-
합성색소 문제를 해결하는 미생물 기반 천연색소 생한을 위한 시스템 대사공학 전략 제시
우리 대학 생명화학공학과 신디(Cindy Pricilia Surya Prabowo) 박사과정생과 은현민 박사과정생을 포함한 이상엽 특훈교수 연구팀이 `미생물 기반의 천연색소 생산을 위한 시스템 대사공학 전략’ 논문을 발표했다고 6일 밝혔다.
생명화학공학과의 신디(Cindy Pricilia Surya Prabowo) 박사과정생, 은현민 박사과정생, 양동수 박사, 담라(Damla) 박사과정생과 농촌진흥청 농업미생물과의 김수진 박사가 함께 참여한 이번 논문은 셀(Cell) 誌가 발행하는 화학 분야 권위 리뷰 저널인 `화학의 동향(Trends in Chemistry)' 7월호 표지논문 및 주 논문 (Featured Article)으로 1일 字 게재됐다.
※ 논문명 : Production of natural colorants by metabolically engineered microorganisms
※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), Cindy(한국과학기술원, 공동 제1 저자), 은현민(한국과학기술원, 공동 제1 저자), 양동수(한국과학기술원, 제3 저자), Damla(한국과학기술원, 공동 제4저자), 김수진(농촌진흥청, 제5저자), Raman(농촌진흥청, 제 6저자) 포함 총 7명
천연자원으로부터 비롯되는 천연색소는 식품, 의약품, 화장품, 옷감 염색 등에서 널리 사용될 정도로 인류 역사에서 오랫동안 사용됐지만, 석유화학 산업의 발달과 함께 화학 합성 기반 색소의 수요도 급속도로 늘기 시작했다. 그러나 합성 색소를 지나치게 많이 사용함으로써 환경 오염 초래 및 인류의 건강에 악영향을 미칠 수 있으며, 특히 전체 산업용 폐수 중 약 17~20%의 폐수가 합성 색소를 옷감 염색에 사용하면서 발생하는 폐수로부터 비롯되는 것으로 보고된 바 있다.
환경 오염, 그리고 헬스케어에 대한 인식이 높아짐에 따라 천연색소에 대한 소비자 수요가 점점 증가하고 있지만, 천연자원으로부터 얻을 수 있는 한정된 천연색소의 양, 값비싼 추출 및 정제 공정, 낮은 수율 등의 문제로 인해 대량으로 천연색소를 생산해 시장에 공급하기에는 아직은 한계가 있다. 이러한 문제를 해결하기 위해 천연색소를 친환경적이며 고효율로 생산하기 위한 미생물 세포 공장을 개발하려는 노력이 이뤄지고 있다. 미생물 세포 공장 구축을 위한 핵심 전략인 시스템 대사공학은 기존의 석유화학 산업을 대체할 바이오산업의 핵심이 되는 미생물 균주를 보다 효과적으로 개발하기 위해 우리 대학 생명화학공학과 이상엽 특훈교수가 창시한 연구 분야다.
학생들을 지도한 이상엽 특훈교수는 “학생들이 미생물 기반의 천연색소 생산을 위한 시스템 대사공학 연구를 체계적으로 분석 정리하고 앞으로의 전략을 제시했다는 점에서 큰 의미가 있고, 권위 있는 학술지에 주 논문이자 표지논문으로 게재된 훌륭한 연구를 수행한 학생들이 자랑스럽다”라고 밝혔다. 이상엽 특훈교수 연구팀은 실제로 시스템 대사공학 전략을 이용해 천연물, 아미노산, 생분해성 플라스틱, 환경친화적 플라스틱 원료, 바이오 연료 등을 생산하는 고성능 균주들을 다수 개발한 바 있다.
