본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%8A%A4%EB%A7%88%ED%8A%B8
최신순
조회순
암세포만 공략하는 스마트 면역세포 시스템 개발
우리 대학 바이오및뇌공학과 최정균 교수와 의과학대학원 박종은 교수 공동연구팀이 인공지능과 빅데이터 분석을 기반으로 스마트 면역세포를 통한 암 치료의 핵심 기술을 개발했다고 밝혔다. 이 기술은 키메라 항원 수용체(Chimeric antigen receptor, CAR)가 논리회로를 통해 작동하게 함으로써 정확하게 암세포만 공략할 수 있도록 하는 차세대 면역항암 치료법으로 기대가 모아진다. 이번 연구는 분당차병원 안희정 교수와 가톨릭의대 이혜옥 교수가 공동연구로 참여했다. 최정균 교수 연구팀은 수백만개의 세포에 대한 유전자 발현 데이터베이스를 구축하고 이를 이용해 종양세포와 정상세포 간의 유전자 발현 양상 차이를 논리회로 기반으로 찾아낼 수 있는 딥러닝 알고리즘을 개발하고 검증하는 데 성공했다. 이 방법론으로 찾아진 논리회로를 장착한 CAR 면역세포는 마치 컴퓨터처럼 암과 정상 세포를 구별하여 작동함으로써 부작용없이 암세포만 정확하게 공략하는 것이 가능하다. 바이오및뇌공학과 권준하 박사, 의과학대학원 강준호 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 '네이처 바이오테크놀로지(Nature Biotechnology)'에 지난 2월 16일 출판됐다. (논문명: Single-cell mapping of combinatorial target antigens for CAR switches using logic gates) 최근의 암 연구에서 가장 많은 시도와 진전이 있었던 분야는 바로 면역항암치료이다. 암환자가 갖고 있는 면역체계를 활용하여 암을 극복하는 이 치료 분야에는 몇 가지 방법이 있는데, 면역관문억제제 및 암백신과 더불어 세포치료 또한 해당된다. 특히, 키메라 항원 수용체를 장착한 CAR-T 혹은 CAR-NK라고 하는 면역세포들은 암항원을 인식하여 암세포를 직접 파괴할 수 있다. CAR 세포치료는 현재 혈액암에서의 성공을 시작으로 고형암으로 그 적용 범위를 넓히고자 하는 중인데, 혈액암과 달리 고형암에서는 부작용을 최소화하면서 효과적인 암 살상 능력을 보유하는 CAR 세포 개발에 어려움이 있었다. 이에 따라 최근에는 한 단계 진보된 CAR 엔지니어링 기술, 즉 AND, OR, NOT 과 같은 컴퓨터 연산 논리회로를 활용해 효과적으로 암세포를 공략할 수 있는 스마트 면역세포 개발이 활발히 진행되고 있다. 이러한 시점에서, 연구진은 세포 단위에서 정확히 암세포들에서만 발현하는 유전자들을 발굴하기 위해 대규모 암 및 정상 단일세포 데이터베이스를 구축했다. 이어서 연구진은 암세포들과 정상세포들을 가장 잘 구별할 수 있는 유전자 조합을 검색하는 인공지능 알고리즘을 개발했다. 특히 이 알고리즘은, 모든 유전자 조합에 대한 세포 단위 시뮬레이션을 통해 암세포만을 특이적으로 공략할 수 있는 논리회로를 찾아내는데 사용되었다. 이 방법론으로 찾아진 논리회로를 장착한 CAR 면역세포는 마치 컴퓨터처럼 암과 정상 세포를 구별하여 작동함으로써 부작용은 최소화하면서도 항암치료의 효과는 극대화시킬 수 있을 것으로 기대된다. 제1 저자인 권준하 박사는 "이번 연구는 이전에 시도된 적이 없는 방법론을 제시했는데, 특히 주목할 점은 수백만개의 개별 암세포 및 정상세포들에 대한 시뮬레이션을 통해 최적의 CAR 세포용 회로들을 찾아낸 과정이다ˮ라며 "인공지능과 컴퓨터 논리회로를 면역세포 엔지니어링에 적용하는 획기적인 기술로서 혈액암에서 성공적으로 사용되고 있는 CAR 세포치료가 고형암으로 확대되는데 중요한 역할을 할 것으로 기대된다"고 설명했다.ᅠ 이번 연구는 한국연구재단 원천기술개발사업-차세대응용오믹스사업의 지원을 받아 수행됐다.
2023.03.02
조회수 1302
장호종 교수팀, 국제전자제품박람회(CES2023) 최고 혁신상 수상
우리 대학 IT융합연구소(소장 유회준) 융합센서팀 장호종 교수팀의 '인터렉티브 미러 기술'이 세계 최대 가전제품 전시회인 CES(The International Consumer Electronics Show) 2023의 스마트홈 부문에서 가장 큰 영예인 최고혁신상(Best of Innovation awards)을 수상했다. '인터렉티브 미러'는 장 교수팀이 스마트홈 전문 기업 ㈜이원오엠에스(대표 남형호)와 공동으로 연구개발한 기술로 거울과 디스플레이를 결합한 IoT (Internet of Things) 디바이스다. 스마트 홈 제어, 헬스케어 디바이스 연동, 정보 확인, 데이터 통합 관리, 뉴스·날씨 정보 확인, 음악·유튜브 감상 등 다양한 서비스를 제공하는 기술로 차세대 스마트 홈에 적용 될 혁신적인 디자인 및 선도적인 엔지니어링 기술을 인정 받았다. 또한, 레이더 센서와 광을 통한 방범과 방역 기술도 적용됐다. 레이더 센서를 활용해 침입자 유무 및 사용자의 활동량을 파악하고 인체에 무해한 LED405nm 살균할 수 있는 조명 시스템 및 별도의 음이온 발생장치를 탑재해 청결하고 쾌적한 실내 공간의 유지가 가능하게 설계됐다. 그 뿐만 아니라, AI 음성 제어 모듈을 적용하여 음성 명령으로 가정내의 조명과 전자기기들을 통합 관제 구동 할 수 있는 스마트 홈 허브를 구현했다. 장 교수는 2019년부터 최신 기술 분석 및 적용 가능 콘텐츠 현황에 대한 연구를 진행했으며, 기술 고돟하를 위한 초기 개발, 시장분석, 기술분석, 타겟 설정 등도 함께 수행했다. 장호종 교수는 "개발 된 플랫폼을 수면센서 및 환경센서 등 다양한 센서들과 결합해 유성구 1인가구 모니터링 시스템, 소방본부 특수종사자 관리시스템등과의 연계 연구를 진행할 예정으로, 인터렉티브 미러를 활용한 사회문제 해결 특화 플랫폼을 개발 하겠다" 라고 밝혔다.
