본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%8A%A4%EB%A7%88%ED%8A%B8%ED%8C%A9%ED%86%A0%EB%A6%AC
최신순
조회순
김성민 교수팀, 모바일 최고 국제학회 최우수논문상 다회 수상 쾌거
우리 대학 전기및전자공학부 김성민 교수 연구팀이 스마트 팩토리에서 사각지대 없이 정밀한 위치를 추적하는 기술을 세계 최초로 개발했다고 5일 밝혔다. 목표물에 무전원 태그를 부착해, 장애물에 가려진 상황에서도 센티미터(cm) 이하의 정확도로 3차원 위치를 추적할 수 있는 기술이다. 해당 연구를 통해 연구팀은 모바일 컴퓨팅 분야 최고 권위 국제 학술대회인 ACM 모비시스(ACM MobiSys)에서 2022 최우수논문상에 이어 2024 최우수논문상을 수상하는 쾌거를 이뤘다. 해당 학회에서 최우수논문상을 다회 수상한 연구팀은 김성민 교수 연구팀과, 미국 미시간대, 그리고 예일대 뿐이다(주 저자 기준). (논문명: SuperSight: Sub-cm NLOS Localization for mmWave Backscatter) 연구팀이 최초 개발한 무선 태그는, 기존 기술(UWB, Ultra Wide Band) 대비 반사성이 10배 이상 높은 밀리미터파(mmWave)*를 활용, 장애물을 우회하는 반사 신호를 확보해 사각지대 없는 위치추적이 가능하다. 반사의 방향에 따라 고유한 신호를 발생시키는 태그가 각 신호의 전파 경로를 파악하여 목표물의 위치를 추적하는 원리다. *밀리미터파: 30~300기가헤르츠(GHz)의 주파수를 갖는 전파로 5G/6G 등 차세대 표준에서 도입을 준비 중인 대역이다. 이 기술은 가구, 전자제품 등 다양한 실내 장애물에 막혀 작동 범위가 제한되는 기존 기술의 문제점을 해결하고, 더불어 15배 이상 높은 3차원 위치 정확도(8.3mm)를 갖는다. 즉, 잦은 연결 장애를 겪는 현재에 비해 안정적으로 실내 목표물의 정확한 위치를 추적할 수 있어, 스마트 팩토리 및 증강 현실(AR) 등 광범위한 위치 기반 서비스에 활용될 수 있다. 무선 태그는 스스로 무선 신호를 생성하는 대신, 주변의 신호를 반사하는 방식으로 작동한다. 주변 빛을 반사하는 거울과 같이, 신호 생성에 필요한 전력을 아낄 수 있어 초저전력으로 동작한다. 이에 태양전지 등 무전원으로 동작하거나 코인 전지 하나로 40년 이상 구동할 수 있어, 대량 운용에 적합하다. 김성민 교수는 “태그는 천장 타일이나 컴퓨터 본체 등 주변 사물을 반사체로 이용해 임의의 실내 환경에서 사각지대 없이 작동한다”며 “실내 위치추적의 안정성 문제를 해결함으로써, 포괄적인 위치 기반 서비스의 보급을 기대한다”고 말했다. 한편 이번 연구는 정보통신기획평가원 ITRC 혁신도약형과제와 삼성미래기술육성사업의 지원을 받아 수행됐다.