연구팀은 이번 연구에서 미생물 세포 공장을 개발해 생산된 대표 천연색소들의 생합성 경로를 총망라해, 최신 연구내용과 흐름을 한눈에 파악할 수 있는 대사회로 지도를 정리했다. 이번 논문에서는 천연색소 생산 미생물 세포 공장 개발을 위한 중요한 시스템 대사공학 전략들을 정리했고, 각 단계에서 활용할 수 있는 최신 도구 및 전략을 대사공학이 나아가야 할 방향과 함께 제시했다.
공동 제1 저자인 신디(Cindy Pricilia Surya Prabowo) 박사과정생과 은현민 박사과정생은 "합성 색소로부터 비롯되는 환경 오염 문제와 헬스케어에 대한 소비자들의 인식이 높아짐에 따라 천연색소 산업의 중요성이 더욱 대두되고 있다ˮ라고 말했으며, 공동 저자인 농촌진흥청 농업미생물과 김수진 박사는 "인류가 건강한 삶을 지속적으로 영위하기 위해 천연색소를 대사공학적으로 생산하는 연구가 갈수록 중요해질 것ˮ이라고 말했다.
한편 이번 연구는 농촌진흥청이 지원하는 농업미생물사업단(단장 장판식)의 ‘카로티노이드 생산 미생물 세포 공장 개발’ 과제(과제책임자 국립농업과학원 김수진 박사)의 지원을 받아 수행됐다.
2022.07.06
조회수 7970
-
미생물 이용한 천연 무지개 색소 생산기술 최초 개발
우리 대학 생명화학공학과 양동수 박사와 박선영 박사를 포함한 이상엽 특훈교수 연구팀이 `일곱 빛깔의 천연 무지개 색소를 생산하는 미생물 균주 개발'에 성공했다고 8일 밝혔다.
이번 연구결과는 국제 학술지인 `어드밴스드 사이언스(Advanced Science)'에 지난 5월 25일 字 온라인 출판됐으며, 표지논문으로 선정됐다.
※ 논문명 : Production of rainbow colorants by metabolically engineered Escherichia coli
※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 양동수(한국과학기술원, 공동 제1저자), 박선영(한국과학기술원, 공동 제1저자, 현 큐티스바이오), 포함 총 3명
우리 생활에서 널리 활용되고 있는 각종 색소는 식품과 같이 직접 섭취되거나 화장품과 같이 피부에서 흡수되기 때문에 건강과 밀접한 관계를 갖는다. 하지만 색소 중 대부분은 석유 화합물로부터 생산되는 합성 색소이며, 색소의 사용이 실생활에 널리 활용되는 만큼 건강에 악영향을 미칠 수 있다. 그뿐만 아니라 합성 색소를 이용해 각종 옷감을 염색하면서 발생하는 폐수가 전체 산업용 폐수의 17~20%를 차지한다는 보고가 있을 정도로, 합성 색소는 수질오염에도 지대한 영향을 미치고 있다.
이러한 건강 문제 및 환경 오염 문제를 해결하기 위해 미생물을 이용해 천연색소를 생산해야 한다는 필요성이 제기됐으나, 값비싼 생산 공정 및 낮은 수율로 인해 산업화가 실현되기 어려운 상황이었다. 또한, 현재까지 빨강, 주황, 노랑, 파랑, 보라 등의 천연색소는 낮은 효율로 생산된 바 있으나, 초록 및 남색 천연색소 생산은 보고된 바가 없었다.
이에 이상엽 특훈교수 연구팀은 농촌진흥청이 지원하는 농업미생물사업단 (단장 장판식)의 ‘카로티노이드 생산 미생물 세포공장 개발’ 과제(과제책임자 국립농업과학원 김수진 박사)의 지원을 받아 효율적인 빨강, 주황, 노랑 3색의 카로테노이드 생산과 이를 확장한 7가지 무지개색을 모두 생산할 수 있는 기술 개발에 성공했다.