2022.11.28
조회수 1499
국제 미래자동차 기술 심포지엄 2022 개최
우리 대학이 21일 제주시에 위치한 KAIST 친환경스마트자동차연구센터에서 ‘국제 미래자동차 기술 심포지엄’을 개최한다. 지난 수년간 코로나19 팬데믹으로 이동의 필요성이 일시적으로 줄어들었지만, 세계 각국 정부와 기업들은 지속가능한 교통과 물류 시스템을 갖추기 위해 발 빠르게 움직이고 있다. 이에 맞춰 전기차 및 자율주행은 물론 도심항공모빌리티(Urban Air Mobility, UAM)에 이르기까지 다양한 교통수단과 관련 기술에 대한 수요는 더욱 확대되고 있다. ‘미래 자동차 분야의 혁신(Innovations in Future Mobility)’을 주제로 열리는 이번 국제심포지엄은 전 세계가 직면하고 있는 모빌리티 분야의 난제와 이를 해결하기 위한 기술적·제도적 방안을 공유하고 논의하기 위해 마련됐다. 우리 대학 조천식모빌리티대학원(학과장 장인권)과 항공우주공학과(학과장 이정률)가 공동 주관하며, 자율주행, UAM 및 교통 에너지시스템 분야의 해외 석학을 초청해 세계 최고 수준의 미래자동차 기술 및 아이디어를 공유한다. 마르코 파보네(Marco Pavone) 미국 스탠포드대 교수는 ‘안전한 데이터 기반 자율성을 향하여(Towards Safe, Data-Driven Autonomy)’를 주제로 기조 강연에 나선다. 파보네 교수는 자율주행 자동차는 물론 무인 항공기, 자율 우주선 등이 완전하고 광범위한 자율성을 달성할 수 있을지에 대해 전망한다. 이를 위해, 안전한 데이터 기반의 소프트웨어 스택*(알고리즘들이 통합된 시스템)을 추구해야 한다고 설명하며, 차량 자율성 분야에서 해결되지 않은 문제들을 함께 논의한다. 이어지는 ‘자율주행’ 세션에서는 웨이 잔(Wei Zhan) UC버클리 교수와 금동석 조천식모빌리티대학원 교수가 주제 강연을 맡는다. 자율주행차가 사용될 실제 환경에서는 예측 불허한 일들이 벌어지고 여러 요소가 고도로 상호작용하며 운행에 영향을 준다. 잔 교수는 ‘확장가능하고 상호작용하는 자율성(scalable and interactive autonomy)’을 주제로 기술적 장애물을 극복할 아이디어를 청중과 공유한다. 특히, 교차방식의 자기/반지도학습(cross-modality self/semi-supervision)을 활용해 주변 환경과 상호작용하며 효율적으로 자율주행 기능을 확장하는 대표적인 방법들을 설명한다. 금동석 교수는 ‘세계적으로 확장 가능한 자율주행을 향해(Towards globally scalable autonomous driving)’를 주제로 강연한다. 최신 자율주행 인공지능 기술은 특정 지역의 환경을 위주로 학습한다는 한계를 가지고 있다. 이로 인해 제한된 범위 안에서만 주행할 수 있어 다양한 지역에서 활용하거나 사업화하는 데 많은 제약이 따른다. 금 교수는 세계 다양한 도시 및 국가에서 주행 가능한 자율주행 기술을 개발하기 위해 우리 대학이 어떤 기술적 난제를 해결하고자 하는지 소개한다. 이 밖에도 미래 항공 수단 세션에서는 신효상 영국 크랜필드대 교수와 우리 대학 이상봉 항공우주공학과 교수가 주제 발표하고, 지속가능한 운송 및 에너지시스템 세션에서는 리네트 체아(Lynette Cheah) 싱가포르 기술디자인대 교수와 박기범 조천식모빌리티대학원 교수가 참여한다. 행사를 총괄한 우리 대학 장인권 조천식모빌리티대학원장은 “이번 심포지엄은 미래자동차 기술 관련 연구를 선도하는 4개 대학 연구자들이 국제 공동연구 네트워크를 구축하는 계기가 될 것이며, 우리 대학이 그 구심점 역할을 할 것”이라고 포부를 밝혔다. 이광형 총장은 환영사를 통해 “이 자리에서 논의될 미래 모빌리티 기술은 현재 우리 사회가 직면하고 있는 교통 분야의 여러 문제를 해결할 열쇠이자, 궁극적으로는 인류의 이동 패러다임을 변화시킬 도화선이 될 것”이라고 격려했다.
