-
바이오경제를 이끌어가는 대사공학 30년 역사와 미래
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 지난 30년간 대사공학이 발전해온 역사를 정리해, 대사공학이 어떻게 지속 가능한 발전에 기여할 수 있는 분석한 결과를 정리하여 ‘지속 가능성과 건강을 위한 대사공학’ 논문으로 발표했다고 25일 밝혔다. 이번 논문은 셀(Cell) 誌가 발행하는 생명공학 분야 권위 리뷰 저널인 `생명공학 동향(Trends in Biotechnology)'의 40주년 특집호 온라인판에 게재됐다.
※ 논문명 : Metabolic engineering for sustainability and health
※ 저자 정보 : 김기배(한국과학기술원, 공동 제1 저자), 최소영(한국과학기술원, 공동 제1 저자), 조인진(한국과학기술원, 공동 제1 저자), 안다희(한국과학기술원), 이상엽(한국과학기술원, 교신저자) 포함 총 5명
대사공학은 1990년대 초반부터 본격적으로 연구되어 지난 30년간 괄목할 만한 발전을 이뤘다. 대사공학은 산업, 의료, 농업 및 환경 분야를 포함한 대부분의 생명공학 분야에서 적용돼왔으며, 특히 미생물 공학에 중점을 두고 연구가 진행됐다. 다양한 발효 식품과 알코올음료 생산 등, 미생물을 사용한 물질 생산은 오랜 역사가 있다. 미생물은 동식물에 비해 빠르게 자랄 수 있어 실험에 드는 시간과 비용이 적게 든다. 또한 유전자 변형 생물(Genetically Modified Organism; GMO) 관련한 윤리 및 안정성 문제에서 동식물과 비교해 미생물의 유전공학은 상대적으로 자유로워 미생물에 관한 대사공학 연구가 광범위하게 시행돼왔다.
지난 수십 년간 대사공학은 유용한 화학물질을 효율적으로 생산하고, 분해가 어려운 오염 물질을 분해할 수 있는 미생물 균주를 성공적으로 개발하는 등, 지속 가능한 발전을 위한 핵심적인 기술로서의 면모를 보여왔다. 특히, 현재까지 대사공학을 통해 개발한 미생물은 재생 가능한 바이오매스로부터 바이오 연료, 바이오 플라스틱, 산업용 대량 화학물질, 화장품 성분 및 의약품까지 수백 가지의 화학물질이 생산을 가능케 했다.
또한, 대사공학은 미생물과 곤충을 포함한 동식물의 자연적 정화 과정에서 영감을 얻어 미생물 기반의 다양한 생물학적 정화 방법을 개발하기 위해 사용돼왔다. 오염 물질과 독성 화학물질의 분해 경로를 조작함으로써 유출된 기름, 폐플라스틱, 살충제, 폐기된 항생제와 같은 물질을 더 높은 효율로 분해할 수 있도록 미생물을 개량할 수 있고, 이는 환경 보존을 위한 연구의 초석으로서 대사공학이 인류 건강에 기여하는 중요 예시다. 이처럼 대사공학은 유엔이 발표한 지속가능발전목표(Sustainable Development Goals; SDG) 달성에 다방면으로 기여하고 있다.
연구팀은 이번 연구에서 지난 30년간 대사 공학이 발전하며 어떻게 바이오 기반 화학물질의 지속 가능한 생산, 인류 건강 및 환경 문제까지 기여했는지에 대한 광범위한 개요를 제공했다. 특히 이상엽 특훈교수는 대사공학의 태동기부터 연구를 수행해 왔으며 2000년대 들어서 두드러진 합성생물학의 발전과도 함께해 왔다. 연구팀은 이번 논문을 통해 대사공학의 출현부터 인공지능을 활용한 최신 기술의 도입까지, 지난 수십 년 동안 어떻게 사회적, 산업적, 기술적 요구를 해결하기 위해 어떻게 발전해왔는지 정리하고, 최근 대사공학 연구가 어떻게 산업용 대량 화학물질 생산, 바이오 연료 생산, 천연물 생산, 생물학적 정화 분야에 기여하고 있는지 논의했다. 나아가 건강 및 환경 문제의 해결과 지속 가능한 바이오 기반의 화학산업을 정착시키기 위해 극복해야 할 대사공학의 문제점을 함께 제시했다.
공동 제1 저자인 생명화학공학과 김기배 박사과정생은 “기존의 석유화학 공정 기반의 화학물질 생산으로 인한 기후 위기와 화석 연료 고갈 문제를 고려했을 때 대사공학을 이용한 화학물질의 지속 가능한 생산 연구는 더욱 중요해지고 있다”라고 말했으며, 이상엽 특훈교수는 “이번 연구에서 대사공학의 역사를 돌이켜봄으로써 대사공학의 지속가능발전목표를 달성하기 위한 기여를 조명했으며, 우리 사회가 직면한 기후 위기, 환경 오염, 헬스케어, 식량 및 에너지 부족 문제에 대한 해결책으로서 대사공학이 점점 더 중요한 역할을 할 것”이라고 밝혔다.
한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제, 바이오·의료기술개발사업의 맞춤형 세포공장 기반 유해선충제어 바이오소재 기술 개발 과제, 그리고 산업통상자원부가 지원하는 e바이오리파이너리 직접공기포집 C1전환 합성생물학의 통합 과제의 지원을 받아 수행됐다.
2023.01.25
조회수 962
-
고동연 교수, 분리막을 이용해 원유 정제하는 기술 Science지에 소개
우리 대학 생명화학공학과 고동연 교수 연구팀이 새로운 미래지향적인 패러다임의 분리막 기반 원유정제 기술에 대한 Perspective 기사를 Science지에 게재했다.
글로벌 탄소중립을 달성을 위한 탈탄소화(Decarbonization)가 산업계의 화두인 현재 기존 석유화학 공정의 에너지 효율성을 높이고 탄소를 덜 배출할 수 있는 새로운 기술에 대한 요구가 크다. 즉, 원유를 끓는점 차이에 따라 정제하는 분별 증류 공정에 전 세계적으로 막대한 양의 에너지가 소비되기 때문에 이를 대체할 수 있는 기술이 필요한 실정이다.
최근 고동연 교수 연구팀을 포함해 전 세계의 연구팀들이 이와 같은 에너지-탄소 저감 문제를 해결할 수 있는 기술로 원유를 구성하는 분자를 크기와 모양에 따라 상온에서 연속적으로 분리막을 통해 분리할 수 있는 기술에 대해 연구하고 있다. 분리막 기술은 기존의 증류법보다 약 10배 정도 낮은 에너지를 소비하며 석유화학공정의 탄소배출량을 극적으로 줄일 수 있는 기술이다. 이와 같은 기술이 앞으로 산업계에 미칠 파급력이 클 것으로 예상된다.
