-
입어도 되고 수술 없이 치료도 되는 초음파 센서 나왔다
기존의 몸에 부착해 사용하는 초음파 센서는 출력 세기가 약하고 구조가 쉽게 변형돼, 고해상도 영상이나 치료 목적으로 활용하기 어려웠다. 우리 대학 연구팀이 이러한 한계를 극복하고 곡률(휘어진 정도)을 자유롭게 조절할 수 있는 유연 초음파 센서 기술을 개발했다. 이번 성과는 몸에 밀착해 정확한 영상을 얻는 웨어러블 의료기기와 수술 없이 초음파로 치료까지 가능한 비침습적 차세대 의료기술의 발전 가능성을 크게 높였다.
우리 대학은 전기및전자공학부 이현주 교수 연구팀이 반도체 웨이퍼 공정(MEMS)을 활용해 유연함부터 단단함까지 자유롭게 구현할 수 있는 ‘Flex-to-Rigid(FTR) 구조’의 초음파 트랜스듀서(센서, CMUT)를 제작했다고 12일 밝혔다.
연구팀은 저온에서 녹는 금속(저융점 합금, LMPA)을 소자 내부에 삽입해, 전류를 가하면 금속이 녹아 자유롭게 형태를 바꾸고, 냉각 시 다시 고체로 굳어 원하는 곡면 형태로 고정할 수 있는 기술을 구현했다.
기존의 고분자(폴리머) 막 기반 초음파 센서(CMUT)는 낮은 탄성계수(딱딱함)로 인해 충분한 음향 에너지를 발생시키지 못하고, 진동 시 초점이 흐려지는 문제가 있었다. 또한 곡률 조절이 어려워 목표 위치에 정밀하게 초점을 맞추기 힘든 한계가 있었다.
이현주 교수 연구팀은 단단한 실리콘 기판에 유연한 엘라스토머(고무 유사 물질) 브리지를 결합한 FTR 구조를 고안해 높은 출력 성능과 유연성을 동시에 확보했다. 내부의 저융점 합금은 전류에 의해 고체와 액체 상태를 오가며, 소자의 형태를 자유롭게 조정하고 고정할 수 있도록 돕는다.
그 결과, 초음파가 한 점으로 모이도록 전자적으로 신호를 제어하는 ‘별도의 빔 조정’ 과정 없이도 이번에 개발한 센서로 기계적으로 모양(곡률)에 맞추어 초점을 자동으로 형성하기 때문에 특정 부위에 정밀한 초음파 초점을 형성할 수 있었으며, 반복적인 굽힘에도 안정적인 전기·음향 특성이 유지됨을 확인했다.
이 센서의 출력은 조직을 손상시키지 않고 특정 부위를 부드럽게 자극해 치료 효과를 내는 초음파 기술인 ‘저강도 집속 초음파(LIFU)’ 수준 이상으로, 수술이나 절개 없이 신경과 장기를 자극해 염증을 완화하는 비침습적 치료에 활용될 수 있음이 검증됐다.
연구팀은 이 소자를 동물 모델에 적용해 비장(spleen)을 비침습적으로 자극하는 실험을 수행했으며, 그 결과 관절염 모델에서 염증이 완화되고 보행이 개선되는 치료 효과를 확인했다.
향후에는 한줄(1차원)이 아닌 많은 초음파 센서를 평면 위에 바둑판처럼 배열한 구조인 ‘2차원 배열 소자’ 개발을 통해 고해상도 초음파 영상과 치료를 동시에 구현하는 스마트 의료 기술로 발전시킬 계획이다.
또한 이 기술은 반도체 공정과 호환돼 대량 생산이 가능하므로, 웨어러블 및 재택 의료용 초음파 시스템으로 확장될 전망이다.
이번 연구에는 전기및전자공학부 이상목 박사와 샤오지아 량(Xiaojia Liang) 박사과정이 공동 제1저자로 참여했으며, 연구 결과는 국제 학술지 네이처 파트너 저널 플렉서블 일렉트로닉스(npj Flexible Electronics, IF 15.5)에 10월 23일 자 온라인판으로 게재됐다.
※ 논문명: Flexible ultrasound transducer array with statically adjustable curvature for anti-inflammatory treatment DOI https://doi.org/10.1038/s41528-025-00484-7
과학기술정보통신부 바이오‧의료기술개발사업(뇌과학 선도융합기술개발사업)과 범부처전주기의료기기연구개발사업단의 지원을 받아 수행됐다.
2025.11.12
조회수 510
-
‘로봇 전자눈’초소형 적외선 센서 상온 3D 프린팅 제작 가능
어둠 속에서도 사물을 인식하는 ‘전자 눈’ 기술이 한층 더 진화했다. 자율주행차의 라이다(LiDAR), 스마트폰의 3D 안면 인식, 헬스케어 웨어러블 기기 등에서 사람의 눈을 대신해 ‘보는 기능’을 수행하는 적외선 센서가 핵심 부품으로 꼽히는 가운데, KAIST·공동연구진이 원하는 형태와 크기로 초소형 적외선 센서를 제작할 수 있는 상온 3차원(3D) 프린팅 기술을 세계 최초로 개발했다.
우리 대학은 기계공학과 김지태 교수 연구팀이 고려대학교 오승주 교수, 홍콩대학교 티안슈 자오(Tianshuo ZHAO) 교수와 공동으로 상온에서 원하는 형태와 크기의 10 마이크로미터(µm) 이하 초소형 적외선 센서를 제작할 수 있는 3D 프린팅 기술을 개발했다고 3일 밝혔다.
적외선 센서는 눈에 보이지 않는 적외선 신호를 전기 신호로 변환하는 핵심 부품으로, 로봇비전 등 다양한 분야의 미래형 전자기술을 구현하는 데 필수적이다. 이에 따라 센서의 소형화·경량화, 그리고 다양한 형태(폼팩터) 구현의 중요성이 커지고 있다.
기존 반도체 공정 기반 제조 방식은 대량생산에는 적합했지만, 빠르게 변화하는 기술 수요에 유연하게 대응하기 어렵고, 고온 공정이 필수여서 소재 선택이 제한되며 에너지 소비가 많다는 한계가 있었다.
연구팀은 이러한 문제를 해결하기 위해, 금속·반도체·절연체 소재를 각각 나노결정 형태의 액상 잉크로 만들어 단일 프린팅 플랫폼에서 층층이 쌓아 올리는 초정밀 3차원 프린팅 공정을 개발했다.
이를 통해 적외선 센서의 핵심 구성 요소를 상온에서 직접 제작할 수 있으며, 맞춤형 형태와 크기의 초소형 센서 구현이 가능해졌다.
특히 연구팀은 나노입자 표면의 절연성 분자를 전기가 잘 통하는 분자로 바꾸는 ‘리간드 교환(Ligand Exchange)’ 기법을 3D 프린팅 과정에 적용해, 고온 열처리 없이도 우수한 전기적 성능을 확보했다.
그 결과, 사람 머리카락 굵기의 1/10 수준(10 µm 이하)의 초소형 적외선 센서 제작에 성공했다.