2022.10.21
조회수 1579
투명 스마트 복합 필름 상용화에 성공
우리 대학 기계공학과 이승섭 교수와 전기전자공학부 윤준보 교수 공동 연구팀이 `투명 스마트 복합 필름' 상용화에 성공했다고 19일 발표했다. `투명 스마트 복합 필름'은 투명한 필름 혹은 유리판 위에 안테나, 열선, 발광 기능이 복합적으로 구현된 것으로, 시야 방해 없이 원활한 5G 통신, 고효율 방열, 정보 전달 기능이 동시에 가능하다. 한편, 자동차부품 기업인 ㈜티에이치엔은 5G 안테나 기업인 ㈜센서뷰와 함께 관련 기술을 이용해 자동차용 제품 개발을 진행 중이며 시제품이 2022년 현대자동차 테크데이에 선정됐다고 발표했다. 이승섭 교수 연구팀과 윤준보 교수 연구팀은 서로 다른 방법으로 투명 필름 연구를 수행했는데, 이승섭 교수팀은 투명 전도성 필름 기반의 안테나와 열선을 연구했고, 윤준보 교수팀은 초소형 3차원 패턴을 이용한 투명 발광을 연구했다. 이승섭 교수팀이 개발한 투명 전도성 필름은 투명도 90% (PET 필름 포함), 면저항 0.3옴/sq, 헤이즈 1%의 세계 최고 성능을 가지고 있다. 투명 안테나 필름은 짧은 주파수 특성으로 많은 안테나를 요구하는 5G 특화망을 대상으로 개발됐는데, 스마트 빌딩과 팩토리는 물론 자율주행 및 커넥티드 모빌리티 등에 적용이 예상된다. 투명 열선 필름은 저전력 고효율 방열이 가능해 유리창 서리 제거, 외부 카메라 시야 확보, 겨울철 라이더 적용은 물론 복사열을 이용한 실내 난방 등에 광범위하게 응용될 수 있다. 윤준보 교수팀의 투명 발광 필름은 가장자리에 배치된 LED에서 도광된 빛이 필름의 한쪽 방향으로만 나오는 특징을 지니는데, 이미 `매직라이팅 시트' 라는 상표로 제품화됐다. 투명 발광 필름은 투명해서 하늘을 볼 수 있다가 밤이 되면 실내 조명으로 변하는 `라이팅 썬루프', 차량 유리에서 특정 모양으로 빛이 나오도록 하는 `라이팅 유리' 등 미래 모빌리티 조명을 주 시장으로 하고 있으며, 비전 검사 장비에 설치할 수 있는 `투명 비전 조명' 으로 출시된 바 있다. 이승섭 교수와 윤준보 교수는 관련 기술을 바탕으로 각각 ㈜제이마이크로와 ㈜멤스룩스를 창업했다. 연구를 주도한 이승섭 교수는 "세계 최고 성능을 가진 투명 전도성 필름에 5G 통신, 고효율 방열 등이 가능하도록 개발된 이번 투명 스마트 복합 필름의 상용화를 통해 차량, 실내 난방뿐만 아니라 나아가 스마트 빌딩, 스마트 팩토리, 자율주행 등 광범위하게 응용이 가능할 것으로 기대된다ˮ라고 설명했다.
2022.10.19
조회수 3355
건설및환경공학과 3팀, 2022 EDISON 도시환경 SW 활용 경진대회 수상
우리 대학 건설및환경공학과 블리자드&올라프 외 2팀이 2022 EIDSON 도시환경 SW 활용 경진대회에서 각각 대상, 특별상, 장려상을 수상했다. EIDSON 도시환경 SW 활용 경진대회는 계산과학공학 SW 웹 플랫폼인 EDISON(https://www.edison.re.kr/)의 소프트웨어를 활용하여 대학(원)생들의 도시환경 분야에 대한 연구 활동을 촉진 시키고 관련된 인재를 양성하기 위한 경진대회이다. EIDSON SW 활용 경진대회는 지난 2012년부터 도시 환경 뿐만 아니라 다양한 분야에 걸쳐서 개최되고 있으며, 올해 2022년 대회에서는 과학기술정보통신부 장관상, 한국연구재단 이사장상을 비롯한 7개의 상을 우수 논문을 작성한 팀에게 수여했다. 우리 대학 건설및환경공학과 블리자드&올라프 팀의 노소정, 이하경 학생은 EDISON 앱의 Building Generator 기능을 활용한 서울시 젠트리피케이션 후보지 추천 시스템 구축 연구로 성과를 인정받아 대상을 수상하였다. 박철옹 팀의 박철웅, 오민석 학생은 EDISON 앱을 활용한 도시 네트워크 분석 결과를 이용한 마이크로 모빌리티의 이동량 예측 연구로 그 학업적 기여를 인정받아 선정되었다. 에.대.슨. 팀의 이소정, 최준용 학생은 EDISON Network Extractor 앱과 SUMO 시뮬레이터를 활용하여 자율주행 자동차의 주행 환경에 따른 교통 시뮬레이션 결과 비교 연구로 장려상을 수상하였다. 노소정, 이하경 학생은 서울시의 비상업지역이 상업화되는 젠트리피케이션 현상에 주목하여 서울시의 비상업지역 골목상권 중 추후 발달상권으로의 위계 상승이 예상되고, 상업화에 따른 부동산 개발 수익이 기대되는 투자지 후보 상권을 도출하고자 하였다. 서울시 발달상권 중 용도지역이 비상업지역이면서 상권 특성 및 토지이용에서 대표성을 띠는 상권들을 벤치마크로 설정하였다. 이들의 상권 특성 변수 데이터를 구축한 뒤 서울시 전체 골목상권들과 Collaborative Filtering 유사도 분석을 진행하여 벤치마크의 발달상권과 유사한 골목상권들을 도출하였다. EDISON 앱의 Building Generator 기능을 활용하여 상권의 토지이용에서 개발할 수 있는 건축 연면적과 실제 상권의 총건축물 연면적을 비교, 신규로 개발 가능한 유휴 개발 면적을 산출하여 투자 후보 상권들을 선정하였다. 해당 상권의 매출 추이 및 현황을 검토를 통해 연구 분석 결과가 유의미함을 확인하였다. 본 연구는 상업 부동산 투자자뿐만 아니라 창업자의 상권 입지 분석이나 도시재생계획을 수립하는 지자체 및 공공기관 등 다양한 이해관계자들에게 상권의 변화와 성장을 예측할 수 있는 모델로서 활용될 수 있을 것으로 기대된다. 박철웅, 오민석 학생은 도시 네트워크 분석을 활용하여 도시 공간 내의 마이크로 모빌리티 이동량을 예측하는 프레임워크를 제시하였다. 