고동연 교수는 "우리나라는 원유를 수입하고, 이를 분리 및 정제해 다양한 고부가가치 제품을 창출하는데 여러 집약된 기술에 의존하고 있어 이에 대한 파격적 비용 절감은 석유화학 산업계의 탈탄소화 및 탄소저감 목표치 달성에 직결된다ˮ며, "특히 용매 사용량이 많은 제약 분야 및 반도체 화학 공정에도 분리막 기술이 널리 사용될 수 있을 것으로 기대된다ˮ고 Perspective 기사의 의의를 설명했다.
2022.06.03
조회수 1781
-
이산화탄소를 고부가가치 물질로 효율적 전환하는 새로운 실마리를 찾았다
우리 대학 연구진이 지구온난화의 주범 기체인 이산화탄소를 에틸렌이나 에탄올, 프로판올과 같이 산업적으로 고부가가치를 지닌 다탄소화합물로의 효율적 전환이 가능한 새로운 실마리를 찾아냈다.
이산화탄소 농도조절만을 통해 다탄소화합물 선택도를 크게 높인 이 기술이 실용화되면 `산업의 쌀'이라 불리는 에틸렌이나 살균, 소독용이나 바이오 연료로 사용되는 에탄올, 화장품과 치과용 로션이나 살균·살충제에 사용되는 프로판올 등을 생산하는 기존 석유화학산업의 지형에 큰 변화를 불러올 것으로 기대가 크다.
우리 대학 신소재공학과 오지훈 교수 연구팀은 이산화탄소 전기화학 환원 반응 시, 값싼 중성 전해물(전해질)에서도 다탄소화합물을 선택적으로 생성할 수 있는 공정을 개발했다.
KAIST에 따르면 오 교수 연구팀은 중성 전해물을 사용해 구리(Cu) 촉매 층 내부의 이산화탄소 농도를 조절한 결과, 기존 공정과 비교해 각각 이산화탄소 전환율은 5.9%에서 22.6%로, 다탄소화합물 선택도는 25.4%에서 약 62%까지 대폭 높아진 공정과 촉매 층 구조를 개발했다.
탄잉촨 박사 후 연구원과 이범려 석사과정이 제1 저자, 송학현 박사과정 학생이 제2 저자로 참여한 이번 연구 결과는 셀프레스(Cell press)에서 발간하는 에너지 분야 국제 학술지 `줄(Joule)' 5월호에서 편집자에게 높은 평가를 받은 특집논문(Featured article)으로 게재됐다.(논문명 : Modulating Local CO2 Concentration as a General Strategy for Enhancing C—C coupling in CO2 Electroreduction)
세계 각국은 지구온난화의 주요 원인인 이산화탄소를 적극적으로 줄이기 위해, 이를 고부가가치의 물질로 전환하는 연구가 최근 들어 활발하게 진행되고 있다. 이산화탄소를 전기화학적으로 환원 반응시키면, 수소, 일산화탄소, 메탄 등 다양한 물질이 동시에 생성되는데, 그중 2개 이상의 탄소로 구성된 다탄소화합물이 산업적으로 중요한 가치로 인해 주목을 받고 있다.
기존 연구는 탄소화합물의 선택도를 높이기 위해, 주로 알칼리성 전해물에 의존해 새로운 촉매 개발에 집중해왔다. 다만 알칼리성 전해물은 부식성과 반응성이 크기 때문에, 이를 적용한 기존 공정은 유지비용이 비싸고, 촉매 전극의 수명도 짧다는 단점이 있다.
오 교수 연구팀은 기존과 달리 역발상적 생각으로 연구를 시작했다. 구리 촉매 층 내부의 이산화탄소 농도를 오히려 감소시켰는데 성능이 떨어진다고 여겨왔던 중성 전해물에서도 기존에 보고된 연구 성과를 뛰어넘는 고성능을 보여줬다. 특히, 이번 연구에서는 중성 전해물을 사용했음에도 불구하고 사용된 전극은 놀랍게도 10시간이 넘도록 일정하게 높은 다탄소화합물의 선택도와 생성량을 유지한 것으로 나타났다.
연구팀은 또 이산화탄소의 물질이동 모사 모델의 결과를 활용해 구리 촉매 층의 구조와 이산화탄소 공급 농도, 유량을 제어한 결과, 촉매 층 내부의 이산화탄소 농도를 조절하는 데에도 성공했다. 그 결과, 내부의 농도가 최적일 때 다탄소화합물의 선택도가 높아짐을 확인할 수 있었다.
오 교수는 "연구팀이 발견한 촉매 층 내부의 이산화탄소 농도와 다탄소화합물의 선택도 간의 관계는 그동안 촉매 특성에 치우쳐있던 연구에 새로운 방향을 제시하고, 동시에 산업적 활용에서 공정 유지비용 절감은 물론 촉매 전극 수명 연장에 이바지할 것으로 기대된다ˮ 고 설명했다.
제1 저자인 탄잉촨 박사 후 연구원도 "촉매 특성을 바꾸지 않고, 단순히 이산화탄소 농도만 바꿔도 다탄소화합물의 선택도를 크게 개선할 수 있었다ˮ면서 "이번 연구에서 밝힌 이산화탄소의 새로운 전기화학적 전환 기술은 기존 석유화학산업에 새로운 변화를 가져오는 전환점이 될 것ˮ 이라고 말했다.
이번 연구는 한국연구재단 미래소재디스커버리사업의 지원을 받아 수행됐다.
2020.06.04
조회수 9422
-
백무현 교수, 타이타늄 촉매반응으로 화학소재 올레핀 합성 성공
〈 백 무 현 교수 〉
우리 대학 화학과 백무현 교수 연구팀이 우리 주변에 흔한 타이타늄(Titanium) 촉매를 활용해 플라스틱, 의약품 원료로 사용하는 올레핀(olefins) 합성에 성공했다.
석유화학산업 분야 주요 소재인 올레핀은 보통 800℃ 고온으로 석유를 증기 분해(steam cracking)해 제조한다. 매우 높은 열과 에너지가 투입되고 이산화탄소 등 온실가스가 발생하는 것이 단점이다.
연구결과는 27일 국제학술지 네이처 케미스트리에 게재됐다.
기초과학연구원 분자활성 촉매반응 연구단의 부연구단장으로 재직 중인 백무현 교수는 계산화학을 통해 타이타늄을 최적의 촉매로 선택했고 탄화수소(hydrocarbon)의 수소를 선택적으로 없애는 탈수소반응을 구현했다. 이로써 기존 공정에 비해 10분의 1정도 낮은 온도(75℃)에서 올레핀을 합성했다.
올레핀은 플라스틱, 고분자 화합물, 의약품 등에 활용하는 기초 원료이다. 활용도가 커 올레핀 합성 과정은 많은 연구자들이 연구주제로 삼고 있다.