김지태 교수는 “이번에 개발된 3차원 프린팅 기술은 적외선 센서의 소형화·경량화를 넘어, 기존에 상상하기 어려웠던 혁신적인 폼팩터 제품 개발을 앞당길 것”이라며 “또한 고온 공정에서 발생하는 막대한 에너지 소비를 줄여 생산 단가 절감과 친환경적 제조 공정을 실현함으로써, 적외선 센서 산업의 지속 가능한 발전에 기여할 것으로 기대한다”고 말했다.
이번 연구 결과는 세계적 학술지 네이처 커뮤니케이션스(Nature Communications) 2026년 10월 16일 자 온라인판에 게재됐다.
※ 논문명: Ligand-exchange-assisted printing of colloidal nanocrystals to enable all-printed sub-micron optoelectronics, DOI: https://doi.org/10.1038/s41467-025-64596-4
이번 연구는 과학기술정보통신부의 우수신진연구(RS−2025-00556379), 국가전략기술 소재개발사업(RS−2024-00407084), 원천기술국제협력개발사업(RS−2024-00438059)의 지원으로 수행됐다.
2025.11.03
조회수 527
-
스트레스 많으면 냉장고 사용↑... IoT 센서로 정신건강 읽는다
국내 1인 가구가 800만 세대를 넘어 전체의 36%를 차지하며 역대 최고치를 기록했다. 서울시 조사에 따르면 1인 가구의 62%가 ‘외로움’을 느끼는 등 고립감과 정신건강 문제가 심화되고 있다. 우리 대학 연구진은 스마트폰·웨어러블의 한계를 넘어, 가정 내 IoT 데이터를 통해 일상 리듬이 흐트러질수록 정신건강이 악화되는 핵심 신호임을 밝혀냈다. 이번 연구는 개인 맞춤형 정신건강 관리 시스템 개발의 기반이 될 것으로 기대된다.
우리 대학은 전산학부 이의진 교수 연구팀이 가정 내 사물인터넷(IoT) 센서 데이터를 활용해 개인의 정신건강 상태를 정밀하게 추적할 수 있는 가능성을 입증했다고 21일 밝혔다.
정신건강 관리를 위해선 자신의 상태를 꾸준히 파악하는 것이 중요하지만, 기존의 스마트폰이나 웨어러블 기반 추적 방식은 사용자가 기기를 착용하거나 소지하지 않는 집 안에서는 데이터가 누락되는 한계가 있었다.
이에 연구팀은 가정 내 환경 데이터에 주목했다. 청년층 1인 가구 20세대를 대상으로 4주간 실증 연구를 진행하며, 가전제품과 수면 매트, 움직임 센서 등을 설치해 IoT 데이터를 수집하고, 스마트폰·웨어러블 데이터와 함께 분석했다.
그 결과, IoT 데이터를 함께 활용할 때 정신건강의 변화를 기존 방식보다 훨씬 정확하게 포착할 수 있음이 확인됐다. 예를 들어 수면 시간 감소는 우울·불안·스트레스 수준 증가와 밀접하게 연관됐으며, 실내 온도 상승 또한 불안 및 우울과의 상관관계를 보였다.
참가자들의 행동 패턴은 스트레스 상황에서 냉장고 사용이 늘어나는 ‘폭식형’, 활동량이 급감하는 ‘무기력형’ 등으로 다양했지만, 공통적으로 생활 패턴이 불규칙할수록 정신건강이 악화되는 경향이 뚜렷하게 나타났다.
특정 행동의 빈도보다 일상 패턴의 변동성이 더 중요한 요인으로 확인됐으며, 이는 규칙적인 생활이 정신건강 유지에 핵심적임을 시사한다.
연구 참여자들이 자신의 생활 데이터를 시각화 소프트웨어를 통해 확인한 결과 사생활 침해에 대한 우려보다, 데이터가 정신건강 이해에 실질적인 도움이 된다는 인식을 갖게 되었다. 이로 인해 연구 수용성과 참여 만족도가 크게 향상됐다.
이의진 교수는 “이번 연구는 가정 내 IoT 데이터가 개인의 생활 맥락 속에서 정신건강을 이해하는 중요한 단서가 될 수 있음을 보여주었다”며, “향후 AI를 활용해 개인별 생활 패턴을 예측하고 맞춤형 코칭이 가능한 원격 의료 시스템 개발로 발전시킬 계획”이라고 밝혔다.
이번 연구에는 고영지 박사과정 학생이 제 1저자로 참여했으며, 연구결과는 인간-컴퓨터 상호작용(HCI) 분야의 저명한 국제 학술지인 ACM 인터랙티브, 모바일, 웨어러블 및 유비쿼터스 기술 논문집(Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies)에 9월호에 게재되었다.
※ Harnessing Home IoT for Self-tracking Emotional Wellbeing: Behavioral Patterns, Self-Reflection, and Privacy Concerns DOI: https://dl.acm.org/doi/10.1145/3749485
※ 고영지(KAIST, 1저자), 이찬희 (KAIST, 2저자), 정은기(KAIST, 3저자), 이현수(KAIST, 교신저자), 이의진(KAIST, 교신저자)
한편 이번 연구는 LG전자-KAIST 디지털 헬스케어 연구센터와 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행됐다.
2025.10.21
조회수 982
-
전력없이 빛 만으로 20배 더 민감한 세계 최고 광센서 개발
기존 광센서에 사용되는 실리콘 반도체는 빛에 대한 반응성이 낮고, 2차원 반도체 MoS₂(이황화 몰리브덴)는 너무 얇아 전기적 특성을 조절하는 도핑 공정이 어려워 고성능 광센서 구현에 한계가 있었다. 우리 대학 연구팀은 이 기술적 한계를 극복하고, 광원이 존재하는 환경에서 전력 없이 작동하는 세계 최고 성능의 무전력 광센서를 개발했다. 향후 웨어러블 기기, 생체 신호 모니터링, IoT 기기, 자율주행 자동차, 로봇 등에 광원만 있으면 배터리 필요없이 정밀한 센싱이 가능한 시대를 앞당겼다.
우리 대학 전기및전자공학부 이가영 교수 연구팀이 외부 전원 공급 없이 작동하는 무전력 광센서를 개발했다고 14일 밝혔다. 이 센서는 기존 제품보다 민감도가 최대 20배 향상돼, 현재까지 공개된 동급 기술 가운데 최상위 수준의 성능을 보였다.
이가영 교수 연구팀은 전기 에너지를 공급하지 않아도 빛이 있는 환경이라면 스스로 전기 신호를 만들어 낼 수 있는 ‘PN 접합 구조’ 광센서를 ‘도핑’없이 반도체를 전기 신호에 매우 민감하게 하는 ‘반데르발스 하부 전극’을 도입하여 만들어 냈다.
먼저 ‘PN 접합’은 반도체에서 P형(정공이 많은)과 N형(전자가 많은) 재료를 접합한 구조로 이 구조는 빛을 받았을 때 전류를 한 방향으로 흐르게 만들기 때문에, 광센서나 태양전지의 핵심 요소로 알려져 있다.
