본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%84%A4%EB%AA%85%EA%B0%80%EB%8A%A5
최신순
조회순
KAIST 설명가능 인공지능연구센터, ‘KCC 2023 설명가능 인공지능(XAI) 워크샵’ 개최
우리 대학 설명가능 인공지능연구센터(센터장 최재식 교수)가 주관하여 ‘KCC 2023 설명가능 인공지능(XAI) 워크샵’을 6월 19일(월) 제주 오리엔탈호텔에서 개최했다. 본 워크샵은 ‘사람중심인공지능핵심원천기술개발’ 연구과제에 참여하고 있는 여러 대학 및 연구기관 연구진들의 기술교류 행사로, 설명가능 인공지능(eXplainable Artificial Intelligence, 이하 XAI) 연구 동향 및 참여기관별 연구 성과를 공유하고 연구진 간 교류를 확대하고자 하는 목적으로 개최되었다. XAI 기술은 인공지능 모델의 예측 및 생성 결과에 대한 근거를 인간이 이해할 수 있는 방식으로 설명하는 기술로서 최근 EU를 중심으로 AI 규제의 움직임이 구체화되는 상황에서 투명하고 신뢰할 수 있는 AI기술을 구현할 수 있는 기술로 주목 받고 있다. 정보통신기획평가원 이현규 PM의 환영사와 한국정보과학회 이원준 회장의 축사로 시작된 행사는 국내 인공지능 분야 석학 및 산업계 전문가의 초청강연과 총37편의 논문 발표로 진행되어 관련분야 연구진의 기술교류의 장을 제공했다. 초청강연에서는 ▲설명가능 인공지능 연구동향(KAIST/INEEJI 최재식 교수) ▲Explaining Visual Biases as Words via Vision-Language Foundation Models(KAIST 신진우 교수) ▲리걸테크 규제 및 표준화 동향(법무법인 디라이트 조원희 대표) ▲질의 기반 의미그래프와 적응형 메타학습을 이용한 생성형 요약 시스템(성균관대 고영중 교수) ▲법, 정책 이슈를 포함해서, 설명요구권의 구체화 과정에서의 알고리즘 공개와 영업비밀 관계(경희대 김윤명 교수) ▲화학공장의 연속생산공정에서 공정 Trouble 원인 분석을 위한 XAI 적용 사례 공유(SK디스커버리 신해빈 매니저) ▲다중 클래스 딥러닝의 의사결정에 대한 시각적 이유 설명(경북대 남우정 교수)이 소개되었다. 논문발표에서는 연구진들의 XAI 분야 연구 성과 발표가 이어졌다. 특히, ▲투자자 심리와 설명가능 인공지능 기법을 적용한 비선형 자산 변동성 예측 모델 개선(이승주(서울대), 박진성(서울대), 이재욱(서울대)) ▲로컬 그라디언트 정렬을 통한 강건한 해석 가능성(정석현(서울대), 주성환(성균관대), 허주연(Univ. of Cambridge), 아드리안 윌러(Univ. of Cambridge/The Alan Turing Institute), 문태섭(서울대))이 우수논문상을 수상했으며, XAI 알고리즘 분야 연구와 의료, 법률, 금융 등 실제 도메인에 XAI를 적용한 최신사례 발표가 이어져 참석자들의 관심이 높았다. 이번 행사로, AI 연구자뿐만 아니라 의료, 법률, 금융 등 다양한 산업분야 관련자들이 XAI 기술의 필요성에 대한 공감대를 확인했으며, 이에 따라 향후 국내 XAI 기술의 저변을 확대하고, 산학협력을 통해 연구개발의 방향성을 구체화시켜 나갈 수 있을 것으로 기대된다.