2024.07.05
조회수 1139
차세대 XR 초정밀 위치 인식기술 최초 개발
초정밀 위치 인식기술로 사물인터넷 기기와 로봇의 미세한 움직임을 조종하고, 나아가서는 초실감형 XR 및 초정밀 스마트 팩토리 등 가상 세계에서 현실과 연결을 시키게 하는 인식기술을 세계 최초로 개발해서 화제다. 우리 대학 전기및전자공학부 김성민 교수 연구팀이 무전원 태그를 통해 세계 최초로 160m 장거리에서 7mm(5m 단거리 0.35mm)의 정확도와 1,000개 이상의 위치를 동시 인식하는 초정밀·대규모 사물인터넷(IoT) 위치인식 시스템을 개발했다고 8일 밝혔다. 연구진이 최초 개발한 무선 태그는, 그 신호가 방해 신호와 주파수 영역에서 완전히 분리되어 신호의 질을 100만 배 이상 향상시킨다. 이를 이용하여 초정밀 위치 인식이 가능해지는 원리다. 해당 기술을 접목하면 XR에서 다량의 사물인터넷을 손가락의 미세한 움직임만으로 쉽게 제어할 수 있는 등, 몰입감을 크게 높일 수 있다. 또한 1,000개 이상의 태그를 0.5초 이하에 동시 인식할 수 있어, 수많은 기기를 실시간 조작할 수 있다. 이 기술은 현존하는 실내외 위치인식 기술 중 작동 범위, 정확도 및 규모에서 성능이 월등하여 그 의미가 깊다. 특히, 최신 실내 측위 기술인 차세대무선기술(UWB, Ultra Wide Band)에 비해 300배의 정확도, 10배의 탐지 거리, 100배의 확장성을 갖는다. 즉, 현재에 비해 훨씬 많은 기기를 정밀하게 다룰 수 있음을 의미한다. 또한, 실외 측위에 한정되는 GPS 위치 인식 기술과 달리 다양한 실내외 환경에서 활용될 수 있다. 본 기술의 태그는 스스로 무선 신호를 생성하는 대신, 주변의 신호를 반사하여 통신한다. 마치 거울과 같은 원리로, 신호 생성에 필요한 전력을 아낄 수 있어 초저전력으로 동작한다. 이에 태양전지 등 무전원으로 동작하거나 코인 전지 하나로 40년 이상 구동할 수 있어, 대량 운용에 적합하다. 전기및전자공학부 배강민 박사과정과 문한결 박사과정이 공동 주 저자로 참여한 이번 연구는 모바일 시스템 분야의 최고 권위 국제 학술대회인 `ACM 모비시스(ACM MobiSys)' 2023에 지난 6월 발표됐다. (논문명: Hawkeye: Hectometer-range Subcentimeter Localization for Large-scale mmWave Backscatter) 김성민 교수는 “이번 성과를 통해 스마트팩토리 등 산업체를 넘어, XR(확장현실) 등 민간에서도 포괄적으로 사용가능한 IoT(사물인터넷) 상호적용 기술로, 전방위적인 위치인식 기술의 보급을 가능하게 할 것으로 기대된다”고 말했다. 한편 이번 연구는 삼성미래기술육성사업과 정보통신기획평가원의 지원을 받아 수행됐다.
2023.08.08
조회수 2885
가현욱·장영재 교수, KAIST-구글 파트너쉽 일환 AI 교육과정 공동 개발
우리 대학 융합인재학부(학부장 정재승) 가현욱 교수와 산업및시스템공학과(학과장 이태식) 장영재 교수가 2019년 7월 KAIST와 구글이 AI 우수 인재 양성을 위해 체결한 협약의 일환으로 진행되는 AI 교육과정 개발 프로그램에 참여한다. AI 대학원은 이번 프로그램을 위해 지난 7월부터 약 1개월간 KAIST 전 교원을 대상으로 공모를 진행하였으며, 내부심사를 통해 가현욱 교수의 `Cloud AI-Empowered Multimodal Data Analysis for Human Affect Detection and Recognition' 과 장영재 교수의 `Learning Smart Factory with AI'를 추천하였고 구글에서 최종 심사 후 개발 대상으로 선정했다. 