PN 접합을 제대로 만들려면 보통 ‘도핑’이라는 공정이 필요한데 이것은 반도체에 일부러 불순물을 넣어서 전기적 특성을 바꾸는 작업이다. 하지만 MoS₂(이황화 몰리브덴) 같은 2차원 반도체는 원자 몇 겹 두께밖에 안 되기 때문에, 기존 반도체처럼 도핑을 하면 오히려 구조가 망가지거나 성능이 떨어질 수 있어 이상적인 PN 접합을 만들기 힘들다는 한계가 있다.
연구팀은 기존의 한계를 극복하고 소자의 성능을 극대화하기 위해 ‘반데르발스 전극’과 ‘부분 게이트(Partial Gate)’라는 두 가지 핵심 기술을 도입한 새로운 소자 구조를 고안했다.
‘부분 게이트(Partial Gate)’구조는 2차원 반도체의 일부 영역에만 전기 신호를 걸어서, 한쪽은 P형처럼, 다른 쪽은 N형처럼 작동하게 제어하는 방식이다. 이렇게 하면 도핑 없이도 전기적으로 PN 접합처럼 작동하게 만들 수 있다.
그리고 기존 금속 전극은 반도체와 강하게 화학적으로 결합해 반도체 고유의 격자 구조를 손상시킬 수 있다는 점을 고려하여, 반데르발스 힘으로‘반데르발스 하부 전극(Van der Waals Bottom Electrode)’에 부드럽게 붙게 하여, 2차원 반도체의 본래 구조를 유지하면서도 전기 신호를 잘 전달해 주었다.
이는 소자의 구조적 안정성과 전기적 성능을 동시에 확보할 수 있는 혁신적 접근으로 얇은 2차원 반도체에서도 구조를 망치지 않고 전기적으로 잘 작동하는 PN 접합을 구현한 것이다.
이 기술의 혁신을 통해, 연구팀은 도핑 없이도 고성능 PN 접합 구현에 성공하여 외부 전원이 없어도, 빛을 받기만 하면 아주 민감하게 전기 신호를 생성할 수 있어 빛을 감지하는 민감도(응답도)는 21 A/W 이상이고, 이는 전원이 필요한 기존 센서보다 20배 이상이고, 실리콘 기반 무전력 센서보다 10배, 기존 MoS₂센서보다 2배 이상 높은 수준이다. 이 정도의 민감도는 생체 신호 탐지나 어두운 환경에서도 작동 가능한 고정밀 센서로 바로 응용될 수 있다는 의미다.
이가영 교수는 “실리콘 센서에서는 상상도 못 했던 민감도를 달성했고 2차원 반도체는 너무 얇아서 기존처럼 도핑 공정을 적용하기가 어려웠지만 그런 도핑 공정 없이도 전기 흐름을 제어하는 PN 접합을 구현하는데 성공했다.”고 말했다. 이어 “이 기술은 센서뿐만 아니라 스마트폰이나 전자기기 내부에서 전기를 조절하는 핵심 부품에도 활용이 가능하여, 미래형 전자기기의 소형화·무전력화를 앞당길 수 있는 기반이 될 것”이라고 강조했다.
전기및전자공학부 황재하, 송준기 박사과정 학생이 공동 제1 저자로 참여한 이번 연구 결과는 재료과학 분야의 세계적인 학술지‘어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials, IF 19)’에 지난 7월 26일 자로 온라인 게재됐다.
※논문 제목: Gated PN Junction in Ambipolar MoS2 for Superior Self-Powered Photodetection
※DOI: https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202510113
한편, 이번 연구는 한국연구재단, 한국기초과학지원연구원, 삼성전자, 한국산업기술진흥원의 지원을 받아 수행됐다.
2025.08.14
조회수 2713
-
가벼운 숨결·압력·소리까지 감지, 맞춤형 촉각 센서 개발
로봇이 물체를 잡을 때나, 의료기기가 몸의 맥박을 감지할 때 촉각 센서는 손끝처럼 ‘눌림’을 느끼는 기술이다. 기존 센서들은 반응이 느리거나 여러 번 쓰면 정확도가 떨어지는 단점이 있었는데, 한국 연구진이 가벼운 숨결, 압력, 소리까지 정확하고 빠르게 감지할 수 있어, 일상적인 움직임부터 의료용 진단까지 폭넓게 사용할 수 있는 센서를 개발하는데 성공했다.
우리 대학 기계공학과 박인규 교수 연구팀이 국가과학기술연구회(NST, 이사장 김영식) 산하 한국전자통신연구원(ETRI, 원장 방승찬)과의 공동연구를 통해 기존 촉각 센서 기술의 구조적 한계를 극복한 혁신적 기술을 개발했다고 23일 밝혔다.
이번 공동연구의 핵심은 ‘열성형 기반 3차원 전자 구조(Thermoformed 3D Electronics, T3DE)’를 적용해 유연성과 정밀성, 반복 내구성을 동시에 확보한 맞춤형 촉각 센서를 구현한 것이다.
특히, 소프트 엘라스토머(고무, 실리콘 등 쭉 늘렸다가 놓으면 다시 원래 모양으로 돌아오는 재료) 기반 센서가 갖는 느린 응답속도, 높은 히스테리시스*, 크립(오랫동안 힘을 가했을 때 재료가 천천히 변형되는 현상) 오차 등 구조적 문제를 극복하면서도 다양한 환경에서 정밀하게 작동하는 플랫폼으로 주목받고 있다.
* 히스테리시스(Hysteresis): 한 번 받았던 힘이나 변화가 기억처럼 남아서, 똑같은 자극을 주더라도 항상 같은 결과가 나오지 않는 현상
T3DE 센서는 2차원 필름 위에 정밀하게 전극을 형성한 후, 열과 압력을 가해 3차원 구조로 성형하는 과정을 통해 제작된다. 특히 센서 상부의 전극과 지지 다리 구조는 목적에 따라 기계적 물성을 조절할 수 있도록 설계되어 있으며, 지지 다리의 두께, 길이, 개수 등 미세한 구조 매개변수를 조정함으로써 센서의 영률(Young’s modulus)*을 10Pa에서 1MPa까지 폭넓게 설정할 수 있다. 이 수치는 피부, 근육, 힘줄 등의 생체조직과 유사한 수준으로, 실제 생체 인터페이스용 센서로도 유용하다.
* 영률(Young’s modulus): 재료의 강성을 나타내는 지표로, 이번 연구에서는 다양한 생체조직과 일치하는 수준까지 조절 가능함
이번에 개발된 T3DE 센서는 공기를 유전체로 활용해 전력 소비를 줄이는 동시에, 민감도, 응답속도, 온도 안정성, 반복 정밀도 측면에서도 우수한 성능을 보였다.
실험 결과, 해당 센서는 △민감도 5,884 kPa⁻¹ △응답속도 0.1ms(1,000분의 1초보다 짧은 시간) △히스테리시스 0.5% 이하 △5,000회 반복 측정에서도 정밀도 99.9% 이상을 유지하는 내구성을 입증했다.