다양한 특성의 천연색소 중 연구팀은 지용성 식품과 의류 염색 등에 활용되는 소수성 천연색소에 주목했다. 연구팀은 미생물의 대사회로를 조작하는 기술인 대사공학을 이용해 카로티노이드 계열 색소인 ▲아스타잔틴(빨강), ▲베타-카로틴(주황), ▲제아잔틴(노랑)과 비올라세인 유도체 계열 색소인 ▲프로비올라세인(초록), ▲프로디옥시비올라세인(파랑), ▲비올라세인(남색), ▲디옥시비올라세인(보라)을 생산하는 대장균들을 개발하였다. 이로써 연구팀은 포도당이나 글리세롤을 먹이로 개발한 대장균을 배양함으로서 일곱 빛깔의 천연 무지개 색소를 모두 생산할 수 있게 됐다.
미생물에서 소수성 색소가 생산되면 이는 세포 밖으로 배출되지 않고 세포 내부에 축적된다. 색소가 축적될 수 있는 세포의 수용력에는 한계가 있으므로, 그동안 소수성 색소를 특정량 이상으로 생산할 수 없었다. 이에 연구팀은 세포의 모양을 변화시키거나 세포 내 소낭을 형성해 미생물 내부의 소수성 천연색소 축적량을 증가시키고자 했다. 또한, 색소 생산량을 더욱 증가시키기 위해 연구팀은 세포 외 소낭을 형성해 미생물 밖으로 소수성 천연색소를 분비해 무지개 색소를 고효율로 생산하는 데 성공했다.
이번 연구를 통해 폐목재, 잡초 등 지구상에서 가장 풍부한 바이오매스의 주원료인 포도당 또는 산업공정의 부산물로 생산되는 값싼 바이오매스인 글리세롤을 단일 탄소원으로 사용해 일곱 빛깔의 천연 무지개 색소를 생산하는 대장균 균주를 최초로 개발했다고 연구팀 관계자는 설명했다.
연구에 참여한 양동수 박사는 “석유 화합물 기반의 합성 색소를 대체할 수 있는 일곱 빛깔의 천연 무지개 색소를 세계 최초로 생산했으며, 이번 연구는 특히 색소를 비롯한 천연물을 고효율로 생산할 수 있는 범용 대사공학적 전략을 개발했다는 점에 의의가 있다”며 “이번 기술을 활용해 색소뿐만 아니라 의약품, 영양보조제 등의 다양한 친환경 물질을 고효율로 생산할 수 있을 것”이라고 밝혔다.
2021.06.08
조회수 70337
-
미생물 이용한 천연 붉은 색소 생산 기술 최초개발
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 `식용으로 널리 쓰이는 붉은색 천연색소인 카르민산을 생산하는 미생물 균주 개발'에 성공했다고 9일 밝혔다.
이번 연구결과는 국제 학술지인 `미국화학회지(Journal of the American Chemical Society)'에 4월 2일 字 온라인 게재됐다.
※ 논문명 : Production of carminic acid by metabolically engineered Escherichia coli
※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 양동수(한국과학기술원, 제1저자), 장우대(한국과학기술원, 제2저자), 포함 총 3명
카르민산은 붉은색 천연색소로 딸기우유, 사탕 등의 식품과 매니큐어, 립스틱 등 화장품 분야에서 널리 활용되고 있다. 카르민산은 연지벌레 추출을 통해 얻어지는데, 연지벌레는 한정된 지역(페루, 카나리아 제도 등지)에서만 재배할 수 있으며, 연지벌레로부터 카르민산을 추출하기 위해서는 복잡하고 비효율적인 다단계 반응을 거쳐야 한다.
또한, 카르민산은 대부분 연지벌레에서 기인한 단백질 오염물질을 포함하고 있는데 이는 알레르기 반응을 유발할 수도 있으며, 많은 사람이 벌레 기반 물질을 섭취하는 것을 꺼리고 있다. 이러한 이유로 몇몇 프랜차이즈 업체는 카르민산 사용을 중단하고 대체 식용색소를 활용하고 있다.