올레핀은 탄화수소가 수소를 잃으면서 탄소(C) 두 개가 이중결합(C=C)해 생성되는데 증기 분해 방식은 반응 중 탄소-탄소 결합이 끊어져 올레핀 혼합물이나 다른 탄화수소들이 합성되는 단점이 있다. 또 석유 대신 천연가스에서 올레핀을 합성하려면 온실가스가 발생해 오염과 공해 문제가 뒤따랐다.
화학자들은 석유와 천연가스 등 탄화수소 화합물을 가공하거나 분해할 때 열과 에너지를 적게 사용하고, 환경오염이 덜한 화학반응을 구현하기 위해 다양한 촉매반응을 연구했다.
탄소와 수소만으로 결합된 탄화수소는 두 분자 간 결합이 매우 강하기 때문에 결합을 끊고 반응을 유도하는 촉매 개발이 주요 과제였다. 이리듐(Iridium), 로듐(rhodium), 루테늄(ruthenium) 등 전이금속을 촉매로 적용했으나 비용이 너무 비싸 실제 산업에 활용하기는 어려웠다.
백 부단장은 비싼 전이금속 보다 수십 배 저렴한 타이타늄을 촉매로 적용했다. 백 부단장은 밀도범함수를 활용한 계산 화학을 통해 최적의 촉매 후보물질로 타이타늄을 제안했고 미국 펜실베니아대학 연구진은 약 75℃에서 탈수소반응이 성공적으로 이뤄졌음을 실험으로 확인했다.
지난해 이리듐 촉매로 메탄가스의 강력한 탄소-수소 결합을 분해한 데 이어 이번 연구에서도 계산화학으로 정확한 촉매를 예측했다. 또 탈수소반응에 이리듐 촉매를 활용할 때 탄화수소가 이성질화(isomerization) 되는 문제도 타이타늄 촉매로 해결됨을 관찰했다.
백 교수는 “이리듐은 반응성이 매우 크지만 값이 비싸고 구하기 어렵다. 반면 타이타늄은 값이 매우 저렴하고 구하기 쉽다”며 “향후 타이타늄 촉매의 반응성과 효율성을 높인다면 기존 올레핀 합성공정의 비용이 줄어들 것”이라고 말했다.
이번 연구는 미국 펜실베니아 대학의 대니얼 민디올라(Daniel J. Mindiola) 교수 그룹과 공동으로 진행됐다.
□ 그림 설명
그림1. 연구진이 제안한 타이타늄 촉매를 활용한 탈수소반응 메커니즘
그림2. 밀도범함수를 활용한 계산화학으로 본 탈수소반응 메커니즘
2017.06.28
조회수 10683
-
KAIST, ‘산업체 연구비 대학랭킹’ 세계 3위
우리 대학이 ‘산업체로부터 받는 연구비 세계대학순위’에서 세계 3위에 올랐다.
영국의 고등교육평가기관인 ‘THE’는 지난 3일(현지시간) 교수 한 명이 민간부문에서 받은 연구비를 조사한 결과인 ‘산업체 연구비 세계대학순위 20개 대학’을 자사 홈페이지에 발표했다.
‘산업체 연구비 세계대학순위’는 THE의 2015/2016년 세계대학평가 순위를 활용했으며, 순위는‘산업체 및 민간부문으로부터 받은 연구비’를 기준으로 선정됐다.
자료는 THE의 2015/2016년 세계대학평가 가운데 5개 이상의 대학을 가진 나라의 것만 활용했으며, 각 나라별 상위 5개 대학의 연구비만 검토했다.
독일의 루트비히 막시밀리안 대학(LMU Munich)은 2013년 교수 당 39만 달러에 해당되는 연구비를 민간부문에서 지원 받아 전체 1위를 차지했다.
미국의 듀큐 대학은 교수 당 29만 달러로 2위를 차지했으며, KAIST가 254,700달러로 전체 3위에 올랐다.
상위 20개 대학 가운데 유럽에 있는 대학이 9개로 가장 많았으며, 아시아 지역에서는 7개 대학, 북미지역에서는 2개의 대학이 상위권에 올랐다.
아시아 지역 7개 대학 가운데 4개 대학이 중국대학이며, 중국석유대학은 7위(227,600달러)에 올라 중국 내 대학 가운데 가장 높은 순위를 기록했다.
이밖에 독일, 대한민국, 터키, 네덜란드, 미국에서 각각 2개 대학이 상위 20위에 들었다. 끝.
2016.03.08
조회수 6721
-
KAIST-한화케미칼, 화학 원천기술 개발 나선다
KAIST와 한화케미칼이 혁신적인 미래 화학 원천기술 확보를 위해 손을 잡았다.
KAIST와 한화케미칼은 2일 KAIST 본관 제1회의실에서 강성모 총장, 김창범 사장 등 양 기관 관계자 10여 명이 참석한 가운데 ‘KAIST-한화케미칼 미래기술연구소’설립을 위한 협약을 체결했다.
‘미래연구소’는 내년부터 5년 간 ▲ 차세대 석유화학 물질 원천기술 개발 및 제조기술 개발 ▲ 혁신적 에너지 저감이 가능한 고순도 정제 공정개발 등 사업성이 높고 글로벌 시장에서 경쟁력을 확보할 수 있는 기술개발에 중점을 둘 계획이다.
연구진으로는 네이처 바이오테크놀러지(Nature Biotechnology)가 발표한 2014년 세계 최고 응용생명과학자 20인에 선정된 이상엽 특훈교수, ‘2015 세계화학대회’에서 여성학자상을 받은 이현주 교수 등 KAIST 생명화학공학과 주요 교수들이 참여한다.
연구소가 개발한 신기술 특허권은 50:50 지분으로 KAIST와 한화케미칼이 공동으로 소유하고 상업적 생산이 시작되면 한화케미칼은 이익의 일부를 KAIST와 공유할 계획이다. 이밖에 5년 동안 연구과제를 수행하면서 총 15명의 KAIST 박사과정 학생을 산학장학생으로 선발해 장학금을 지원하기로 했다.
양 기관은 이번 연구소 설립이 국내 석유화학 업계의 경쟁력을 높일 수 있는 계기가 될 것으로 기대하고 있다.
범용중심의 국내 석유화학 산업이 저유가, 셰일가스 개발, 글로벌 경기 침체 등 다양한 대외 리스크를 극복하기 위해서는 미래형 원천기술 확보가 중요하기 때문이다.
연구책임자인 이상엽 KAIST 특훈교수는 “한화케미칼과 협력을 바탕으로 KAIST의 우수한 R&D 역량을 집중해 글로벌 경쟁력이 있는 독보적인 기술을 개발하겠다”라고 말했다.
김창범 한화케미칼 사장은 “일반적인 산학협력을 벗어나 공동으로 연구소를 운영하는 모델이라는데 의의가 있으며, 상호간 기술 공유를 통해 혁신적인 성과 창출로 산학협력의 새로운 이정표를 세울 것”이라고 강조했다.
한화케미칼 중앙연구소는 1979년 대덕특구 내에 설립되었으며 석유화학뿐만 아니라 태양광, 탄소나노 분야 등 한화그룹의 신성장 동력의 산실로 신제품 및 신기술 개발을 이끌어 가고 있다. 끝.