연구팀은 이 센서를 활용해 고해상도 40×70 배열하여, 총 2,800개의 센서를 촘촘히 구성, 운동 중 발바닥의 압력 분포를 실시간 시각화하고, 손목 맥박 측정을 통한 혈관 건강 상태 평가 가능성도 확인했다. 또한, 상용 음향 센서 수준의 소리 감지 실험에서도 성공적인 결과를 얻었다. 즉, 이 센서는 발바닥 압력, 맥박, 소리까지 매우 정확하고 빠르게 측정할 수 있어서 운동, 건강, 소리 감지 등 다양한 분야에 활용될 수 있다.
T3DE 기술은 증강현실(AR) 기반 외과 수술 훈련 시스템에도 적용됐다. 각 센서 요소마다 서로 다른 영률을 부여해 실제 생체조직과 유사한 강성을 구현했으며, 수술 절개 시 가해지는 압력 강도에 따라 시각·촉각 피드백을 동시에 제공하고, 너무 깊이 베거나, 위험한 부위를 건드리면 실시간 위험 경고 기능까지 갖춘 시스템이 구현되었다. 이는 의료 교육의 몰입도와 정확성을 획기적으로 향상할 수 있는 기술로 평가된다.
우리 대학 박인규 교수는 “이 센서는 설계 단계에서부터 정밀하게 조절할 수 있어 다양한 환경에서도 안정적으로 작동한다”며, “일상생활은 물론 의료, 재활, 가상현실 등 다양한 분야에서 쓸 수 있을 것”이라고 밝혔다.
본 연구는 ETRI 최중락 박사, KAIST 한찬규 석사, 이돈호 박사과정이 공동 제1저자로 참여했으며, 박인규 교수가 전체 연구를 총괄했다. 연구 결과는 세계적 권위의 학술지 ‘사이언스 어드밴시스(Science Advances)’ 2025년 5월호에 게재됐으며, 해당 논문은 사이언스 어드밴시스 공식 SNS 채널(Facebook, Twitter)을 통해 전 세계에 소개되기도 했다.
※ 논문명: Thermoforming 2D films into 3D electronics for high-performance, customizable tactile sensing
※ DOI: 10.1126/sciadv.adv0057
이번 연구는 산업통상자원부, 한국연구재단, 한국산업기술평가관리원의 지원을 받아 수행됐다.
2025.06.23
조회수 3785
-
세계 최초‘좌우회전 빛 구별 반도체’소재로 양자광학 혁신
기존 광센서가 측정할 수 없었던 빛의 방향성 정보를 정밀하게 구별할 수 있다면, 빛의 편광 정보를 활용하는 양자 반도체, 스핀 광소자, 라이다(LiDAR), 바이오 센서 등의 핵심 소재로 활용될 수 있다. 기존에는 복잡한 필터나 유기성 민감한 재료를 써야만 이 좌우회전 빛을 구분할 수 있었으나, KAIST 연구진이 복잡한 장치 없이 특정 방향의 원형편광(Circularly Polarized Light, CPL)에 선택적으로 잘 반응하는 편광 감지 센서를 개발하는데 성공했다.
우리 대학 신소재공학과 염지현 교수 연구팀이 셀레늄(Se) 나노결정의 원자수준 카이랄성 제어를 이용해, 자외선부터 단파장 적외선까지 감지가능한 광대역 원형편광(CPL) 검출 반도체 소재를 세계 최초로 개발했다.
이 기술은 원형편광(CPL)을 실온에서 고감도로 감지할 수 있는 필름형 소재로, 빛으로 암호화된 정보를 해독하거나 양자비트(qubit)를 제어하는 등 양자 컴퓨팅과 스핀트로닉스, 광센서 기술의 핵심 소재로 주목받고 있다.
카이랄성(Chirality)은 좌우 비대칭성을 의미하며, 분자 수준뿐 아니라 광학, 의약, 생명현상 전반에 걸쳐 매우 중요한 물리적 특성이다. 특히 빛의 스핀 각운동량을 탐지하는 데 중요한 원형편광(CPL)을 구별하는 기술이다.
기존에 CPL 센서가 습기나 자외선에 약하고 열화되기 쉬운 문제로 상용화에 큰 한계가 있다는 점을 염두에 두고, 염지현 교수 연구진은 자연적으로 비대칭 결정 구조(카이랄성)를 갖는 무기 소재인 셀레늄에 주목했다.
셀레늄은 고유한 카이랄성 구조를 가지고 있으며, 성능 안정성을 반영구적으로 늘릴 수 있다. 하지만, 자연적으로는 원자 구조가 오른쪽과 왼쪽 방향성이 섞여서 존재하며, 한 쪽 방향성으로 제어하는 것은 매우 어려워 현실적인 활용에 큰 어려움이 있었다.
연구팀은 셀레늄(Se)을 나노 크기 막대 형태의 ‘셀레늄 나노로드’로 만들면서, 그 격자 구조가 왼쪽 또는 오른쪽 방향의 비대칭성(카이랄성)을 갖도록 제어할 수 있는 ‘카이랄성 전이 기술’을 개발했다.
연구진은 제작한 셀레늄 나노필름 소자가 자외선(180 nm)부터 단파장 적외선(2500 nm)에 이르기까지 넓은 파장 영역에서 CPL을 감지할 수 있음을 확인했으며, 광응답 비대칭성 지수(gres)*가 최대 0.4에 달하는 즉, 추가적인 편광 필터 없이 편광 방향을 정밀하게 구분하는 우수한 성능을 기록했다.
*광응답 비대칭성 지수: 0는 좌우 빛을 전혀 구별못함이며, ±0.1은 미세한 구별 가능, ±0.4은 이상좌/우 원형편광을 매우 뚜렷하게 구별 가능하여 고성능 센서로 인정
또한, 13개월 이상 공기 중에서 성능 변화 없이 안정적으로 동작함을 실험적으로 확인하며 무기물 기반 광소자의 장기 안정성 측면에서도 매우 우수함을 입증했다.
기존에는 고가의 투가전자현미경(TEM) 장비를 통해 격자 카이랄성을 분석할 수 있었던 반면, 이번에 개발한 2차원 라만 광활성(2D ROA) 매핑 기법은 셀레늄 나노필름이 지닌 카이랄 구조(좌/우 비대칭성)가 필름 전체에 어떻게 분포되어 있는지를 지도처럼 시각화하고 정량 분석할 수 있는 새롭고 강력한 분석 기술이다.
염지현 교수는 “이번 연구는 반도체 광소재 분야에서 카이랄성 구현 및 분석의 새로운 방법론을 제시한 것”이라며 “빛의 원형편광 정보를 선택적으로 읽고 구분할 수 있는 만큼, 빛 기반의 양자 정보 처리나 저전력 반도체 기술 개발에도 응용될 수 있으며, 본 연구에 사용된 셀레늄 나노필름 합성 공정은 상온 환경에서 이루어지며, 유해 화학물질이나 고온 열처리가 불필요한 친환경 공정으로, 상온에서도 안전하게 실험이 가능하다” 라고 말했다.