이에 따라 연지벌레를 사용하지 않는 카르민산 생산 방법 개발의 필요성이 제기됐으나, 카르민산 생합성 경로의 일부가 아직 밝혀지지 않았으며 곰팡이를 제외한 다른 미생물에서 카르민산 생산이 보고된 바가 없었다.
이에 이상엽 특훈교수 연구팀은 포도당으로부터 카르민산을 생산할 수 있는 대장균 균주 개발 연구를 수행했다.
연구팀은 우선 타입 II 폴리케타이드 생합성 효소를 최적화해 카르민산의 전구체(전 단계의 물질)를 생산하는 대장균 균주를 구축했다. 하지만 남은 두 단계의 반응을 수행하기 위한 효소가 아직 발굴되지 않았거나 대장균 내에서 작동하지 않는 문제가 있었다. 이러한 문제를 해결하기 위해 연구팀은 생화학 반응 분석을 통해 카르민산 생산을 위한 효소 후보군을 선정했다. 그 후 세포 배양 실험을 통해 성공적으로 작동하는 효소들을 선정했다.
이렇게 선정된 효소 두 종에 대해 컴퓨터 기반 상동 모형 및 도킹 시뮬레이션을 수행 후 활성이 증대된 돌연변이 효소를 예측했다. 그 후 이에 기반을 둔 효소 개량을 수행함으로써 증대된 활성을 지니는 효소를 개발하는 데 성공했다.
이번 연구를 통해 폐목재, 잡초 등 지구상에서 가장 풍부한 바이오매스의 주원료인 포도당을 단일 탄소원으로 사용해 카르민산을 생산하는 대장균 균주를 최초로 개발했다고 연구팀 관계자는 설명했다.
연구팀이 개발한 대사공학 및 가상 시뮬레이션 기반 효소 개량 전략은 생산경로가 규명되지 않은 다른 천연물의 생산에도 유용하게 쓰일 것으로 기대된다. 연구팀은 이번 연구에서 개발한 C-글리코실 전이효소를 적용해 카르민산 뿐만 아니라 알로에로부터 생산 가능했던 미백제인 알로에신 생산에도 세계 최초로 성공함으로써 이를 증명했다.
이상엽 특훈교수는 “연지벌레를 사용하지 않는 카르민산 생산 프로세스를 세계 최초로 개발했으며, 이번 연구는 특히 천연물 생산의 고질적인 문제인 효소 발굴과 개량에 대한 효과적인 해결책을 제시했다는 점에 의의가 있다”며 “이번 기술을 활용해 의학적 또는 영양학적으로 중요한 다양한 천연물을 고효율로 생산할 수 있을 것”이라고 밝혔다.
한편 이번 연구는 과기정통부가 지원하는 기후변화대응기술개발사업의 '바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제'의 지원을 받아 수행됐다.
2021.04.09
조회수 72619
-
생체 모방 반사형 디스플레이 원천기술 개발
- 신중훈 교수팀, 유리구슬 이용해 ‘몰포나비’구조 과학적으로 구현 -
- 나노미터 수준에서 질서와 무질서 동시에 재현하는 데 성공 -- 밝고 전력소모 적은 차세대 반사형 디스플레이 만들 수 있어 -
무지개, 공작새 등의 영롱한 색은 투명한 물질들의 주기적인 구조에 의해 반사와 간섭을 거치면서 만들어지는 ‘구조색’인데 구조색의 특징은 매우 밝고, 보는 각도에 따라 색이 바뀐다는 점이다.
반면 ‘몰포나비’는 밝은 구조 색을 가지면서도 다양한 각도에서 똑같은 푸른 빛깔을 낸다. 이는 질서와 무질서를 동시에 포함하는 몰포나비 날개의 독특한 구조 때문이다.