전동킥보드의 사용자 이용 행태를 통해 도시 공간 내에 마이크로 모빌리티의 수요가 높게 나타날 수 있는 공간적 특성 (대중교통, 대학교 등) 을 규정하였고, 이러한 도시 공간적 특성을 중심으로 중심성이 높아 이동량이 많을 것으로 예상되는 도로를 EDISON 네트워크 분석 앱을 통해 도출하여 마이크로 모빌리티 이동량 예측을 가능하게 하였다. 이에 더 나아가 예측된 결과와 도시 공간의 물리, 환경적 특성을 고려하여 보다 안전한 마이크로 모빌리티 운행을 위한 도시 서비스 및 인프라를 제시하였다. 본 연구는 급증하는 마이크로 모빌리티의 도시 공간 기반에 기반한 수요 예측과 안전한 운행 인프라를 구축하는 데에 기여할 것으로 기대된다. 이소정, 최준용 학생은 도로의 형태와 용량에 따라 자율주행 자동차의 효용이 달라질 것이라는 가설을 세우고, 이를 검증하는 연구를 수행하였다. 도로의 형태를 기준으로 각각 도심과 교외의 특징을 가진 지역을 평가 및 선별하고, 선별된 지역에 자율주행 정책 별로 교통량을 발생시켜 주행 행태를 시뮬레이션하였다. 이 발표는 EDISON 앱과 오픈소스 시뮬레이터의 연계 활용으로 기대를 받았으며, 자율주행 자동차의 상용화를 위한 도시 공간 연구로도 주목을 받았다. 연구진은 보다 광범위하고 다양한 도시를 대상으로 시뮬레이션이 추가로 수행된다면, 우리나라의 도로 형태를 고려한 주행 정책의 발전에도 도움이 될 것이라 기대했다. KAIST 스마트시티연구센터 센터장 김영철 교수는 스마트도시를 구현하는데 중요한 핵심 기술인 데이터기반 도시 분석 및 설계 연구를 KAIST 도시설계연구실에서 지속한 결과로 이와 같은 수상을 할 수 있었다고 설명하였다. 특히 EDISON의 도시환경 SW 웹플렛폼은 도시 환경 분야의 데이터를 취득하고 분석하는 다양한 온라인 앱을 제공하여 도시 분석 연구에 활용할 수 있다고 한다. 앞으로 스마트시티 분야를 이끌어갈 미래의 우수한 인재들이 더 많은 데이터 기반 도시 연구에 참여하길 기대한다고 소감을 밝혔다.
2022.10.14
조회수 1682
차세대 에너지 변환기술인 양방향 고체산화물 연료전지용 스마트 전극 개발
우리 대학 기계공학과 이강택 교수 연구팀이 포스텍 한정우 교수, 한국세라믹기술원 신태호 박사팀과의 공동 연구를 통해 양방향 고체산화물 연료전지(SOFC)용 고성능 전극 소재 개발에 성공했다고 21일 밝혔다. 양방향 고체산화물 연료전지는 고온에서 수소와 산소를 자발 반응시켜 고효율로 전력으로 변환(연료전지 모드) 하고, 전기를 가하면 청정 수소(그린 수소)와 같은 친환경 에너지원을 생산(전해전지 모드) 할 수 있는, 탄소중립 사회를 위한 차세대 에너지 변환 기술이다. 이러한 양방향 연료전지의 전기화학적 성능을 높이기 위해서 가역반응에서 전극의 촉매 성능을 획기적으로 높이는 것이 중요하며, 이를 위한 다양한 연구가 진행되고 있다. 그중 다공성 연료극 구조체 표면에 고성능 나노 금속 촉매를 입히는 기존 함침법의 경우 반응점을 늘리기 위해서 반복적인 증착 공정을 수행해야 하고, 고온 장기 구동 시 응집 현상으로 인한 촉매 활성도가 저하되는 한계를 갖고 있다. 연구팀은 이러한 문제점 해결을 위해 연료전지가 작동하는 환경에서, 전극 표면에 금속합금 나노촉매가 자발적으로 형성되는 용출(exsolution) 현상을 활용한 전극을 디자인 했다. 연구팀은 금속합금 나노촉매 형성을 촉진하기 위해 기존 코발타이트계 산화물 구조 내에 팔라듐(Pd)을 미량 첨가해, 양방향 구동 시 가역적으로 고활성을 갖는 전극 개발에 성공했다. 해당 방법으로 설계된 나노 합금 촉매는 페로브스카이트 격자 내부에서부터 전극 표면으로 스스로 용출돼 형성되기 때문에 전극 표면과 응집 현상 없이 강하게 결합하고, 입자의 균일도 또한 우수해 촉매 성능 향상에 큰 이점이 있다. 연구팀은 전해질 지지체 단전지에 개발된 전극을 연료극으로 사용해 성능을 측정한 결과, 연료전지 모드에서 최대출력 2.0W/cm2 (850oC), 전해전지 모드에서 전력밀도 2.23A/cm-2 (1.3V, 850oC)를 구현해, 세계 최고 수준의 양방향 연료전지 성능을 달성했다. 이는 기존 기술 대비 연료전지 모드는 1.6배, 전해전지 모드는 2.4배 향상된 결과다. 기계공학과 김경준 박사, 배경택 박사과정생, 포스텍 임채성 박사과정생이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지인 `어플라이드 카탈리시스 비: 인바이러멘탈, Applied Catalysis B: Environmental' (IF:19.503, JCR분야 0.93%) 5월 14일 字 온라인판에 게재됐다. (논문명: Concurrent promotion of phase transition and bimetallic nanocatalyst exsolution in perovskite oxides driven by Pd doping to achieve highly active bifunctional fuel electrodes for reversible solid oxide electrochemical cells) 이강택 교수는 “이번 연구를 통해서 특정 페로브스카이트 전극 물질 내 높은 환원 특성을 가지는 원소의 도핑이 산화물 전극 표면에 이종 금속 나노촉매를 선택적으로 형성하는 방아쇠 역할을 할 수 있으며, 이는 고성능 고 안정성의 양방향 고체산화물 연료전지 상용화를 선도하는 기술이 될 것”이라고 말했다. 한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업, 중견연구자지원사업 그리고 나노 및 소재 기술개발사업의 지원으로 수행됐다.