이어 “양자광학, 보안광학, 생체 진단 및 이미지 센서 등 다양한 분야에 실제 응용 가능한 기반기술로 확장할 수 있을 것”이라고 말했다.
이번 연구는 부경대학교 나노융합공학전공 권준영 조교수(前 KAIST 박사후연구원)가 제1 저자로 참여했으며, KAIST 신소재공학과 김경민교수 팀과 공동연구로 진행되었다. 국제 학술지 네이처 커뮤니케이션(Nature Communication)에 5월 3일 자로 온라인 게재되었다.
※ 논문명: Enantioselective Se lattices for stable chiroptoelectronic processing media https://doi.org/10.1038/s41467-025-59091-9
이번 연구는 과학기술정보통신부 한국연구재단의 우수신진연구사업 등의 지원을 받아 수행되었다.
2025.05.28
조회수 4292
-
외계행성 감지 중적외선 광검출기 혁신, 환경·의료 개척
미국 항공우주국(NASA)의 제임스웹 우주망원경(JWST)은 중적외선 스펙트럼을 활용해 외계 행성 대기의 수증기, 이산화황 등 분자 성분을 정밀하게 분석하고 있다. 이처럼 각 분자가 ‘지문’처럼 고유한 패턴을 나타내는 중적외선 분석의 핵심은, 아주 약한 빛의 세기까지 정밀하게 측정할 수 있는 고감도 광검출기 기술이다. 최근 KAIST 연구진이 중적외선 스펙트럼의 넓은 영역을 감지할 수 있는 혁신적 광검출기 기술을 개발하며 주목을 받고 있다.
우리 대학 전기및전자공학부 김상현 교수팀이 상온에서 안정적으로 동작하는 중적외선 광검출기 기술을 개발하고, 이를 통해 초소형 광학 센서 상용화에 새로운 전환점을 마련했다고 27일 밝혔다.
이번에 개발된 광검출기는 기존 실리콘(Silicon) 기반 CMOS 공정을 활용해 저비용 대량 생산이 가능하며, 상온에서 안정적으로 동작하는 것이 특징이다. 특히 연구팀은 이 광검출기를 적용한 초소형·초박형 광학 센서를 이용해 이산화탄소(CO2) 가스를 실시간으로 검출하는 데 성공, 환경 모니터링 및 유해가스 분석 등 다양한 응용 가능성을 입증했다.
기존 중적외선 광검출기는 상온에서의 높은 열적 잡음(Thermal noise)으로 인해 일반적으로 냉각 시스템이 요구된다. 이러한 냉각 시스템은 장비의 크기와 비용을 증가시켜, 센서의 소형화 및 휴대용 기기 응용을 어렵게 만든다. 또한, 기존 중적외선 광검출기는 실리콘 기반 CMOS 공정과 호환되지 않아 대량생산이 어렵고 상용화가 제한됐다.
이에 연구팀은 실리콘과 같은 주기율표 4족 원소인 저마늄(Germanium) 반도체를 기반으로 한 광학 플랫폼을 활용해, 넓은 대역의 중적외선 검출 성능을 확보하면서도 동시에 상온에서 안정적으로 동작할 수 있는 새로운 형태의 도파로형(waveguide-integrated) 광검출기를 개발했다.
‘도파로’란 빛을 특정한 경로로 손실 없이 효과적으로 유도하는 구조물을 의미한다. 온-칩(on-chip) 상에서 다양한 기능의 광학 회로를 구현하기 위해서는 도파로형 광검출기를 포함해 도파로를 기반으로 하는 광학 소자의 개발이 필수적으로 요구된다.
이번 기술은 기존에 광검출기 동작에 일반적으로 활용되는 밴드갭 흡수 원리와는 다르게 볼로미터 효과(Bolometric effect)*를 활용해 중적외선 스펙트럼 영역 전체를 대응할 수 있기 때문에 다양한 종류의 분자들의 실시간 센싱에 범용적으로 활용될 수 있다.
*볼로미터 효과(Bolometric effect): 빛을 흡수하면 온도가 올라가고, 그 온도 변화에 따라 전기적인 신호가 달라지는 원리
연구팀이 개발한 상온 동작 및 CMOS 공정 호환 중적외선 도파로형 광검출기는 기존 중적외선 센서 기술이 가진 냉각 필요성, 대량 생산의 어려움, 높은 비용 문제를 해결하는 혁신적인 기술로 평가된다.
이를 통해 환경 모니터링, 의료 진단, 산업 공정 관리, 국방 및 보안, 스마트 디바이스 등 다양한 응용 분야에 적용 가능하며, 차세대 중적외선 센서 기술의 핵심적인 돌파구를 제공할 것으로 기대된다.
김상현 교수는 “이번 연구는 기존 중적외선 광검출기 기술의 한계를 극복한 새로운 접근 방식이며, 향후 다양한 응용 분야에서 실용화될 가능성이 매우 크다”고 밝혔다. 또한, “특히 CMOS 공정과 호환되는 센서 기술로, 저비용 대량생산이 가능해 차세대 환경 모니터링 시스템, 스마트 제조 현장 등에서 적극 활용될 것”이라고 덧붙였다.
이번 연구 결과는 심준섭 박사(現 하버드대학교 박사후 연구원)가 제1 저자로 참여해 국제 저명 학술지인 ‘빛, 과학과 응용(Light: Science & Applications, JCR 2.9%, IF=20.6)’에 2025년 3월 19일 자 발표됐다. (논문제목: Room-temperature waveguide-integrated photodetector using bolometric effect for mid-infrared spectroscopy applications, https://doi.org/10.1038/s41377-025-01803-3)
한편, 해당 연구는 한국연구재단의 지원을 받아 진행됐다.
2025.03.27
조회수 5870
-
비오는 날 터치 걱정 끝! KAIST, 인간 촉각 수준 감지
최근 개발된 로봇들은 계란을 섬세하게 집는 수준에 이르렀는데, 이같은 결과는 손 끝에 집적된 압력 센서가 촉각 정보를 제공했기 때문이다. 그러나, 이러한 세계 최고 수준의 로봇들조차도 물 속, 굽힘, 전자기 간섭과 같은 복잡한 외부 간섭 요소들이 존재하는 환경에서 압력을 정확히 감지하는 것은 아직 어렵다. 우리 연구진이 물기가 묻은 스마트폰 화면과 같은 환경에서도 외부 간섭 없이 안정적으로 작동하며, 인간의 촉각 수준에 근접한 압력 센서를 개발하는 데 성공했다.
우리 대학 전기및전자공학부 윤준보 교수 연구팀이 비가 오거나 샤워 후 스마트폰 화면에 물이 묻으면, 터치가 엉뚱하게 인식되는 '고스트 터치'와 같은 외부 간섭의 영향을 받지 않으면서도 높은 해상도로 압력을 감지할 수 있는 압력 센서를 개발했다고 10일 밝혔다.