2015.11.01
조회수 8481
-
세계 최초로 미생물 이용 가솔린 생산
- 대장균의 지방산 대사회로를 대사공학적으로 개량하여 알코올, 디젤, 가솔린 생산 -
우리 학교 연구진이 세계 최초로 대사공학적으로 개발된 미생물을 이용하여 바이오매스로부터 가솔린(휘발유)을 생산하는 원천기술을 개발했다. 이 신기술은 나무 찌꺼기, 잡초 등 풍부한 비식용 바이오매스를 이용하여 가솔린, 디젤과 같은 바이오연료, 플라스틱과 같은 기존 석유화학제품을 생산할 수 있어 생명공학 등 관련 산업기술 발전에 크게 기여할 것으로 기대된다.
이번 연구는 미래창조과학부(장관 최문기) 글로벌프론티어사업의 차세대 바이오매스 연구단(양지원 단장)과 기후변화대응 기술개발사업의 지원으로 이상엽 특훈 교수팀이 진행하였으며, 연구결과는 네이처(Nature) 9월 30일(온라인판)에 게재되었다.
* 논문명 : Microbial production of short-chain alkanes
연구팀은 세포의 유전자를 조작하여 원하는 형태의 화합물을 대량으로 생산하도록 하는 기술인 대사공학을 이용하여 크래킹(cracking) 없이 세계 최초로 미생물에서 직접 사용가능한 가솔린을 생산하는데 성공했다.
* 크래킹 : 끓는점이 높은 중질유를 분해하여 원료유보다 끓는점이 낮은 경질유로 전환하는 방법
가솔린은 탄소수가 4~12개로 이루어진 사슬모양의 탄화수소 화합물로 그 동안 미생물을 이용하여 ‘짧은 사슬길이의 Bio-Alkane(가솔린)’을 생산하는 방법은 개발되지 않았다. 따라서 기존 기술은 추가적인 크래킹(cracking) 과정을 거치지 않고는 가솔린으로 전환할 수 없어 비용과 시간이 많이 소요되는 한계가 있었다.
* 2010년 미국에서 사이언스지에 발표한 미생물 이용 Bio-Alkane(배양액 1리터당 약 300mg)의 경우 탄소 사슬 길이가 13~17개인 바이오 디젤에 해당
연구팀은 대사공학기술을 미생물에 적용하여 지방산 합성을 저해하는 요소를 제거하고, 지방산의 길이를 원하는 목적에 맞게 조절할 수 있는 효소를 새롭게 발견하였으며, 개량된 효소를 도입하여 미생물에서 생산하기 어려운 길이가 짧은 길이의 지방산 생산에 성공하였다.
또한 세포내에 생산된 짧은 길이의 지방산 유도체로부터 가솔린을 생산할 수 있는 추가 대사반응과 생물체 내에 존재하지 않는 식물 유래의 신규 효소를 포함하는 합성대사경로를 도입하여 최종 대장균 생산균주를 개발하였다. 이렇게 개발된 대장균을 배양하여 배양액 1리터당 약 580mg의 가솔린을 생산하는데 성공했다.
개발된 기술은 바이오 연료, 생분해성 플라스틱 등과 같은 다양한 바이오 화합물을 생산할 수 있는 플랫폼 기술이 될 수 있을 것으로 전망된다.
또한 이 기술을 활용하면 재생 가능한 바이오매스를 전환하여 바이오 연료, 계면활성제, 윤활유 등으로 이용할 수 있는 알코올(Fatty alcolols) 및 바이오 디젤(Fatty ester)도 생산이 가능하다는 점에서 기존의 석유기반 화학산업을 바이오기반 화학산업으로 대체하는 기반이 될 수 있을 것으로 기대된다.이상엽 교수는 “비록 생산 효율은 아직 매우 낮지만 미생물을 대사공학적으로 개량하여 가솔린을 처음으로 생산하게 되어 매우 의미있는 결과라고 생각하며, 향후 가솔린의 생산성과 수율을 높이는 연구를 계속할 예정”이라고 밝혔다.
그림 1. 대장균을 이용한 바이오 매스로부터 short-chain alkane(가솔린)을 생산하는 대사회로
a) 지방산 분해 회로 차단, b) 바이오 매스로부터 짧은 길이의 지방산을 대량 생산, c) 지방산을 가솔린 생산의 중간체인 fatty acyl-CoA로의 전환 유도, d) fatty acyl-CoA의 가솔린의 직접적인 전구체인 fatty aldehyde로의 전환 유도, e) 최종 가솔린 생산
(보충설명) 미생물의 세포 내부를 들여다보면, 매우 복잡한 지방산 대사회로 네트워크가 존재 한다. 지방산은 세포 내부에서 합성되어, 미생물이 살아가는데 필요한 세포막을 형성하거나, 분해되어 에너지원으로 사용되기도 한다. 대부분의 미생물에서 지방산은 전체 세포의 1%도 되지 않을 만큼 소량 만들어지고, 지방산의 길이 또한 매우 길기 때문에, 이러한 지방산을 이용해서 우리가 원하는 화합물을 대량으로 만들거나, 새로운 화합물을 생산하는 것은 매우 어려웠다. 이를 극복하기 위하여, 이상엽 특훈교수 연구팀은 시스템 대사공학적 기법을 대장균에 도입하여 효소의 개량 및 지방산 합성을 저해하는 요소를 제거하여 짧은 길이의 지방산 과생산에 성공하였고, 생물체내에 존재 하지 않는 신규 회로를 도입하여 지방산을 가솔린으로 전환하는데 성공하였다.
그림 2. short chain alkane을 생산하는 발효 공정 시스템 (보충 설명) 위와 같은 cooling 장치가 연결된 발효기를 통하여 가솔린을 생산함
2013.10.01
조회수 17059
-
합성 조절 RNA를 이용한 세포공장 기술 개발
- 네이쳐 바이오테크놀로지 온라인판 게재.“화학 산업을 대체할 생물 산업 발전의 새로운 전략으로 기대” -
우리 학교 생명화학공학과 이상엽 특훈교수팀이 합성 조절 RNA 기술을 활용하여 세포공장*을 효율적이고 대규모로 구현하게 하는 새로운 기술을 개발했다. * 세포공장(Biofactory) : 세포의 유전자를 조작하여 원하는 화합물을 대량으로 생산하도록 만드는 미생물 기반의 생산 시스템
화석연료 고갈과 석유화학제품 사용에 의한 환경오염 등 인류가 직면한 문제를 해결하기 위해 친환경적이고 지속가능한 바이오산업이 대두되고 있으며 특히 바이오에너지, 의약품, 친환경 소재 등을 생산할 수 있는 세포공장 개발기술이 전 세계적으로 주목받고 있다.