2022.06.21
조회수 2508
제1회 K-인공지능 제조데이터 분석 경진대회 개최
KAIST(총장 이광형)는 중소제조기업의 애로사항을 창의적인 인공지능(AI) 아이디어로 해결하는 ‘제1회 K-인공지능 제조데이터 분석 경진대회’를 개최했다. 중소벤처기업부(장관 권칠승, 이하 중기부), 스마트제조혁신추진단(단장 박한구, 이하 추진단)과 공동 주최한 이번 경진대회는 우수한 제조 인공지능 분석 인재를 발굴 및 육성하기 위해 올해 처음으로 개최됐다.제조데이터 인공지능 분석에 관심 있는 19세 이상의 국민을 대상으로 지난 10월 말부터 참가자를 모집한 결과 3인 이내로 자유롭게 구성된 153개 팀 355명이 신청을 완료했다. 각 팀은 지난달 23일 KAMP*의 사출성형 제조AI데이터셋**을 활용해 뿌리기업 현장 개선 아이디어를 제시하고 알고리즘으로 구현하는 과제를 부여받아 본격적인 대회 일정에 돌입했다. ☞ KAMF: 인공지능(AI) 중소벤처 제조 플랫폼(Korea AI Manufacturing Platform) ☞ 사출성형 제조AI데이터셋: 사출성형 현장에서 수집한 제조데이터를 인공지능 학습용으로 가공한 47개 변수, 4천2백만 개의 제조데이터 5일간 진행된 1단계 서면평가에는 총 52개 팀이 보고서·발표 자료·소스 코드 등의 결과물을 제출했다. 주최 측은 각 팀의 인공지능 분석 모델을 바탕으로 제조현장의 문제 이해도 및 문제 정의, 분석 모델의 독창성, 결과 해석의 우수성, 인공지능 성능 정확도 등을 심사해 8개의 최종 진출팀을 선발했다. 16일 열린 최종 평가는 메타버스 플랫폼에서 진행됐으며, 각 팀이 아이디어를 발표하는 방식으로 진행됐다. RK3 팀(고진욱, 이진욱, 김태훈/서울대)은 인공지능 모델의 창의성, 제조 현장 적용 가능성, 파급효과 등의 심사 항목에서 가장 높은 점수를 받아 대상(중기부 장관상)을 차지했다. Rk3 팀은 인공지능을 기반으로 사출물의 품질 이상을 진단하고 공정 최적화를 지원하는 제조 인공지능 분석 모델을 개발했다. 아이디어의 독창성은 물론 개발기술의 완성도 및 확장성 측면에서 심사위원단의 호평을 받았다. 대상을 받은 Rk3 팀의 김태훈(26/서울대 기계공학과) 씨는 "KAMP가 제공하는 사출성형기 데이터를 분석해본 이번 대회는 제조 현장의 지식을 배우는 좋은 기회였다“라고 말했다. 이어, ”앞으로도 뿌리기업에 실질적으로 도움이 될 수 있는 연구를 진행하고 싶다“라고 수상 소감을 밝혔다.이외에도 소프트컴퓨팅 팀(부석준, 문형준, 박경원/연세대), Ensembler 팀(이원석, 전소현/㈜브릭) 등 2개 팀은 최우수상(KAIST 총장상)을 수상했다. 또한, Team-Hybrid 팀(김원곤, 채민석/서울대), NaeBIS 팀(박인창, 박지훈, 이헌득/한양대) 등 2개 팀과 Cube J 팀(김수지, 박종민, 김성종/서울대), Shango 팀(문성민, 이호민, 윤병관/이상고㈜), ELSSA 팀(이예원, 이태형, 김다해/㈜엘렉시) 등 3개 팀은 각각 우수상과 장려상을 받았다. 심사위원장인 신민수 한양대학교 경영학부 교수는 "8개 참가팀이 제시한 좋은 방법들이 중소 제조기업의 품질 향상과 생산성 향상에 실제로 적용되어 우리나라 중소기업의 발전에 기여할 수 있기를 기대한다“라고 심사평을 전했다. 이광형 KAIST 총장은 "대한민국이 제조 인공지능 강국으로 도약하기 위해서는 제조업 분야의 인공지능 인력양성이 필수 과제”라고 강조했다. 이어, 이 총장은 "이번 경진대회 수상자들처럼 훌륭한 인재를 발굴해 지원하는 일에 최선의 노력을 기울이겠다“라고 수상자들을 격려했다. 한편, `제1회 K-인공지능 제조데이터 분석 경진대회' 대상팀에는 상장 및 상금 1,000만 원이 수여됐다. 최우수상 2개 팀과 우수상 2개 팀에게 각각 300만 원과 200만 원의 상금이, 장려상 3개 팀에게는 각각 100만 원의 상금이 지급됐다.