흔히 터치 시스템으로 사용되고 있는 정전용량 방식 압력 센서는 구조가 간단하고 내구성이 뛰어나 스마트폰, 웨어러블 기기, 로봇 등의 휴먼-머신 인터페이스(Human-Machine Interface) 기술에 널리 활용되고 있다. 그러나 물방울이나 전자기 간섭, 굴곡으로 인한 굽힘 등 외부 간섭 요소에 의해 오작동이 발생하는 치명적인 문제가 있었다.
연구팀은 이와 같은 문제를 해결하기 위해 우선 정전용량 방식 압력 센서에서 발생하는 간섭의 원인을 정확히 파악하고자 했다. 그 결과, 센서 가장자리에서 발생하는 ‘프린지 필드(Fringe Field)'가 외부 간섭에 극도로 취약한 것을 확인했다.
이를 근본적으로 해결하기 위해서는 문제의 원인인 프린지 필드를 억제해야 한다는 결론에 이르렀다. 따라서, 연구팀은 이론적 접근을 통해 프린지 필드에 영향을 미치는 구조적 변수들에 대해 집중적으로 탐구했고 전극 간격을 수백 나노미터(nm) 수준으로 좁힐 경우 센서에서 발생하는 프린지 필드를 수 퍼센트 이하로 억제할 수 있음을 확인했다고 밝혔다.
연구팀은 독자적인 마이크로/나노 구조 공정 기술을 활용해 앞서 설계한 900나노미터(nm) 수준의 전극 간격을 갖는 나노 갭 압력 센서를 개발했다. 개발된 센서는 압력을 가하는 물질에 관계없이 압력만을 신뢰적으로 감지했으며 굽힘이나 전자기 간섭에도 감지 성능에 영향이 없는 것을 검증했다.
또한, 연구팀은 개발한 센서의 특성을 활용해 인공 촉각 시스템을 구현했다. 인간의 피부에는 메르켈 원반(Merkel's disc)라는 압력 수용기가 있어 압력을 감지하는데, 이를 모사하기 위해서는 외부 간섭에는 반응하지 않고 오직 압력에만 반응하는 압력 센서 기술이 필요했지만 기존 기술들로는 이러한 조건을 만족시키기가 어려웠다.
윤준보 교수 연구팀이 개발한 센서는 이러한 제약을 모두 극복했으며, 밀도 또한 메르켈 원반 수준에 도달해 무선으로 정밀한 압력 감지가 가능한 인공 촉각 시스템을 구현하는 데 성공했다.
더 나아가, 다양한 전자기기로의 응용 가능성을 확인하기 위해 포스 터치 패드 시스템 역시 개발해 압력의 크기와 분포를 간섭 없이 높은 해상도로 얻을 수 있음을 검증했다고 밝혔다.
윤준보 교수는 “이번 나노 갭 압력 센서는 비 오는 날이나 땀이 나는 상황에서도 기존 압력 센서처럼 오작동하지 않고 안정적으로 동작한다. 많은 사람들이 일상에서 겪어온 불편을 해소할 수 있을 것으로 기대한다.”라고 말했다.
전기및전자공학부 양재순 박사, 정명근 박사과정 그리고 성균관대 반도체융합공학과 유재영 조교수(KAIST 박사 졸업)가 제1 저자로 수행한 이번 연구는 저명 국제 학술지 `네이처 커뮤니케이션즈 (Nature Communications)'에 2025년 2월 27일 출판됐다.
(논문 제목: Interference-Free Nanogap Pressure Sensor Array with High Spatial Resolution for Wireless Human-Machine Interfaces Applications, https://doi.org/10.1038/s41467-025-57232-8)
한편, 이번 연구는 한국연구재단의 중견연구지원사업과 선도연구센터지원사업의 지원을 받아 수행됐다.
2025.03.10
조회수 6947
-
수면 무호흡증 실시간 진단 센서 개발
이산화탄소는 주요 호흡 대사 산물로서, 날숨 내 이산화탄소 농도의 지속적인 모니터링은 호흡·순환기계 질병을 조기 발견 및 진단하는 데 중요한 지표가 될 뿐만 아니라, 개인 운동 상태 모니터링 등에 폭넓게 사용될 수 있다. 우리 연구진이 마스크 내부에 부착하여 이산화탄소 농도를 정확히 측정하는데 성공했다.
우리 대학 전기및전자공학부 유승협 교수 연구팀이 실시간으로 안정적인 호흡 모니터링이 가능한 저전력 고속 웨어러블 이산화탄소 센서를 개발했다고 10일 밝혔다.
기존 비침습적 이산화탄소 센서는 부피가 크고 소비전력이 높다는 한계가 있었다. 특히 형광 분자를 이용한 광화학적 이산화탄소 센서는 소형화 및 경량화가 가능하다는 장점에도 불구하고, 염료 분자의 광 열화 현상으로 인해 장시간 안정적 사용이 어려워 웨어러블 헬스케어 센서로 사용되는 데 제약이 있었다.
광화학적 이산화탄소 센서는 형광 분자에서 방출되는 형광의 세기가 이산화탄소 농도에 따라 감소하는 점을 이용하며, 형광 빛의 변화를 효과적으로 검출하는 것이 중요하다.
이를 위해 연구팀은 LED와 이를 감싸는 유기 포토다이오드로 이루어진 저전력 이산화탄소 센서를 개발했다. 높은 수광 효율을 바탕으로 형광 분자에 조사되는 여기 광량이 최소화된 센서는 수 mW 수준을 소비하는 기존 센서에 비해 수십 배 낮은 171μW의 소자 소비전력을 달성했다.
연구팀은 또한 이산화탄소 센서에 사용되는 형광 분자의 광 열화 경로를 규명해 광화학적 센서에서 사용 시간에 따라 오차가 증가하는 원인을 밝히고, 오차 발생을 억제하기 위한 광학적 설계 방법을 제시했다.
이를 기반으로, 연구팀은 기존 광화학적 센서의 고질적 문제였던 광 열화 현상에 따른 오차 발생을 효율적으로 감소시키고 동일 재료에 기반한 기존 기술은 20분 이내인데 반해 최대 9시간까지 안정적으로 연속 사용이 가능하며, 이산화탄소 감지 형광 필름 교체시 다회 활용도 가능한 센서를 개발했다.
개발된 센서는 가볍고(0.12 g), 얇으며(0.7 mm), 유연하다는 장점을 기반으로 마스크 내부에 부착되어 이산화탄소 농도를 정확히 측정했다. 또한, 실시간으로 들숨과 날숨을 구별해 호흡수까지 모니터링 가능한 빠른 속도와 높은 해상도를 보였다.
유승협 교수는 "개발한 센서는 저전력, 고안정성, 유연성 등 우수한 특성을 가져 웨어러블 디바이스에 폭넓게 적용될 수 있어 과탄산증, 만성 폐쇄성 폐질환, 수면 무호흡 등 다양한 질병의 조기 진단에 사용될 수 있다”면서 “특히, 분진 발생 현장이나 환절기 등 장시간 마스크 착용 환경에서의 재호흡에 따른 부작용 개선에도 사용될 것으로 기대된다ˮ 라고 밝혔다.