우수한 세포공장 개발을 위해서는 원하는 화합물을 생산하는 유전자 선별과 높은 생산 효율의 미생물을 찾는 과정이 병행되어야 하나 기존의 연구방식은 미생물의 유전자를 하나씩 조작하여 복잡하고 많은 시간이 소요되는 문제가 있었다.
우리 학교 나도균 박사와 유승민 박사가 참여한 이상엽 특훈교수 연구팀은 위와 같은 기술적 한계를 극복하기 위해 합성 조절 RNA를 제작하고 이를 활용하는 새로운 기술을 개발하였다.
특히 합성 조절 RNA를 이용한 이 기술은 기존 방식과 달리 균주 특이성이 없어 수개월이 소요되던 실험을 수일로 단축시킬 수 있어 획기적이다.
연구팀은 합성 조절 RNA 기술을 활용하여 의약 화합물의 전구체로 사용되는 타이로신(tyrosine)*과 다양한 석유화학 제품에 활용되는 카다베린(cadaverine)** 생산에 도입하여 세계 최고의 수율로 생산(각 21.9g/L, 12.6g/L)하는 세포공장을 개발하는데 성공하였다.
* 타이로신(tyrosine) : 스트레스를 다스리고 집중력 향상 효과가 있는 아미노산 ** 카다베린(cadaverine) : 폴리우레탄 등 다양한 석유화학 제품에 활용되는 기반물질
이상엽 교수는 “합성 조절 RNA기술로 다양한 물질을 생산하는 세포공장 개발이 활발해 질 것이며 석유에너지로 대표되는 화학 산업이 바이오 산업으로 변해 가는데 촉매제 역할을 할 것으로 기대된다”라고 연구 의의를 밝혔다.“
이번 연구는 글로벌프론티어사업(지능형 바이오 시스템 설계 및 합성 연구단(단장 김선창))의 지원으로 수행되었으며 연구결과는 세계적 학술지인 네이처 바이오테크놀로지 온라인 판에 1월 20일 게재되었다.
2013.01.21
조회수 12313
-
KAIST-사우디 아람코, CO2 공동 연구센터 설립
서남표 KAIST 총장과 알-팔레 사우디 아람코 총재가 사우디 현지시간으로 7일 오후 1시 다란에 있는 아람코 본사에서 ‘사우디 아람코-KAIST 이산화탄소 공동 연구센터’ 설립을 위한 양해각서에 서명을 마친 후 기념촬영을 하고 있다.
- 사우디 국영 석유회사 아람코, KAIST와 CO2 공동연구센터 설립키로
- 서남표 총장-알-팔레 총재, 1월 7일(현지시간) 아람코 본사에서 MOU 체결
- 5천평 규모 CO2 전용 연구센터 건물 신축, 연구비 공동조성 등
우리 학교가 지구 온난화 주범으로 꼽히는 이산화탄소(CO2) 문제해결을 위해 세계 최대의 석유회사인 사우디아라비아 아람코(ARAMCO)와 손을 잡았다.
아람코(총재 : 칼리드 에이 알-팔레, Khalid A. Al-Falih)는 세계 최대의 산유국인 사우디아라비아의 석유개발을 위해 1933년 미국의 석유회사인 스탠더드와 텍사코 등이 공동으로 설립했는데 사우디 정부가 1976년에 100% 국유화한 국영 석유회사다.
서남표 총장과 알-팔레 아람코 총재가 지구 온난화의 주범인 CO2 배출량을 획기적으로 줄일 수 있는 혁신기술을 공동으로 개발하기 위해 카이스트에 ‘아람코-카이스트 이산화탄소 연구센터(ARAMCO-KAIST CO2 연구센터)’ 설립을 주요내용으로 하는 양해각서(MOU)를 사우디 현지시간으로 지난 7일 오후 1시 다란에 있는 아람코 본사에서 체결했다.
이날 열린 양해각서 체결식에는 아람코측에서 알-팔레 총재와 사미르 에이 추바옙(Samir A. Tubayyeb) 엔지니어링 서비스부문 부사장 등 이 회사 최고경영진이, KAIST에서는 서 총장을 포함해 백경욱 연구부총장, 유창동 글로벌협력본부장, 강정구 기획처장, 원동혁 비서실장이 참석했다. 이밖에 김종용 주사우디 한국대사와 전병근 상무관, 문영학 사우디-한국 경제통상추진회장 등 사우디 현지의 국내인사들도 함께 참석해 자리를 빛냈다.
문영학 사우디-한국 경제통상추진회장은 “세계 최대 산유국인 사우디 정부가 최근 자국에 대한 한국기업들의 직간접적인 자본투자나 기술투자 등 양국 간 경제협력을 적극 도모하는 등 한국에 높은 관심을 보이고 있다”며 “아람코가 사우디가 아닌 다른 나라 대학을 대상으로 그것도 특정분야에 연구센터 설립과 연구비를 지원하면서 공동 연구에 나서기로 한 것은 매우 이례적인 일”이라고 아람코와 KAIST간 MOU 체결에 대한 의미를 부여했다.
아람코와 KAIST가 공동설립하게 될 ‘아람코-카이스트 CO2 연구센터’는 많은 양의 에너지를 사용하지 않고도 CO2를 포집하고 가스흐름(스트림) 단계에서의 CO2 제거는 물론 인체에 무관한 다른 화학성분으로 전환하는 등 대기 중 CO2 배출량을 감소시키는 획기적이고도 혁신적인 기술을 연구, 개발하는 업무를 수행하게 된다.
아람코와 KAIST는 이를 위해 CO2와 관련한 상호 보완기술을 공유하는 한편 연구원 교류 및 공동연구, 주요 연구자원 공동 활용, 연구과제 수행 등 상호 협력관계 진전에 따라 ‘공동건물위원회’를 구성, 운영키로 하고 협의를 통해 KAIST 대전 본교 인근에 ‘아람코-카이스트 CO2 연구센터’를 대규모로 설립할 계획이다.
양측 관계자가 위원으로 참여하는 ‘공동건물위원회’는 CO2 연구센터가 갖춰야 할 각종 시설 및 환경 등에 대해 철저한 조사를 거쳐 아람코와 KAIST 양 기관의 공동투자를 통해 건평 기준 약 5000평 규모의 CO2 전용 연구 빌딩을 신축한다. 우선 새로운 건물이 완공되기 전까지는 연구 설비가 갖춰진 대전 KAIST 본교 캠퍼스 안에 있는 KI(KAIST Institute)빌딩 내에 설치, 운영할 방침이다.
아람코와 KAIST는 또 첫 연구기간을 6년으로 정하되 필요에 따라 그 기간을 연장하기로 정했다. 양측 관계자가 참여하는 ‘공동연구위원회’에서는 연구과제 수와 성격에 따라 매년 연구비 규모를 결정하게 된다.
이에 대해 KAIST 관계자는 “구체적인 금액을 밝힐 수가 없지만 아람코와 KAIST가 각각 동등한 수준의 재원을 매칭펀드 형태로 확보해서 연구비에 보태는 방안을 세부 협상단계에서 제안할 계획”이라고 밝혔다.