두 교수는 구글의 기술을 활용한 교육 과정을 약 1년에 걸쳐 개발할 예정이며, 과목당 미화 7,500달러가 지원된다. 가현욱 교수가 개발하는 ‘Cloud AI-Empowered Multimodal Data Analysis for Human Affect Detection and Recognition’ 교육 과정의 목표는 데이터과학과 인공지능에 관한 기초 지식을 갖춘 학습자들이 보다 실제적이고 융합적인 데이터과학 및 인공지능 기술 기반 문제해결능력과 활용 역량을 갖추는 데 필요한 적절하고 풍부한 학습경험을 제공하는 데 있다. 또한 장영재 교수가 개발하는 ‘Learning Smart Factory with AI' 교육 과정은 실제 제조 현장의 문제를 AI를 활용해 해결하는 방법론을 현장 중심으로 설계된 것이 특징이다. 이미 우리 대학 내에서 제조 및 스마트 팩토리 관련 3개 산학협력 센터를 운영 중인 장영재 교수는 이러한 산학계와의 협력 경험을 기반으로 이론만이 아닌 실제 제조 산업 현장의 문제를 AI를 통해 해결하는 방법을 사례 중심의 교육을 개발할 계획이다. 장 교수는 "스마트팩토리와 AI의 교육 핵심은 바로 데이터지만 많은 교육현장에서 데이터 부재로 효과적인 교육이 어렵지만, KAIST의 첨단 제조 연구실에서는 실제 반도체 자동화 장비에서 생성되는 데이터를 직접 수집, 분석 및 알고리즘을 실제 적용할 수 있는 테스트베드를 갖추고 있어 진정한 스마트팩토리와 AI교육이 가능하다" 라고 밝혔다. 글로벌 AI 우수 인재 양성을 위해 우리 대학은 작년 7월 구글과의 파트너십을 체결했으며 AI인력을 확보하고 관련 우수 연구를 지원하는 데 중점을 두고 다양한 프로그램을 운영하고 있다. 최첨단 연구를 수행하는 세계적 수준의 교수진을 지원하는 `AI 집중연구 어워즈(AI Focused Research Awards)'의 경우 재작년 10월부터 황성주 AI대학원 교수와 황의종 전기및전자공학부 교수가 구글 연구원 및 엔지니어들과 팀을 이뤄 연구를 수행해왔으며 2021년까지 프로젝트를 연장해 AI 관련 심층 연구를 진행한다. 또한 재학 중인 학생들을 대상으로 지난 3월 Student Travel Grant 프로그램을 진행해 전기및전자공학부 박세준, 수리과학과 이철형, 전산학부 이상윤 세 명의 학생이 선발됐으며, Google Internship 프로그램을 통해 선발된 학생 5명의 추천서를 구글에 전달하는 등 파트너십을 2년간 유지하며 다양한 연구 및 교육 활동을 진행하고 있다.
2020.11.16
조회수 30044
첨단 제조지능 혁신센터 개소 및 장비 기증식 열려
우리 대학 '첨단 제조지능 혁신센터'가 23일 개소했다. 개소식에는 신성철 총장 및 시너스텍 김주헌 회장을 포함한 기부 대표자분들이 함께 참석했다. 본 센터는 산업및시스템 공학과와 기계공학과가 공동으로 첨단 디지털 제조 연구/교육을 위해 설립된 센터다. 본 실습실은 국내 반도체 자동화 업체인 시너스텍, 한국 오므론, 그린파워의 약 15억 가량의 기부로 설립됐고, 특히 세계 최초로 반도체 펩 자동화 설비를 기반으로 구축됐다. 반도체 연구는 보안이슈로 인해 실제 데이터를 다루기가 어렵고 외부인의 공장 내 출입조차 어렵다. 첨단 제조지능 혁신센터는 실제 장비에서 생성되는 데이터를 기반으로 스마트팩토리와 디지털 제조 분야 최고의 연구센터를 지향한다.