신소재공학과 김민재 학사과정과 전기및전자공학부 최동호 박사과정이 공동 제1 저자로 참여한 이번 연구는 Cell 자매지인 `디바이스(Device)' 온라인판에 지난달 22일 공개됐다. (논문명: Ultralow-power carbon dioxide sensor for real-time breath monitoring) DOI: https://doi.org/10.1016/j.device.2024.100681
한편 이번 연구는 산업통상자원부 소재부품기술개발사업, 한국연구재단 원천기술개발사업, KAIST 학부생 연구참여 프로젝트 (URP) 프로그램의 지원을 받아 수행됐다.
2025.02.10
조회수 5787
-
기존 양자점 뛰어넘는 적외선 센서 기술 개발
최근 양자 큐비트 기술 분야에서는 양자 상태를 확보하기 위해 결정질 반도체를 활용한 아발란체 광다이오드 소자*들이 활용되고 있으나, 높은 열잡음으로 인해 극저온 구동이 필수적이며, 적외선 대역에서 높은 탐지 효율을 갖는 소재의 부재로 기술적 한계에 직면했다. 우리 연구진이 양자점 소재가 차세대 양자 기술로 활용될 돌파구를 제시했다.
*아발란체 광다이오드 소자: 매우 미세한 빛을 증폭하여 감지하는 고성능 센서 소자로서 야간 투시경이나 자율주행차, 우주 관측, 양자통신 등에 사용
우리 대학 전기및전자공학부 이정용 교수 연구팀이 콜로이드 양자점을 활용해 하나의 적외선 광자 흡수를 통하여 85배의 전자를 생성할 수 있는 아발란체 전자 증폭 기술*을 개발하여 기존 기술의 한계를 뛰어 넘는 감도를 달성했다고 8일 밝혔다.
*아발란체 전자 증폭: 기술 강한 전기장이 인가된 반도체에서 전자가 가속되어 인접 원자와 충돌을 통해 다수의 전자를 생성하는 신호 증폭 기술
화학적으로 합성된 반도체 나노입자인 콜로이드 양자점은 용액 기반 반도체로서 적외선 센서의 실용적인 후보로 주목 받고 있으며, 결정질 반도체와 다른 에너지 구조를 가져 열잡음 생성을 억제하는 장점이 있지만, 전하 이동도가 낮고, 양자점 표면에서 자주 발생하는 불완전 결합 때문에 전하의 재결합이 촉진되어 전하 추출이 저하되는 문제가 있었다.
연구진은 강한 전기장을 인가해 전자를 가속하여 운동에너지를 얻고, 인접 양자점에서 다수의 추가 전자들을 생성함으로써 상온에서 적외선을 조사 시 신호가 85배 증폭되고 1.4×1014 Jones 이상의 탐지 감도를 가지는 소자를 구현하였는데 이는 일반 야간 투시경보다 수만 배 정도 높은 감도를 보여준다.
적외선 광검출기는 자율주행차부터 양자컴퓨팅에 이르기까지 다양한 응용 분야에서 핵심적인 역할을 하지만, 기존 양자점 기반 기술은 민감도와 잡음 문제로 한계가 있었다.
이번 연구는 새로운 패러다임 전환을 불러올 기술이 될 것으로 기대되며, 양자 기술이 관련된 핵심 원천 기술을 선점함으로써 글로벌 양자 기술 시장을 대한민국이 주도할 수 있는 중요한 기술적 토대를 확보했다고 평가받고 있다.
제1 저자인 김병수 박사는 “양자점 아발란체 소자는 기존에 보고된 바 없는 신개념 연구 분야로서, 본 원천 기술을 통해 글로벌 자율주행차와 양자 컴퓨팅, 의료 영상 시장 등을 선도할 벤처 기업 육성을 주도할 수 있을 것”이라고 말했다.
KAIST 정보전자연구소 김병수 박사와 IMEC의 이상연 박사 및 한국세라믹기술원의 고현석 박사가 공동 제1 저자로 참여한 이번 연구는 국제 최상위 학술지 `네이처 나노테크놀로지(Nature Nanotechnology)' 12월 18일 자 온라인판에 게재됐다. (논문명 : Ultrahigh-gain colloidal quantum dot infrared avalanche photodetectors DOI: https://doi.org/10.1038/s41565-024-01831-x)
한편 이번 연구는 한국연구재단의 지원을 받아 수행됐으며, 주요 지원 사업으로는 나노및소재기술개발사업(경쟁형), 미래디스플레이 전략연구실사업, 개인기초연구사업 중견연구가 있다.
2025.01.08
조회수 7711
-
초박막으로 초고해상도 이미지 즐긴다
한미 공동 연구진이 기존 센서 대비 전력 효율이 높고 크기가 작은 고성능 이미지 센서를 구현할 수 있는 차세대 고해상도 이미지 센서 기술을 개발했다. 특히 세계 시장에서 소니(Sony)社가 주도하고 있는 초고해상도 단파적외선(SWIR) 이미지 센서 기술에 대한 원천 기술을 확보해 향후 시장 진입 가능성이 크다.
우리 대학 전기및전자공학부 김상현 교수팀이 인하대, 미국 예일대와 공동연구를 통해 개발한 초박형 광대역 광다이오드(PD)가 고성능 이미지 센서 기술에 새로운 전환점을 마련했다고 20일 밝혔다.
이번 연구는 광다이오드의 기존 기술에서 나타나는 흡수층 두께와 양자 효율 간의 상충 관계를 획기적으로 개선한 것으로, 특히 1마이크로미터(μm) 이하의 얇은 흡수층에서도 70% 이상의 높은 양자 효율을 달성했다. 이 성과는 기존 기술의 흡수층 두께를 약 70% 줄이는 결과를 가져왔다.
흡수층이 얇아지면 화소 공정이 간단해져 높은 해상도 달성이 가능하고 캐리어 확산이 원활해져 광캐리어 획득에 유리한 장점이 있다. 더불어 원가도 절감이 가능하다. 그러나 일반적으로 흡수층이 얇아지면 장파장의 빛의 흡수는 줄어들게 되는 본질적인 문제가 존재한다.
연구진은 도파 모드 공명(GMR)* 구조를 도입해 400나노미터(nm)에서 1,700 나노미터(nm)에 이르는 넓은 스펙트럼 범위에서 고효율의 광 흡수를 유지할 수 있음을 입증했다. 이 파장 대역은 가시광선 영역뿐만 아니라 단파 적외선(SWIR) 영역까지 포함해 다양한 산업적 응용에서 중요한 역할을 할 것으로 기대된다.
*도파 모드 공명: 전자기학에서 사용하는 개념으로 특정 파동(빛)이 특정 파장에서 공명 (강한 전기/자기장 형성)하는 현상. 해당 조건에서 에너지가 최대화되기 때문에 안테나나 레이더 효율을 높이는데 활용된 바 있음.