2023.07.01
조회수 818
KAIST 설명가능 인공지능 연구센터, XAI 기술 이해 저변을 넓히기 위한 튜토리얼 시리즈 개최
인공지능(AI) 기술 발전과 활용 분야가 확대되면서 다양한 AI 기반 서비스들이 등장하고 있다. 하지만 실제로는 어떤 원리로 작동하는지 이해하기 어려워 이용자 입장에서는 막연하게 느껴질 때가 많다. 이 같은 상황에서 국내 대표적인 설명가능 인공지능 연구그룹인 KAIST 설명가능 인공지능연구센터 (센터장 최재식 교수) 연구진이 지난 1월 26일부터 2월 16일까지 7회에 걸쳐 ‘설명가능 인공지능 (XAI, Explainable Artificial Intelligence)’ 알고리즘, 평가기법, 툴 등 XAI 분야의 주요 기술을 총망라하여 소개하는 튜토리얼 시리즈를 개최했다. 이 행사에는 관련 분야 연구자뿐만 아니라 AI 기술기반 제품을 개발 중인 기업(성남시 소재) 관계자 약 130여명이 신청하여 XAI에 대해 높아진 관심을 알 수 있었다. 센터장 최재식 교수는 “AI기술을 활용하는 산업에서 필수로 자리잡게 될 XAI 분야 기반 기술에 대한 교육 프로그램을 제공하여 유관 연구기관 및 기업들이 성과를 높이는 데에 기여하고자 한다”고 행사 취지를 밝혔다. 이번 KAIST XAI 튜토리얼 시리즈엔 KAIST 설명가능 인공지능연구센터 소속 석박사과정 연구원 총 11명과 센터장 최재식 교수, 그리고 초청 연사로서 박우진 교수(서울대 산업공학과), 서민준 교수(KAIST 김재철AI대학원) 등 국내외 전문가들이 강연을 담당해 △다양한 XAI 알고리즘 △XAI 알고리즘의 평가기법과 툴 △사용자 중심 XAI 인터페이스 △대규모 언어모델 기반 추론 기술로 최근 주목을 받고 있는 Chain of Thoughts 등을 주제로 발표했다. ‘설명가능 인공지능’이란 기계학습 및 딥러닝 모델이 내놓은 결과에 대해 왜 그런 결과가 나온 것인지를 사람이 이해할 수 있는 방식으로 설명해주는 기술이다. 예를 들어, 자율주행차가 주행 중 장애물을 발견하여 급정거를 했을 때 왜 그런 판단을 했는지 사람에게 설명할 수 있어야 한다. 그래야 사고 위험을 줄일 수 있고 오작동 시 책임 소재도 가릴 수 있다. 최근 딥러닝 알고리즘의 성능이 향상되고 있지만 아직까지는 사용자들이 내부 로직에 대해 이해할 수 있는 설명을 제공하는 기술까지 적용된 사례는 많지 않다. 앞으로 다양한 산업분야에서 인공지능 기술을 도입함에 따라 적용된 AI기술에 대한 신뢰성과 투명성을 담보하기 위해서 반드시 함께 제공되어야 하는 것이 설명가능 인공지능 기술이라고 볼 수 있다. KAIST 설명가능 인공지능연구센터 (http://xai.kaist.ac.kr)는 사람중심인공지능 핵심원천기술개발(R&D)사업의 일환으로 과학기술정보통신부와 정보통신기획평가원(IITP)의 후원으로 설립된 연구조직으로서 현재 KAIST 김재철AI대학원 성남연구센터에 자리잡고 있다. 튜토리얼 자료와 동영상은 KAIST 설명가능 인공지능연구센터 홈페이지에서 제공될 예정이다. (관련 문의: 김나리 교수(nari.kim@kaist.ac.kr))
2023.02.15
조회수 2067
정밀한 시각적 판단을 추론한 새로운 인공지능 가속칩 개발