2021.12.17
조회수 4127
국제 컴퓨터 기술 활용 협업 및 소셜 컴퓨팅 학술대회 최우수논문상 수상
우리 대학 전기및전자공학부 이성주 교수 연구팀이 지난 10월 23일부터 10월 27일에 열린 세계컴퓨터연합회(ACM) 주최로 진행된 제24회 컴퓨터 기술활용 협업 및 소셜 컴퓨팅 학술대회(International Conference on Computer-Supported Cooperative Work and Social Computing, 이하 CSCW)에서 최우수 논문상과 방법론 우수상을 수상했다고 18일 밝혔다. CSCW 는 1986년에 시작됐으며 집단과 공동체를 위한 기술을 디자인하고 활용하는 연구 분야에 초점을 맞추고 있으며, 인간-컴퓨터 상호작용(Human Computer Interaction, HCI)과 소셜 컴퓨팅 분야의 최우수 학회 중 하나로 오래동안 각광받고 있다. 올해 340개의 논문이 발표되며, 최우수 논문상은 제출된 논문의 최상위 1% 논문에만 주어진다. 또한, 방법론 우수상은 올해 신설된 상으로, 획기적인 방법론을 제시하고 구현한 논문에게 주어진다. 이번 논문(Reflect, not Regret: Understanding Regretful Smartphone Use with App Feature-Level Analysis)은 조현성 우리 대학 졸업생 (現 미국 카네기멜론대학교 박사과정), 최다은 학사과정, 김동휘 박사과정, 강완주 박사과정, 최은경 미국 메릴랜드 대학 교수가 참여했다. 연구팀은 스마트폰 화면의 사용자 인터페이스(User Interface) 배치를 기반으로, 사용자가 모바일 애플리케이션 내의 어떤 형태(feature)를 사용하는지 추출해 분석하는 방법론을 개발했다. 예를 들면, 인스타그램 앱에서, 팔로잉 포스트, 팔로잉 스토리 보기, 검색, 대화창 등 다양한 형태(feature)가 존재하는데, 형태별로 세분화된 스마트폰 사용 분석을 가능하게 했다. 이 기술을 기반으로, 특정 형태 사용 패턴은 후회가 되는 스마트폰 사용에 영향을 준다는 것을 밝혔다. 이성주 교수는 "많은 사람들이 스마트폰을 편리하게 사용하지만 과도한 사용으로 문제가 제기되고 있고, 앱 안의 다양한 형태로 세분화한 사용 분석을 가능하게 한 독창적 방법론이 학문적으로 인정받았다ˮ며 "현실적으로 디지털 웰빙에 기여할 수 있다는 점이 높게 평가되어 수상하게 된 것 같다ˮ라고 소감을 밝혔다. 우리 대학 전기및전자공학부 학부장 강준혁 교수는 이성주 교수와 학부생이 포함된 연구팀의 세계적 학술대회 수상을 더욱 높이 평가했다. 이번 연구는 과학기술정보통신부의 재원으로 한국연구재단과 정보통신기술진흥센터의 지원을 받아 수행됐다.
2021.11.18
조회수 3735
가현욱·장영재 교수, KAIST-구글 파트너쉽 일환 AI 교육과정 공동 개발
우리 대학 융합인재학부(학부장 정재승) 가현욱 교수와 산업및시스템공학과(학과장 이태식) 장영재 교수가 2019년 7월 KAIST와 구글이 AI 우수 인재 양성을 위해 체결한 협약의 일환으로 진행되는 AI 교육과정 개발 프로그램에 참여한다. AI 대학원은 이번 프로그램을 위해 지난 7월부터 약 1개월간 KAIST 전 교원을 대상으로 공모를 진행하였으며, 내부심사를 통해 가현욱 교수의 `Cloud AI-Empowered Multimodal Data Analysis for Human Affect Detection and Recognition' 과 장영재 교수의 `Learning Smart Factory with AI'를 추천하였고 구글에서 최종 심사 후 개발 대상으로 선정했다. 두 교수는 구글의 기술을 활용한 교육 과정을 약 1년에 걸쳐 개발할 예정이며, 과목당 미화 7,500달러가 지원된다. 가현욱 교수가 개발하는 ‘Cloud AI-Empowered Multimodal Data Analysis for Human Affect Detection and Recognition’ 교육 과정의 목표는 데이터과학과 인공지능에 관한 기초 지식을 갖춘 학습자들이 보다 실제적이고 융합적인 데이터과학 및 인공지능 기술 기반 문제해결능력과 활용 역량을 갖추는 데 필요한 적절하고 풍부한 학습경험을 제공하는 데 있다. 또한 장영재 교수가 개발하는 ‘Learning Smart Factory with AI' 교육 과정은 실제 제조 현장의 문제를 AI를 활용해 해결하는 방법론을 현장 중심으로 설계된 것이 특징이다. 이미 우리 대학 내에서 제조 및 스마트 팩토리 관련 3개 산학협력 센터를 운영 중인 장영재 교수는 이러한 산학계와의 협력 경험을 기반으로 이론만이 아닌 실제 제조 산업 현장의 문제를 AI를 통해 해결하는 방법을 사례 중심의 교육을 개발할 계획이다. 장 교수는 "스마트팩토리와 AI의 교육 핵심은 바로 데이터지만 많은 교육현장에서 데이터 부재로 효과적인 교육이 어렵지만, KAIST의 첨단 제조 연구실에서는 실제 반도체 자동화 장비에서 생성되는 데이터를 직접 수집, 분석 및 알고리즘을 실제 적용할 수 있는 테스트베드를 갖추고 있어 진정한 스마트팩토리와 AI교육이 가능하다" 라고 밝혔다. 글로벌 AI 우수 인재 양성을 위해 우리 대학은 작년 7월 구글과의 파트너십을 체결했으며 AI인력을 확보하고 관련 우수 연구를 지원하는 데 중점을 두고 다양한 프로그램을 운영하고 있다. 최첨단 연구를 수행하는 세계적 수준의 교수진을 지원하는 `AI 집중연구 어워즈(AI Focused Research Awards)'의 경우 재작년 10월부터 황성주 AI대학원 교수와 황의종 전기및전자공학부 교수가 구글 연구원 및 엔지니어들과 팀을 이뤄 연구를 수행해왔으며 2021년까지 프로젝트를 연장해 AI 관련 심층 연구를 진행한다. 또한 재학 중인 학생들을 대상으로 지난 3월 Student Travel Grant 프로그램을 진행해 전기및전자공학부 박세준, 수리과학과 이철형, 전산학부 이상윤 세 명의 학생이 선발됐으며, Google Internship 프로그램을 통해 선발된 학생 5명의 추천서를 구글에 전달하는 등 파트너십을 2년간 유지하며 다양한 연구 및 교육 활동을 진행하고 있다.
