기대.
우리학교 바이오및뇌공학과 정기훈 교수 연구팀이 소분자 생화합물 (small molecules) 검출을 위한 획기적인 고감도 나노광학측정기술을 개발했다.
소분자 생화합물은 분자량이 작은 생체내 분자들로 다양한 세포의 세포막을 드나들며 세포간의 신호전달 등에 큰 역할을 담당한다. 최근에는 제약업계에서도 소분자 생화합물을 이용한 신약 개발 관련 연구 및 개발에 큰 관심을 기울이고 있다.
그러나 이러한 소분자 생화합물은 대부분 특정 항원-항체 화학 결합반응을 유도하기 힘들어 기존에 많이 사용되는 형광이나 전기화학적인 방법으로 극소량을 분석하는데 어려움이 많았다.
정 교수 연구팀은 사람의 머리카락 단면적의 70만배 보다 작은 나노유체관내 유동특성을 이용해 나노몰(nM) 수준의 농도를 갖는 극미량의 소분자 생화합물의 농도를 국소적으로 증가시켰다. 이후 나노플라즈모닉 광학기술과 접목해 측정하는 빛의 세기를 1만배 이상 향상시켜, 별도의 생화학처리를 사용하지 않은 도파민(Dopamine)과 가바(GABA)와 같은 신경전달물질을 1초 이내에 구별하는 데 성공했다.
이 결과는 현존 세계 최고수준의 검출한계를 수백배 이상 향상시킨 기술로 평가받고 있다.
이번 연구결과는 앞으로 소분자 생화합물을 이용한 다양한 글로벌 신약개발은 물론, 알츠하이머병과 같은 퇴행성 신경질환의 조기진단 및 뇌기능 진단기술에 크게 기여할 수 있을 것이라 기대된다.
한편, 교육과학기술부가 지원하는 한국연구재단의 도약연구자지원사업과 한국생명공학연구원이 지원하는 오픈이노베이션사업의 일환으로 수행된 이번 연구는 오영재 박사과정 학생 주도하에 진행됐으며, 독일에서 발간되는 나노분야 국제저명학술지인 ‘스몰(Small)’지의 1월 17일자 표지논문으로 게재됐다.
2011.01.26
조회수 17400