전 세계 석유매장량의 4분의 1인 2600억 배럴을 보유하고 있으며 가스 매장량도 세계 4위인 아람코가 자국이 아닌 해외에 연구센터를 세우고 게다가 공동 연구까지 하기로 결정한 것은 극히 이례적인 일이라는 게 주변의 평가다.
이에 대해 KAIST 관계자는 “알-팔레 총재와 서 총장 간 개인적인 인연과 상호 신뢰관계에 힘입어 이 같은 결실을 맺게 됐다”고 배경을 설명했다.
알-팔레 총재와 서 총장이 개인적인 친분을 맺게 된 것은 두 사람 모두 지난 2009년 9월 문을 연 사우디 "킹 압둘라 과학기술대학(KAUST)‘의 이사로 참여하면서부터다. 서 총장의 KAUST 이사 선임은 알리 빈 이브라힘 알-나이미 사우디 석유광물부 장관의 적극적인 추천 때문인 것으로 알려지고 있다.
이 관계자는 또 서 총장은 평소 알-팔레 총재에게 “세계 인구의 꾸준한 증가와 경제성장으로 석유 및 천연가스의 수요 또한 증가할 것으로 예상되지만 지구 온난화 문제와 탄소세의 법제화 움직임 등으로 세계 각국에서 석유 및 천연가스의 사용에 대한 규제가 날로 강화될 것”이라며 “CO2 문제해결만이 수요촉진을 위한 유일한 대응책”이라며 연구센터 설립의 필요성을 제기하고 설득해왔다고 설명했다.
앞서 서남표 총장은 지난 2011년 5월 17일 알-팔레 총재에게 "명예 과학기술학 박사" 학위를 수여하는 등 아람코와 KAIST간 돈독한 유대관계 유지를 위해 많은 노력도 함께 기울여왔다.
특히 CO2 연구센터 설립을 위한 실무논의가 지지부진하자 서 총장은 작년 12월 알-팔레 총재에게 이메일을 보내 올 2월 22일 자신이 퇴임한다는 사실과 재임기간 중 연구센터 설립을 희망한다는 뜻을 밝히고, 사우디를 전격 방문하는 등 적극적인 구애에 나섰다.
사우디 방문기간 중 서 총장은 알-팔레 총재를 포함한 아람코 임원들에게 인류사회가 직면한 에너지, 식량, 물, 기후 등의 문제해결을 위한 아람코와 카이스트 두 기관의 공동연구에 대한 필요성을 역설하는 한편 KAIST의 연구역량을 직접 소개했다.
이 같은 서 총장의 노력에 감동받은 알-팔레 총재는 회사 관계자들에게 “향후 아람코가 사업다변화를 추진하는데 있어 아시아 국가들이 주요 파트너로 부각될 것”이라고 강조하고 “KAIST는 매우 신뢰할 수 있는 대학”이라고 소개하면서 ‘아람코-카이스트 CO2 연구센터’ 설립을 신속히 추진할 것을 지시했다.
한편 ‘아람코-카이스트 CO2 연구센터’ 설립을 위한 MOU 체결을 계기로 KAIST는 지구 온난화의 주범인 CO2 문제 해결을 위해 국내·외 타 연구기관은 물론 대학, 기업체 등과의 제휴를 적극 확대, 추진해 나갈 계획이다.
KAIST 백경욱 연구부총장은 “‘아람코-카이스트 CO2 연구센터 설립은 KAIST가 인류 삶의 질을 크게 향상시키기 위해 과학기술 분야에서 해결해야 할 여러 난제 중 우선적으로 CO2 문제해결을 꼽고 연구역량을 집중하겠다는 의지를 보인 것”이라고 말하면서 “KAIST는 앞으로 우리 과학기술계가 풀어야할 난제에 하나씩 지속적으로 도전해 나갈 것”이라고 강조했다.
KAIST가 CO2 문제해결에 관심을 갖는 이유는?
KAIST가 CO2 문제에 관심을 가지게 된 배경은 21세기 인류가 당면한 문제해결을 통해 전 인류 삶의 질 향상에 기여한다는 학교의 비전과 사명 외에 선진국들의 온실가스 감축 노력에도 불구하고 우리나라는 물론 전 세계적으로 CO2 배출량은 오히려 매년 증가하고 있기 때문이다.
노르웨이 오슬로의 국제기후환경연구소(CICE)가 ‘네이처 기후변화’지에 발표한 논문에 따르면 석탄과 석유 등 화석연료가 연소되면서 대기 중에 배출한 이산화탄소가 2011년에는 모두 382억 톤으로 전년대비(2010년) 약 3% 증가한 것으로 조사됐다. 지구온난화의 주범으로 불리는 온실가스 가운데 가장 많은 양을 차지하는 CO2가 초당 1, 100여 톤 가량 대기로 뿜어지고 있는 셈이다.
국가별로는 중국이 2010년 대비 10% 늘어난 100억 톤으로 1위를 기록했으며, 미국이 59억 톤으로 2위, 역시 7.5% 증가한 인도가 3위(25억 톤)를 차지했다. 이어 러시아(18억 톤), 일본(13억 톤), 독일(8억 톤), 이란(7억 톤) 등 순이다. 우리나라는 6억 톤을 배출해 8위를 기록했으며 이밖에 캐나다, 남아프리카 등이 10위안에 들었다.
인구 한 사람당 이산화탄소 배출량은 미국이 17.2톤, 유럽연합(EU) 7.3톤, 중국이 6.6톤, 인도 1.8톤 순이다. 국제기후환경연구소는 2012년에도 CO2 배출량이 2011년 대비 2.6% 증가할 것이라고 전망했다.
교토의정서에 의해 주요선진국들이 2008년부터 2012년까지 1990년 배출량을 기준으로 평균 5.2% 감축하기로 약속하고 이를 실천하는데도 불구하고 CO2 배출량이 늘고 있는 것은 기후변화협약 회원국이 아닌 중국과 미국, 인도의 영향이 크다.
미국은 교토의정서를 비준조차 하지 않았고 중국과 인도는 이를 거부한 상태. 중국과 인도는 그동안 지구를 오염시킨 데는 산업혁명 이후 화석연료를 마구 써온 선진국의 책임이 크다며 걸맞은 의무이행을 요구하고 있다.
작년 12월 8일 카타르 도하에서 폐막 된 제18차 유엔기후변화협약(UNFCCC) 당사국 총회(COP18)에서 각국 대표들은 교토의정서의 효력을 오는 2020년까지 8년 연장하는 선에서 합의했다.
물론 이번 총회에서도 홍수, 가뭄, 태풍 등 기후변화에 대응할 수 있도록 “향후 3년간 600억 달러 지원을 합의문에 명기”해달라는 개도국들의 요구는 반영되지 않았다.