우리 대학 전기및전자공학부 윤찬현, 김주영 교수 연구팀이 설명 가능한 인공지능(eXplainable AI, XAI) 기법을 처리하기 위한 노이즈(잡음)에 강한 다중 피라미드 활성화 맵 기반 주의집중 구조가 탑재된 인공지능 칩을 설계하고, 삼성전자 DS부문의 지원으로 설명가능 뉴로프로세싱 유닛(이하 EPU, Explainable neuro-Processing Unit)을 개발했다고 24일 밝혔다. 설명가능 인공지능이란 사람이 이해할 수 있고 신뢰할 수 있는 설명을 제공할 수 있는 인공지능 기법이다. 기존의 수학적 알고리즘으로 학습되는 인공지능은 학습예제에 편향되어 신뢰할 수 없거나, 수천억개의 매개변수를 사람이 이해할 수 없다는 문제점을 해결하기 위해, 왜 인공지능이 특정 결과를 추론했는지 판단근거를 설명할 수 있도록 개발되었다. 설명가능한 인공지능은 어떤 이유에 의해서 인공지능의 의사결정에 큰 영향을 주었는지 설명할 수 있다는 점에서 기존의 인공지능보다 정확성, 공정성, 신뢰성을 보장할 수 있다는 특징을 가진다. 공동연구팀은 다중 규모 및 다중물체의 특징 추출 구조인 피라미드형 신경망 구조에서 추론 결과에 영향을 주는 인공지능 내부의 신경층별 활성화되는 정도를 복합적으로 해석할 수 있는 인공지능 모델과 이를 가속처리 특화된 채널 방향 합성곱 연산 및 정확도를 유지하는 EPU칩을 구현했다. 다중 규모 및 다중물체 특징 추출에 특화된 피라미드형 인공지능 모델에서 설명 시각화 구현을 위해서는 추론 과정의 역방향으로 모든 합성곱 층별 활성화 맵에서 모델 파라미터의 변화도를 추출할 수 있는 구조가 요구된다. 그러나 역전파 계산 과정은 기존의 추론처리 가속을 위한 인공지능 칩 설계와 달리 이전 파라미터 및 상태를 기억해야 하며 이는 한정된 온 칩 메모리 크기 및 인공지능 모델 전체를 특정한 용도에 맞게 주문 제작(ASIC; Application Specific Integrated Circuit)해 구현하기에는 물리적 한계가 있다. 또한, 피라미드형 구조의 설명 가능한 인공지능 모델은 설명성 보장을 위한 N개 층의 활성화 맵으로부터 기울기 기반의 클래스 활성 맵핑 시각화 처리 각각 필요해 복잡도를 높이는 문제가 있다. 그리고, 입력의 매우 작은 노이즈에도 클래스 활성화 맵핑 시각화 설명이 완전히 달라져 설명 가능한 인공지능 모델의 신뢰도 저하가 큰 문제점이었다. 전기및전자공학부 윤찬현 교수 연구팀은 문제해결을 위해(그림1 참조) 설명 가능한 인공지능의 다중 활성화 맵 고유의 특성 정보를 융합해 전역 주의 집중 맵을 생성하는 네트워크 구조와 입력 이미지 노이즈에 강건한 모델 생성을 위한 상호학습 방법을 개발해, 단일 활성화 맵 기반 주의집중 맵 생성 기술에 비해 설명성 지표를 최대 6배가량 높였다. 또한, 다중 스케일의 다양한 주의집중 맵들의 상호 보완적인 특성을 일원화된 주의집중 맵으로 정교하게 재구성함으로써 사람이 해석 가능한 수준의 정밀한 설명성을 제공할 수 있게 했다. 이번 연구 성과를 통해 위성 영상과 같이 객체 크기 변화가 큰 이미지 분석에서 인공지능 모델의 설명성을 크게 향상할 수 있을 것으로 기대된다고 연구팀 관계자는 설명했다. 전기및전자공학부 김주영 교수 연구팀은 제안된 설명 가능한 인공지능 모델을 가속하기 위해 기존 모델의 추론과 역전파 과정에 더해 활성화 맵 생성까지 처리할 수 있는 XAI 코어를 개발하고, 다양한 연산 태스크를 유연하게 분할해 동시에 처리할 수 있는 멀티 데이터 플로우 방식을 제안했다. 또한, 많은 0 값을 포함하는 활성화 맵의 특성을 활용해, 연속된 0을 건너뛸 수 있는 새로운 데이터 압축 포맷을 제안하고 이를 지원하는 가속 유닛을 개발해 최대 10배 이상의 활성화 맵을 칩 내부에서 처리할 수 있도록 했다. 연구팀이 개발한 EPU 칩은 광학 위성, 전천후 관측 영상레이더(Synthetic Aperture Radar) 위성 등 특수 목적과 고정밀 인공지능 영상처리시스템에 적용할 수 있으며, 저지연‧저전력으로 인공지능 시스템의 판단 근거에 대한 설명성을 획기적으로 높일 수 있을 것으로 기대된다. 연구팀은 EPU 칩 개발 후속 연구를 진행할 계획이다.
2022.08.25
조회수 2259
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1