2020.11.16
조회수 26123
언제 말 걸지 아는 스마트 스피커 개발 길 열어
우리 대학 전산학부 이의진 교수 연구팀이 스마트 스피커 인공지능 비서가 선제적으로 말 걸기 좋은 최적의 시점을 결정하는 중요한 상황맥락 요인을 찾아냈다고 28일 밝혔다. 기존에 개발되거나 시판 중인 스마트 스피커 인공지능 비서는 사용자가 먼저 요청한 서비스만 제공하는 반면 최근 스마트 스피커의 개발은 사용자의 상황에 맞춰 능동적인 서비스를 제공하는 형태로 진화하는 추세다. 똑똑한 음성비서가 사용자가 처해 있는 상황을 정확히 이해한 후에 선제적으로 일정 및 건강관리를 도와주는 방향으로 개발되고 있는 것이다. 하지만 아무 때나 눈치 없이 말을 건다면 도움은커녕 하는 일에 방해만 될 수 있다. 이의진 교수 연구팀은 스마트 스피커가 선제적으로 음성서비스를 제공하기 좋은 최적의 시점을 찾는 연구를 전산학부 이재길 교수를 비롯해 산업디자인학과 이상수 교수와 함께 다학제 연구팀을 구성해 공동연구를 수행했다. 그 결과 다학제 연구팀은 스마트 홈 환경에서의 최적의 발화(發話) 시점을 결정하는 중요한 사용자 상황맥락 요인을 찾았다. 최적의 발화 시점에 관한 추론은 인공지능 비서가 음성서비스를 시작하거나 중지 또는 재개를 스스로 결정하고 제어하기 위한 필수적인 기술이다. 연구팀이 찾아낸 중요한 상황맥락 요인은 최적의 발화 시점 추론 시 정확성을 높일 것으로 관계자들은 기대하고 있다. 스마트 스피커 인공지능 비서가 선제적으로 말 걸기 좋은 시점을 찾기 위해 연구팀은 실험용 스마트 스피커를 제작했다. 스마트 스피커는 사용자의 움직임이 감지되거나 일정한 시간이 지나면 주기적으로 "지금 대화하기 좋은가요ˮ라는 질문을 했다. 참가자는 대화하기 좋은지 아닌지, "네ˮ 또는 "아니요ˮ로 대답하고 무엇을 하고 있었는지 설명했다. 연구진은 이어 교내 기숙사에 거주하는 학생 40명(2인 1실)의 방에 스마트 스피커를 설치해 1주일간 총 3,500개의 사용자 응답 데이터를 수집했다. 데이터 분석 결과 전체 참가자 응답 중 47%는 대화하기 부적절한 것으로 드러났다. 연구진은 대화하기 좋은 시점을 결정하는 주요 상황 요인을 찾기 위해 19개의 실내 활동 범주를 만들었다. 이를 통해 연구팀은 적절한 시점을 결정하는 상황맥락 요인으로 크게 개인적 요인과 움직임 요인, 사회적 요인을 꼽았다. 개인적 요인은 크게 `활동 집중도', `긴급함과 바쁨 정도', `정신적·육체적 상태' 그리고 `다중 작업수행을 위한 듣기 또는 말하기 가능성' 등 4가지다. 예를 들면 집중해서 공부하고 있거나 드라이로 머리를 말리고 있을 때는 스피커와 대화가 어려웠다. 움직임 요인은 `외출', `귀가' 그리고 `활동 전환' 등 3가지다. 특히 사용자 움직임이 있을 때는 스피커와 대화 가능한 거리가 최적 시점 판단에 큰 영향을 미쳤다. 외출은 스피커와 대화 가능 범위 밖으로 나가는 움직임이고, 귀가는 범위 안으로 들어오는 움직임이다. 범위 안으로 들어오는 귀가(歸家) 상황일 때는 대부분 대화하기 좋은 시점으로 분류됐다. 일반적으로 스마트 스피커는 거실처럼 집 구성원이 함께 생활하는 공간에 설치된다. 수집된 사용자 응답 중 절반은 룸메이트가 함께 있을 때 수집됐다. 연구팀은 전화 대화뿐만 아니라 누군가와 함께 있다는 것 또한 스마트 스피커와 대화하기 좋은 시점에 영향을 끼친다는 현상을 발견했다. 룸메이트가 자고 있거나 어떤 활동에 집중하고 있을 때 스마트 스피커와의 대화로 인한 갈등을 최소화하고 싶기 때문이다. 이번 연구에 제1 저자로 참여한 차나래 학생은 "이번 연구가 미래 스마트 스피커 개발의 중요한 토대가 될 것ˮ이라면서 "앞으로는 센서 데이터로 감지된 상황맥락 정보를 활용해 스마트 스피커가 스스로 대화를 시작·중지, 또는 재개하기 좋은 타이밍을 선제적으로 감지해 지능적인 음성서비스를 제공할 수 있을 것ˮ이라고 밝혔다. 한편, 이 연구는 과학기술정보통신부의 재원으로 한국연구재단-차세대정보 컴퓨팅기술개발사업의 지원을 받아 수행됐고 유비쿼터스 컴퓨팅 분야 국제 최우수 학술지인 `Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies' 9월호에 게재됐다. (논문명 : Hello There! Is Now a Good Time to Talk?: Opportune Moments for Proactive Interactions with Smart Speakers)
2020.10.28
조회수 20854
첨단 제조지능 혁신센터 개소 및 장비 기증식 열려
우리 대학 '첨단 제조지능 혁신센터'가 23일 개소했다. 개소식에는 신성철 총장 및 시너스텍 김주헌 회장을 포함한 기부 대표자분들이 함께 참석했다. 본 센터는 산업및시스템 공학과와 기계공학과가 공동으로 첨단 디지털 제조 연구/교육을 위해 설립된 센터다. 본 실습실은 국내 반도체 자동화 업체인 시너스텍, 한국 오므론, 그린파워의 약 15억 가량의 기부로 설립됐고, 특히 세계 최초로 반도체 펩 자동화 설비를 기반으로 구축됐다. 반도체 연구는 보안이슈로 인해 실제 데이터를 다루기가 어렵고 외부인의 공장 내 출입조차 어렵다. 첨단 제조지능 혁신센터는 실제 장비에서 생성되는 데이터를 기반으로 스마트팩토리와 디지털 제조 분야 최고의 연구센터를 지향한다.