그러나 선진국과 개도국 간에 기후변화를 담보로 한 ‘돈 싸움’은 앞으로 더 큰 이슈가 될 가능성이 높다. 작년 말 총회 폐막직전에 일괄 타결된 100여 쪽에 달하는 합의문에는 ‘손실과 피해’ 조항이 들어있다.
투발루 등과 같이 기후변화로 손실 피해를 볼 경우 재정지원 등을 논의하는 ‘제도적 장치’를 내년까지 마련한다는 내용도 담겨있기 때문이다. 특히 ‘손실과 피해’라는 용어가 유엔기후변화 관련 문서에 명기된 것은 유례가 없는 일로 평가되고 있다.
우리나라는 교토의정서에 개도국으로 분류가 돼 있어 2020년부터 온실가스 감축의무를 이행하면 되기에 당장 소송당할 염려는 없다. 그러나 우리나라는 개도국 중 중국과 인도 다음으로 CO2 배출량이 많은 국가다. 우리나라는 지난 2009년 12월 ‘2020년까지 온실가스 배출량을 30% 감축 한다’는 목표를 세웠다.
의무감축국은 아니지만 자발적으로 감축안을 마련한 것이다. 그러나 2020년까지 국내총생산(GDP)기준 세계 15위, CO2 배출량 세계 8위인 우리나라를 국제사회가 이때까지 가만히 놔둘지는 미지수다. KAIST가 CO2 문제에 관심을 갖는 것은 인류사회 발전에 기여한다는 학교비전과 사명 외에도 바로 이 같은 이유 때문이기도 하다.
* MOU 체결 동영상
https://www.dropbox.com/s/r5w4v3fhy5d92r5/KAIST_Ceremony_Signing_Gifts-1.mov
2013.01.09
조회수 13531
-
미래의 석유화학산업, 바이오 리파이너리 시대가 온다
- KAIST 이상엽 특훈교수팀, 생명공학동향지 표지논문 게재 -
“바이오리파이너리”란 석유화학산업에서 원유의 정제를 통해 여러가지 제품을 생산하는 것과 같이, 해조류나 비식용생물자원과 같은 바이오매스(biomass)를 원료로 이용하여 여러 제품을 생산하고자 하는 개념이다.
“시스템 대사공학”을 통해 바이오매스로부터 다양한 화학물질 및 제품을 효과적으로 생산할 수 있는 새로운 기법과 전망이 국내 연구진에 의해 제시되었다.
우리 학교 이상엽 특훈교수팀이 수행한 이번 연구는 교육과학기술부 글로벌프론티어사업 차세대 바이오매스연구단의 지원을 받아 수행되었다. ※ 특훈교수 : 한국과학기술원(KAIST)에서 세계적 수준의 연구업적과 교육성과를 이룬 교수에 부여하는 호칭
그동안 기후변화, 자원고갈 등의 문제를 해결하기 위한 방안으로 바이오리파이너리에 대한 연구가 학계를 중심으로 활발히 진행되어 왔다.
특히, 연구자들은 과거 20년간 발전되어온 대사공학을 중심으로 미생물을 활용한 바이오매스의 활용가능성을 높여왔다.
그러나 아직 바이오매스로부터 여러 가지 바이오화학물질 및 소재들을 생산하기 위해서는 이들을 생산하는 미생물의 성능을 획기적으로 개선해야하는데, 기존의 대사공학연구는 주로 직관적인 방법으로 진행되어 많은 노력과 시간이 필요한 한계가 있었다.
이교수팀은 이러한 한계를 극복하기 위해 대사공학을 중심으로 시스템생물학, 합성생물학, 진화공학을 융합한 “시스템 대사공학”이라는 새로운 기술체계를 확립했다.
시스템 대사공학은 세포 기반의 각종데이터를 통합하여 생리 상태를 다차원에서 규명하고, 이 정보를 바탕으로 맞춤형 대사조절을 함으로써 고효율 미생물 균주를 개발하는 기술이다.
시스템 대사공학을 활용할 경우, 미생물을 게놈수준에서 동시다발적으로 관찰 및 조작이 가능하여 미생물의 성능 개선을 위한 시간과 노력을 획기적으로 줄이고 그 활용 가능성을 극대화 할 수 있다.
본 논문의 제1저자인 이정욱 박사는 “시스템 대사공학을 통해 미생물의 성능을 획기적으로 향상시키는 기법을 최근의 연구흐름을 중심으로 전망하고 제시하였으며, 향후 바이오리파이너리 연구에 폭넓게 활용될 것으로 기대된다.“고 연구의 의의를 밝혔다.
연구 결과는 세계적 학술지인 ‘생명공학동향(Trends in Biotechnology)‘지 8월호 표지논문으로 선정되었다.
2011.07.27
조회수 10522
-
유룡 교수, 벌집 모양 규칙적 구조의 제올라이트 개발
- 사이언스誌 발표,“제올라이트 학계의 20여년 숙원 과제 해결!”-
우리 학교 화학과 유룡 교수 연구팀은 벌집모양의 메조나노기공과 보다 미세한 크기의 마이크로나노기공이 규칙적으로 배열되어 있는 ‘육방정계 구조규칙적 위계나노다공성 제올라이트’ 신물질을 개발하는데 성공하였다.
유 교수팀은 2009년 나노판상형태의 초박막 제올라이트 물질을 합성하여 세계 최고 권위의 과학 학술지인 네이처誌에 게재한데 이어, 벌집모양의 메조나노기공을 갖는 제올라이트 물질의 개발 성과로 사이언스誌 2011년 7월호(7월 15일자)에 논문을 게재하여 제올라이트 연구의 우수성과 학술적 중요성을 모두 인정받았다.
제올라이트는 가솔린 생산을 비롯하여 석유화학산업 전반에 걸쳐 세계적으로 가장 널리 이용되는 촉매물질이다. 촉매는 다양한 화학 반응에서 사용되어 반응을 촉진시킴은 물론, 반응 시간을 단축시켜 경제성을 높이는 데 활용되는 물질이다. 화학 산업 분야에서 사용되는 촉매 물질들은 사용 후 분리를 용이하게 하기 위해 주로 고체 형태로 이루어진 촉매를 사용하는데, 제올라이트는 현재 사용되고 있는 다양한 고체 촉매들 중에서 40% 이상을 차지할 정도로 매우 높은 비율로 다양한 화학 산업 전반에 걸쳐 이용되고 있는 물질이다. 때문에, 제올라이트의 촉매 효율을 높일 경우, 이에 따른 경제적 효과는 막대하다고 할 수 있다.