우리 학교 물리학과·나노과학기술대학원 신중훈 교수 연구팀이 몰포나비와 같이 무질서와 질서를 동시에 포함하는 구조를 유리구슬을 이용해 완벽하게 대형으로 재현하는 데 성공했다.
이번 연구 성과는 외부 빛을 반사시켜 화면을 출력하는 반사형 디스플레이를 구현할 수 있는 원천기술로, 밝으면서도 전력소모가 매우 적은 디스플레이를 만들 수 있을 것으로 기대되고 있다.
이와 함께 이 기술을 이용해 5만원권의 부분 노출 은선을 만들어 위조나 복제가 어려운 화폐를 만들 수 있고, 기존의 색소에 의한 색과는 다르게 번쩍거리는 느낌을 주기 때문에 핸드폰이나 지갑 등의 코팅재로도 각광받을 것으로 예상된다.
몰포나비의 날개 구조는 1μm(마이크로미터) 수준에서 관찰하면 주기적인 질서를 갖고 있는 것처럼 보이지만, 100nm(나노미터) 수준에서는 주기성을 상쇄시킬 수 있는 무질서함을 구조 속에 포함하고 있다. 그동안 학계에서는 나노미터 수준에서 질서와 무질서를 동시에 포함하는 구조를 완벽히 재현하는 데에는 아무도 성공하지 못했다.
반면 신 교수 연구팀은 이번 연구를 통해 다양한 크기를 갖는 수백 나노미터(nm) 크기의 유리구슬을 임의로 배열해 무질서함을 구현했고 또, 배열된 유리구슬 위에 반도체 증착 방법을 통해 주기적인 박막을 쌓아 넓은 면적의 몰포나비의 구조를 만드는 데 성공했다.
새롭게 개발된 박막은 몰포나비의 색과 밝기의 재현을 넘어 실제 몰포나비 보다도 각도에 따른 색의 변화가 훨씬 더 적은 우수한 성질을 지니고 있다.
연구진은 또 이 박막을 얇은 플라스틱 필름 안에 파묻음으로써 몰포나비보다 더 우수한 성질을 유지하면서도, 더욱 견고하고 종이처럼 접을 수 있는 신 개념 재료를 세계 최초로 구현해 냈다.
신중훈 교수는 “이번 연구 성과는 최근 각광받고 있는 생체모사 기술의 대표적 성공사례”라고 강조하고 “구조색을 이용하는 반사형 디스플레이 뿐 아니라 센서, 패션등 매우 다양한 분야에서도 응용될 수 있을 것”이라고 말했다.
이 결과는 재료분야 최고 권위 저널 중 하나인 어스밴스드 머터리얼스(Advanced Materials)지 온라인 판에 게재됐으며, 5월 8일자 내부 표지논문으로 게재될 예정이다. 지난 5월 3일에는 네이처(Nature)지에 주목받는 연구(Research Highlights)로 소개되기도 했다.
한편, 이번 연구는 KAIST 물리학과·나노과학기술대학원 신중훈 교수 (제1저자 정경재 박사과정 학생)와 서울대 전자과 박남규 교수, 그리고 삼성 종기원이 공동으로 수행했으며 한국연구재단과 교육과학기술부의 세계수준의 연구중심대학육성사업(WCU)의 지원을 받았다.
그림1. 몰포나비를 모방해 연구팀이 만든 박막. 다양한 색깔을 구현할 수 있다.
그림2. 몰포나비를 모방해 연구팀이 만든 박막. 플렉서블하면서도 크게 만들 수 있다.
2012.05.01
조회수 15552
-
생명과학과 김진우 교수, 노인성 망막퇴행질환 발생 원인 발견
생명과학과 김진우 교수팀이 미국 및 캐나다 연구팀과의 공동연구로 "PTEN 단백질의 불활성화가 노인성 망막퇴행질환의 핵심 기전" 이라는 사실을 규명했다.