2020.07.24
조회수 19201
초고속, 초정밀 펄스비행시간(TOF) 센서 개발
우리 대학 기계공학과 김정원 교수 연구팀이 펄스 레이저와 전광 샘플링 기법을 이용해 거리 측정에 활용할 수 있는 초고속, 초정밀의 펄스비행시간(time-of-flight, TOF) 센서 기술을 개발했다. 이 새로운 펄스비행시간 센서 기술을 이용하면 수소 원자 2개의 크기보다도 작은 180 피코미터(55억분의 1미터) 정도의 위치 차이도 200분의 1초 만에 정확하게 측정할 수 있다. 기존 고성능 거리 측정 기술의 성능을 뛰어넘는 새로운 원천 기술이 될 것으로 기대된다. 나용진 박사과정이 1 저자로 참여한 이번 연구 결과는 국제학술지 ‘네이처 포토닉스(Nature Photonics)’ 2월 10일 자에 게재됐다. (논문명: Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection) 레이저를 이용한 거리 측정 기술은 현재 보안, 자율주행 등에 사용되는 라이다(LiDAR)나 반도체 공정 등 각종 산업 분야뿐 아니라, 지진 감지, 중력파 검출 등 자연 현상 탐지까지 다양한 분야의 핵심 기술로 활용된다. 거리 측정의 분해능, 속도 및 범위 성능이 개선되면 기존 응용기술들의 성능 개선뿐 아니라 이전에는 불가능했던 새로운 물리 현상들의 측정도 가능하게 한다. 기존의 고성능 거리 측정 기술들은 크게 두 가지 방식으로 나뉜다. 기존의 펄스비행시간 기술은 미터 이상의 긴 측정 거리를 갖지만 그만큼 분해능 성능이 떨어지는 문제가 있다. 반면 간섭계 기술은 나노미터 수준의 좋은 분해능을 갖지만, 마이크로미터 수준의 좁은 측정 범위를 갖는다. 또한, 두 기술 모두 측정 속도가 느리다는 공통적인 한계가 있다. 연구팀은 이러한 한계들을 극복하기 위해 기존의 방식들과는 완전히 다른 방식의 펄스비행시간 센서를 제안했다. 펄스 레이저에서 발생한 빛 펄스와 광다이오드로 생성한 전류 펄스 사이의 시간 차이를 전광 샘플링 기법을 이용해 측정했다. 이때 빛 펄스와 전류 펄스 간의 시간 오차가 100 아토초(1경분의 1초) 정도로 매우 적어, 빠른 속도로 나노미터 이하의 거리 차이도 정밀하게 측정할 수 있다. 또한, 전류 펄스의 길이가 수십 피코초 이상으로 길어 밀리미터 이상의 측정 범위가 동시에 가능하다. 따라서 기존의 펄스비행시간 기술이 갖는 낮은 분해능과 간섭계 기술이 가지는 좁은 측정 범위의 한계를 동시에 뛰어넘을 수 있었다. 연구팀은 새로운 펄스비행시간 기술을 이용해 고분해능 3차원 형상 이미징 기술을 시연했고, 지진파나 화산 활동 측정과 같이 미세한 변형을 측정하는 데 활용할 수 있는 고정밀 변형률 센서도 구현했다. 또한, 초고속 측정에서도 높은 분해능을 갖는다는 장점을 이용해 100MHz(1초에 1억 번의 진동에 해당) 이상의 속도로 변화하는 물체의 위치도 나노미터 분해능으로 실시간 측정 가능함을 선보였다. 연구팀은 특히 서로 멀리 떨어져 있는 다수 지점의 펄스비행시간을 동시에 정밀하게 측정할 수 있는 특징을 활용하면 스마트팩토리와 같은 환경에서 하나의 레이저와 광섬유 링크들을 이용해 다지점, 다기능성 복합센서 시스템을 구현할 수 있다고 전망했다. 김 교수는 “이 기술을 이용해 기존에는 관측하지 못했던 마이크로 소자 내에서의 비선형적인 움직임과 같은 복잡하고 빠른 동적 현상들을 실시간으로 측정하고 규명하는 것이 다음 연구 목표이다”라고 말했다. 이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
2020.02.12
조회수 11886
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1