기존에 산업 전반 분야에 사용되고 있는 일반 제올라이트 촉매 물질들은 내부에 무수한 미세구멍(나노세공)들이 규칙적으로 뚫려 있지만 그 직경이 매우 작아 반응 대상 분자의 확산 속도가 느리기 때문에 촉매활성이 낮은 단점이 있었다. 이를 해결하기 위해 연구팀은 미세한 마이크로나노기공과 그 보다 큰 직경의 메조나노기공이 동시에 규칙적으로 배열*되어 있는 제올라이트 물질을 합성하였다. 이러한 구조의 물질은 제올라이트 학계에서 수많은 연구자들이 합성하고자 지난 20여 년 이상을 시도해온 물질로서, 이번에 유 교수팀이 드디어 제올라이트 학계의 20여 년 동안의 숙원 과제를 해결하는 방법을 제시한 것이다. * 작은 도로만 있어 교통체증이 심한 대도시에 큰 도로와 작은 도로를 유기적으로 구성하는 도시계획을 수립, 시행함으로써 원활한 교통 흐름을 만들어 내는 원리와 같다. 크고 작은 나노세공이 유기적으로 연결된 제올라이트 내부에서 분자의 흐름이 훨씬 수월해진다.
이번에 개발한 제올라이트 물질은 연구팀이 특수 설계한 계면활성제를 사용하여 합성할 수 있었다. 이 계면활성제는 머리 부분에 제올라이트 마이크로 기공 유도체를 포함하여 제올라이트 골격의 형성을 유도하고, 소수성 꼬리 부분은 제올라이트의 마이크로 기공보다 더 큰 메조 기공을 벌집 구조 모양으로 배열할 수 있도록 하였다. 지금까지 알려져 있는 제올라이트 합성 원리는 하나의 기공 유도 분자가 하나의 매우 작은 마이크로 기공을 유도했던 반면에, 본 연구팀이 개발한 방법은 하나의 분자가 서로 다른 크기의 기공을 규칙적으로 유도한다는 점에서 기존의 방법과 차별화된다.
유교수팀이 세계 최초로 2009년에 개발한 2 nm 극미세 두께의 나노판상형 제올라이트가 2차원적인 형태로 이루어진 물질이었다면, 이번에 합성에 성공한 ‘육방정계 구조규칙적 위계나노다공성 제올라이트’는 3차원적 구조 규칙성을 띤 나노구조물로 지금까지 볼 수 없었던 이상적이고 안정적인 벌집 구조를 갖고 있다.
때문에, 새로 개발한 제올라이트는 산업적으로는 중요하지만 커다란 분자 크기 때문에 기존의 제올라이트를 사용하기 쉽지 않았던 물질의 촉매로 사용할 수 있게 되었다.
유룡 교수는 “이번에 개발한 제올라이트는 지금까지 볼 수 없었던 이상적이고 안정적인 기공구조를 갖고 강한 산성을 띠고 있어 기존의 제올라이트의 단점을 충분히 보안한 물질이다. 따라서 앞으로 산업적으로 중요한 많은 고부가 가치 반응에서 고성능 촉매로 사용될 수 있을 것으로 기대한다. 뿐만 아니라, 이번 연구를 통해 본 연구단이 개발한 합성 방법이 여러 종류의 제올라이트에도 적용이 가능함을 보이면서 앞으로 200여 가지가 넘는 기존의 제올라이트들의 단점도 해결할 수 있을 것이다.”고 연구의의를 밝혔다.
이번 논문의 제1저자인 나경수 박사는 성균관대학교 화학과를 조기졸업하고 KAIST에서 석사와 박사를 4년 반만에 마친 수재다. 지난 2월에는 KAIST 우수 박사학위 논문상을 수상하기도 했으며, 현재 유룡 교수가 맡고있는 KAIST 화학과 기능성 나노물질 연구단에서 박사후 과정 중이다.
[그림1] ‘육방정계 구조규칙적 위계나노다공성 제올라이트’의 주사 전자현미경 사진. 균일한 두께와 길이의 뾰족한 바늘 모양의 결정들이 전 영역에 걸쳐 고루 존재하는 것을 볼 수 있다.
[그림2] ‘육방정계 구조규칙적 위계나노다공성 제올라이트’의 투과 전자현미경 사진
2011.07.15
조회수 15095
-
사우디 교육부장관 방문, 공동 연구협약 체결
칼리드 알 안카리(Khaled bin Mohammad Al-Anqari) 사우디아라비아 고등교육부장관 일행이 지난 26일(화) 우리학교를 방문해 공동협약에 관한 합의문을 체결했다.
이번 사우디아라비아 방문단에는 교육부장관과 함께 중동권 최고 명문 대학인 킹 사우드대학(King Saud University) 압둘라 알 오스만(Abdullah bin Abdularhman Al-Othman) 총장, 킹 압둘라지즈대학(King Abdulaziz University) 오사마 타에브(Osama bin Sadiq Tayeb) 총장, 사우디아라비아 최고 공과대학인 킹 파하드 석유광물대학(King Fahad University of Petroleum and Minerals) 칼리드 알 술탄(Khalid bin Salih Al-Sultan) 총장이 동행했다.
킹 사우드대학과 킹 파우드 석유광물대학은 KAIST와 연구협약을 통해 공동 연구 프로젝트 수행, 연구 교수진 상호 방문, 학술 프로그램 교류, 세미나 및 학회 공동 개최 등 한국과 사우디아라비아 양국 고등교육기관 간의 활발한 교류를 도모하기로 했다.
특히, 킹 사우드대학은 KAIST와 공동 연구 프로젝트 수행에 관한 협약을 체결하고 ‘해수 온도차 이용 해수담수화기술 개발’, ‘효율적인 에너지 사용을 위한 스마트 미터링 및 전력 전송 시스템 개발’, ‘바이오기술을 이용한 사우디 원산지 대추에서 락트산 추출’이라는 세 분야의 연구에 공동협력하기로 했다. 연구비는 사우디아라비아 교육부가 지원하며 규모는 추후 논의하기로 했다.
킹 사우드대학 전기공학과 연구팀과 함께 ‘스마트 미터링 및 전력 전송 시스템 개발’ 프로젝트를 수행할 원자력 및 양자공학과 석좌교수이자 KAIST-KUSTAR(아랍에미리트 칼리파 과학기술연구대학) 원자력 협력센터장인 김종현 교수는 “중동지역과의 왕성한 산업 경제적인 교류에 비해 두 나라 고등교육기관 간의 교류는 상대적으로 저조했던 것 같다”며, “이 번에 진행하는 공동연구처럼 앞으로 다방면에 걸쳐 KAIST가 중동지역 대학과의 협력 및 교류에 선도적인 역할을 하기 바란다”고 말했다.
협약서 서명식을 마친 칼리드 알 안카리 고등교육부장관 일행은 KAIST의 주요 연구 사업인 ‘온라인전기자동차’, ‘휴머노이드 로봇’, ‘모바일 하버’ 연구소를 둘러봤다.
KAIST의 혁신연구와 첨단기술개발에 깊은 관심을 보인 칼리드 알 안카리 고등교육부장관은 향후 자국 내 더 많은 대학이 KAIST를 비롯한 한국의 유수 대학과의 상호 교류 확대를 위해 노력하겠다는 의지를 밝혔다.
2010.10.27
조회수 13408