김 교수팀은 이 연구에서 그 동안 종양억제 유전자로 널리 알려져 있던 PTEN 단백질이 안구 내 망막색소상피세포* 사이의 결합을 유지시켜 망막조직의 형태 및 항상성 유지에 중요한 역할을 함으로써 망막퇴행질환을 억제한다는 사실을 생쥐 실험을 통해 증명하였다.
우리 인간을 포함한 동물의 안구 내에는 멜라닌 색소를 다량 함유하고 있는 망막색소상피세포층이 망막을 덮고 있는데, 이 층의 세포들은 강한 세포 간 접합체로 연결되어 안구 내에서 혈관과 망막 사이의 장벽을 제공해 준다.
그러나, 장기간 흡연이나 망막이 강한 빛에 장시간 노출되는 등의 스트레스 상황에서는 망막색소상피세포층이 점차 파괴되고, 그 결과 이 세포층에 생긴 틈으로 망막 외부 모세혈관에 있던 백혈구 세포들이 망막으로 침투하면서 망막세포에 염증반응을 일으켜 망막퇴행을 유발한다.
이러한 현상은 많은 망막퇴행질환들에서 관찰이 되는데, 특히 노령 인구에서 높은 빈도로 일어나는 노인성 황반퇴행질환 (Age-related macular degeneration)*에서 빈번하게 나타나는 현상으로 잘 알려져 있다.
김 교수팀은 망막색소상피세포 간 접합부에 집중되어 나타나는 PTEN 단백질의 기능을 검증하기 위해 PTEN 유전자를 인위적으로 생쥐의 망막색소상피세포에서 제거하였고, 그 결과 이 생쥐들에서 노인성 황반퇴행에서 나타나는 형태적 특징을 관찰할 수 있었다.
연구팀은 더 나아가 기존 노인성 황반퇴행질환 생쥐의 망막색소상피세포에서 인산화에 의한 불활성화를 통해 PTEN 단백질이 세포 간 접합체에서 이탈된다는 사실까지 밝힘으로써, PTEN 단백질이 망막색소상피세포의 구조 유지를 통해 망막퇴행을 억제하는 핵심 단백질이라는 사실을 규명하였다.
노인성 황반퇴행질환은 미국 내에만 2006년 통계로 100 만명 이상의 환자가 보고되었고, 국내에서도 최근 급격한 노령화에 따라 환자 수가 급증하고 있는 노인성 망막퇴행질환으로, 시력 상실로도 이어질 수 있는 심각한 신경 질환이다.
노인성 황반퇴행질환은 약 15% 정도는 망막 내 신생혈관의 급격한 형성으로 발생하는 습성 (wet-type)이고, 약 85% 이상은 망막색소상피세포의 이상 등으로 시작해 만성으로 진행되는 건성 (dry-type)으로 분류된다.
심각한 병증과 많은 환자 수에도 불구하고, 그 동안 건성 황반퇴행질환 치료제 개발이 진척을 보이지 못한 이유 중의 하나는 이 질환이 시작되는 망막색소상피세포의 퇴행에 대한 분자적 기전이 정확히 알려지지 않아 치료제의 타겟이 될 세포 내 현상 및 단백질들을 설정하는데 어려움이 있었다는 것이다.
이번 논문의 교신 저자인 김 교수는 “이번 논문을 통해 알려진 망막색소상피세포 퇴행 억제 핵심 단백질인 PTEN과 그 영향을 받는 하부 신호전달체계의 정체는 향후 노인성 황반퇴행질환의 치료제 개발을 위한 타겟을 설정하는데도 유용한 정보로 사용될 수 있다”고 말했다.
김진우 교수팀의 이번 연구는 교육과학기술부가 지원하는 바이오기술개발사업의 일환으로 수행되었고, 연구 결과는 세계적인 저명학술지인 ‘유전자와 발생’(Genes & Development) 11월 15일판에 게재되었다.
2008.11.18
조회수 18120