단파 적외선 영역에서의 성능 향상은 점점 고해상도화되는 차세대 이미지 센서의 개발에도 중대한 기여를 할 것으로 예상된다. 특히, 도파 모드 공명 구조는 상보적 금속산화물 반도체(CMOS) 기반의 신호 판독 회로(ROIC)와의 하이브리드 집적, 모놀리식 3D 집적을 통해 해상도 및 기타 성능을 더욱 높일 가능성을 가진다.
연구팀은 저전력 소자 및 초고해상도 이미징 기술에 대한 국제 경쟁력을 높여 디지털카메라, 보안 시스템, 의료 및 산업용 이미지 센서 응용 분야부터 자동차 자율 주행, 항공 및 위성 관측 등 미래형 초고해상도 이미지 센서의 실현 가능성을 크게 높였다.
연구 책임자인 김상현 교수는 "이번 연구를 통해 초박막 흡수층에서도 기존 기술보다 훨씬 높은 성능을 구현할 수 있음을 입증했다”며, "특히 세계 시장에서 소니(Sony)社가 주도하고 있는 초고해상도 단파적외선(SWIR) 이미지 센서 기술에 대한 원천 기술을 확보해 향후 시장 진입 가능성을 열었다”고 설명했다.
이번 연구 결과는 인하대학교 금대명 교수(前 KAIST 박사후 연구원), 임진하 박사(現 예일대학교 박사후 연구원)이 공동 제1 저자로 참여해 국제 저명 학술지인 ‘빛, 과학과 응용(Light: Science & Applications, JCR 2.9%, IF=20.6)’에 11월 15일자 발표됐다. (논문제목: Highly-efficient (>70%) and Wide-spectral (400 nm -1700 nm) sub-micron-thick InGaAs photodiodes for future high resolution image sensors)
한편, 해당 연구는 한국연구재단의 지원을 받아 진행됐다.
2024.11.20
조회수 9586
-
100배 정밀한 신개념 빛 측정 센서 개발
자율주행에서 물체의 모양과 위치를 정확히 추적할 수 있는 기술이 필요하다. 또한, 생물학적 세포, 박막, 미세구조 및 기타 유사한 물질들을 화학 염색 없이도 상세하고 높은 대비로 관찰할 수 있는 기술은 의료 및 산업 현장에서 중요하다. 하지만 기존 기술들은 간섭계를 사용하기 때문에 크고 복잡한 장비가 필요하고 주변 환경에 민감해 실제 현장에서의 활용이 제한됐다. 우리 연구진이 이러한 한계를 극복하고 다양한 응용 분야에서 활용할 수 있는 신개념 빛 측정 기술을 개발해서 화제다.
우리 대학 바이오및뇌공학과 장무석 교수 연구팀이 세계 최초로 메타표면*으로 성능이 대폭 향상된 파면 센서를 이용해 복잡한 물체의 단일 측정 위상 이미징 기술을 개발했다고 20일 밝혔다.
*메타표면: 나노미터에서 마이크로미터 스케일의 기하학적 구조를 가지는 나노 구조체들로 이뤄진 평면으로, 각 나노 구조체의 모양에 따라 매우 미세한 규모에서 전자기파의 전파 경로, 위상, 편광, 진폭 등을 제어할 수 있음
파면은 파동이 동일한 위상을 가지고 있는 지점들을 연결한 면이다. 바다에서 보이는 파도는 일상생활에서 볼 수 있는 파면의 한 예다. 파도가 장애물을 만나거나 환경이 달라지면 모양이 바뀌듯, 빛의 파면도 물체를 통과하거나 반사될 때 물체의 모양에 따라 변한다. 따라서 물체를 통과하거나 반사된 빛의 파면을 분석하면, 물체에 의해 변화되는 빛의 위상 정보를 얻을 수 있다.
샥-하트만 파면 센서(Shack-Hartmann wavefront sensor)는 렌즈 배열과 카메라가 결합된 구조로, 각 렌즈에 입사하는 파면의 경사도에 따라 달라지는 초점의 위치를 분석해 입사된 빛의 파면을 복구한다. 샥-하트만 파면 센서는 간단한 구조와 높은 견고성으로 천문학 및 광학 시스템 평가 등 산업 현장에서 널리 사용되고 있다. 하지만, 기존 샥-하트만 파면 센서는 마이크로 렌즈 크기 때문에 공간해상도가 1 mm2 당 100개 수준으로 제한되어 복잡한 물체의 위상 이미징이 불가능했다.
연구팀은 나노 공정 기술을 통해 제작된 메타표면을 이용해 이 문제를 해결했다. 이번 연구에서 메타표면 기술로 제작된 메타 렌즈를 활용해 시판되고 있는 샥-하트만 파면 센서보다 약 100배 높은 공간해상도를 가지는 메타 샥-하트만 파면 센서를 개발했다. 개발된 메타 샥-하트만 파면 센서는 높은 공간해상도를 이용해 기존 샥-하트만 파면 센서로는 측정이 불가능했던 복잡한 구조체의 위상 이미지를 얻는 데 성공했다.
또한 연구팀은 메타 샥-하트만 파면 센서를 통해 3차원 위치를 추적했다. 이 과정에서, 메타 샥-하트만 파면 센서가 거의 모든 가시광 영역에서 작동하며, 기존 샥-하트만 파면 센서보다 약 10배 큰 시야각을 가지는 것을 확인했다. 이 기술을 활용하면 넓은 영역에서 물체의 3차원 위치의 추적이 가능하다.
연구를 주도한 고기현 박사는 “메타 샥-하트만 파면 센서는 기존 기술보다 견고하고 작은 크기를 가지는 장비로서 초기 질병 진단, 제조 공정의 결함 검출과 자율 주행 등 다양한 분야에 적용될 수 있을 것으로 기대된다”고 밝혔다. 또한 "메타 샥-하트만 파면 센서는 기존 기술의 한계를 극복하고, 위상 이미징 기술의 새로운 기준을 세웠다”며, “이번 연구에서는 메타 샥-하트만 파면 센서의 개념 검증에 집중했고, 향후 메타표면의 우수한 빛 조작 능력을 활용해 초소형·다기능 메타 파면 센서를 개발하는 데 주력할 것이다”라고 밝혔다.
우리 대학 바이오및뇌공학과 고기현 박사가 제1 저자, 장무석 교수가 교신저자로 참여한 이번 연구는 국제 학술지 `라이트:사이언스&어플리케이션즈(Light:Science&Applications)'에 지난 8월 12일 字 출판됐다.
(논문명: Meta Shack-Hartmann wavefront sensor with large sampling density and large angular field of view: Phase imaging of complex objects)
한편 이번 연구는 과학기술정보통신부 한국연구재단이 주관하는 바이오·의료기술개발사업, STEAM연구사업, 선도연구센터지원사업(ERC), 우수신진연구자사업, 교육부가 주관하는 박사후국내연수사업, 삼성미래기술육성사업, 삼성설비연산학과제의 지원을 받아 수행됐다.
2024.08.20
조회수 8914