2020.07.24
조회수 16720
사생활 침해 논란없는 코로나19 감염병 확산방지시스템 개발
세계 각국에서 주목을 받는 K-방역을 떠받쳐 온 코로나19 관련 검사·추적·치료 등 기존 3T 시스템을 한층 업그레이드시킨 새로운 `코로나19 감염병 확산방지시스템(앱&웹)'이 개발됐다. 우리 대학이 개발한 이 시스템은 GPS·무선랜·블루투스·기압계·관성 센서의 신호를 주기적으로 수집, 기록하는 스마트폰 블랙박스를 기반으로 하고 있어 사생활 침해 논란을 최소화하면서 신속한 역학조사와 격리자 관리 등 코로나19 상황에 효율적인 대응이 가능하다. 기존 3T 시스템은 신용카드 이용 내역 등 광범위한 개인정보 접근을 통해 확진자 동선을 공개하는 과정에서 사생활 노출로 인한 인권침해 우려가 꾸준히 제기돼 왔다. 전산학부 지능형서비스통합연구실 한동수 교수 연구팀은 스마트폰의 이동 동선을 기록하는 스마트폰 블랙박스를 기반으로 `코로나19 감염병 확산방지시스템(앱&웹)'을 개발했다고 10일 밝혔다. 한 교수 연구팀이 개발한 스마트폰 블랙박스 시스템은 스마트폰에 내장돼있는 GPS와 와이파이·블루투스·관성 센서 등을 통해서 수집된 신호를 보관했다가 2주가 지나면 자동으로 폐기한다. 또 개인 스마트폰 블랙박스에 저장된 기록은 일체 외부로 유출되지 않으며 특히 확진자의 동선을 공개하는 경우에도 문자로 표현되는 장소 정보가 아닌 신호 정보를 공개하기 때문에 확진자의 사생활 보호가 가능하다. 따라서 코로나19 집단감염대응 차원에서 그동안 꾸준히 지적돼 온 개인의 사생활 침해 문제에 대해 기존과는 다르게 보다 섬세한 방법으로 접근했다는 점이 이 시스템의 가장 큰 특징이다. 한 교수팀의 `코로나19 감염병 확산방지시스템'은 크게 일반인을 위한 `바이러스 노출 자가진단 시스템'과 감염병 관리기관을 위한 `확진자 역학조사 시스템', 그리고 `격리자 관리 시스템' 등 3개 시스템으로 이뤄져 있다. 우선 `바이러스 노출 자가진단 시스템'은 확진자의 동선과 개인의 스마트폰 블랙박스에 기록된 동선의 중첩 여부를 체크해 이뤄진다. 현재 방식은 확진자의 정보가 메시지를 통해 전달되고 개개인이 직접 확진자의 동선을 확인하는 불편함이 따르지만 한 교수팀이 개발한 시스템에서는 사용자가 수시로 해당 앱의 버튼을 눌러 바이러스 노출 여부를 쉽고 빠르게 체크할 수 있다. `확진자 역학조사 시스템'을 통해 확진자 관련 역학조사를 빠르고 정확하게 수행할 수 있다. 코로나19 감염병 확진을 받은 환자의 스마트폰 블랙박스에 기록된 신호를 지도상에 표시를 해주기 때문에 역학 조사관이 확진자의 이동 동선을 쉽게 파악할 수 있다. 한동수 교수는 이와 함께 이 시스템에 지난 10여년간 개발해 온 실내·외 통합 위치 인식시스템 KAILOS(KAIST Locating System)의 기능도 적용했다. 이에 따라 실내지도와 신호지도가 준비된 건물에서는 건물 내부에서도 확진자의 이동 동선을 확인할 수 있다. 스마트폰 블랙박스는 격리자 관리에도 활용된다. 격리자의 스마트폰 블랙박스가 수집한 신호는 주기적으로 `격리자 관리 시스템'에 전송된다. `격리자 관리 시스템'은 전송받은 신호를 실시간으로 분석해 격리자의 격리공간 이탈 여부를 확인한다. GPS 신호뿐 아니라 무선랜 신호를 사용함으로써 실외뿐 아니라 실내에서의 확진자 격리공간 이탈 여부를 확인할 수 있어 기존 방식보다 더 정확하게 격리자를 관리할 수 있다는 게 강점이다. 한동수 교수는 "현재 약 30여 종의 스마트폰이 사용되고 있는데 스마트폰마다 탑재된 센서의 종류가 매우 다양해서 연구팀이 개발한 시스템을 다양한 스마트폰에 이식하고 테스트하는 작업을 진행하고 있다ˮ면서 "이 작업을 마치는 대로 곧 시스템을 출시할 계획ˮ이라고 소개했다. KAIST 신성철 총장도 "PreSPI(Prevention System for Pandemic Disease Infection)로 이름 붙인 이 시스템을 활용하면 코로나19 재확산으로 수고하는 의료진 등 방역 분야 종사자들의 수고와 시간을 획기적으로 줄일 수 있고 사생활 침해 논란 없이 신속하고 정확한 역학조사가 가능해져 K-방역의 우수성을 다시 한번 세계 각국에 과시하는 계기가 될 것ˮ이라고 강조했다.
2020.06.11
조회수 17345
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
>
다음 페이지
>>
마지막 페이지 9