본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%82%AC%EC%97%85%EB%8B%A8
최신순
조회순
이동형 음압병동, 경기도 특별생활치료센터로 운영
우리 대학이 코로나대응 과학기술뉴딜사업단(단장 배충식)이 개발한 '이동형 음압병동(Mobile Clinic Module, 이하 MCM)'을 경기도(도지사 이재명)와 협력해 경기도 제2호 특별생활치료센터로 운영한다. MCM은 고급 의료 설비를 갖춘 음압격리시설로 KAIST 남택진 산업디자인학과 교수팀이 지난해 7월부터 한국형 방역패키지 기술 개발사업의 일환으로 연구해왔다. MCM은 기능성·경제성·효용성뿐만 아니라 독창적 디자인과 심미성까지 갖춘 우수한 의료 시설로 인정받아 세계적인 권위의 독일 레드닷(Red Dot) 디자인 공모전의 제품디자인 분야와 커뮤니케이션 디자인(사용자 인터페이스) 분야에서 동시에 대상(Best of the Best)을 수상한 바 있다. 올해 1월 서울 한국원자력의학원에 4개의 중환자 병상을 갖춘 병동을 설치하고 시범 운영을 진행해 경증환자 2명의 치료를 완료했다. 또한, 대전 건양대병원 응급실에 음압격리실로 설치해 지난 6월부터 2개월 동안 138명이 진료를 받았으며 현재도 계속해서 활용 중이다.경기도 인재개발원 실내체육관에 설치된 특별생활치료센터는 28병상 14병실(2인 1실)과 다목적 1실(엑스레이 및 처치실)로 구성되어 오는 13일 문을 연다. 경기도 MCM은 코로나 19 확진자를 약 2주간 격리하는 기존 생활치료센터와는 다르게 자가치료 연계 단기 진료센터로 운영된다. 자가치료 중 관리가 필요한 증상을 보이는 환자를 MCM으로 이송해 1일~3일간의 단기 입원 경과를 관찰한 뒤 후속 조치를 취하는 방식이다. 대면 및 산소치료·엑스레이·수액 등 MCM의 자체 진료 역량을 활용해 환자를 치료할 수 있다. 병실 안에 개별 화장실이 구비되어 있으며 음압·환기상황·출입문 자동 개폐를 중앙에서 모니터링하고 제어할 수 있다. 치료 중 이상 징후가 발생한 환자는 전담 중증 병원으로 전원 조치하고 특이 사항이 없는 경우 다시 자가 치료 시설로 이송하게 된다. 이를 위해, 경기도의료원 안성병원이 특별생활치료센터의 운영을 맡는다. 1일 기준 의사 1~2명, 간호사 3명, 간호조무사 2명, 행정원 1명, 방역 인원 2~3명, 영상기사 1명 등이 3교대로 근무할 예정이다. 이 외에도 KAIST 연구원, 소방, 경찰, 기타 용역 등 약 20여 명의 전담 인력이 현장에 투입된다. 13일부터 다음달 10일까지 운영되며 경기도는 한 달간의 운영 성과와 코로나19 확산 상황을 고려해 필요에 따라 운영 기간을 조정할 방침이다. 최근 심화되고 있는 음압병상 부족 사태 해결에 기여하고 더 나아가 한국 방역 시스템의 새로운 패러다임을 제시하겠다는 것이 두 기관의 협업 목표다. 우리 대학은 이번 특별생활치료센터 운영을 통해 음압병상의 효율화와 최적화 모델을 구축하기 위한 연구를 진행한다. 향후, 오폐수 처리 시스템, 감염환자에 최적화된 이동형 화장실, 모바일 기기용 MCM 사용자인터페이스 등의 연구개발을 이어갈 예정이다. 디자인과 프로젝트 총 감독을 맡은 남택진 산업디자인학과 교수는 "활용 가능한 실내 체육관이 있다면, 독립된 설비가 없더라도 2주 내에 의료가스·오폐수처리·음압설비 등이 구비된 특별생활치료센터로 바꿀 수 있다ˮ라고 설명했다. 사업단을 이끈 배충식 단장은 "지난해 7월에 연구개발을 시작한 MCM은 1년 남짓한 짧은 시간 안에 시범 운영을 거쳐 치료 현장에 상용화된 획기적이고 성공적인 사례ˮ라고 전했다. 또한, "KAIST는 코로나19에 발 빠르게 대응하기 위해 이동형 음압병동 뿐만 아니라 다각적인 방역기술 분야에서 연구개발 및 실증연구를 수행하고 있다ˮ라고 강조했다. KAIST 코로나대응 과학기술뉴딜사업단은 교내 연구진이 보유한 우수 방역기술을 바탕으로 기술이전 및 사업화를 진행하고 과학기술에 바탕을 둔 한국형 방역 패키지 모델 정립을 위한 역할을 수행하고 있다.
2021.09.09
조회수 5997
국제의료기기·병원설비 전시회(KIMES 2021) 참가
우리 대학이 18일부터 22일까지 서울 삼성동 코엑스에서 4일간 열리는 국제의료기기·병원설비 전시회(이하, KIMES 2021)에 참가한다. KIMES 2021은 세계 선진 기업들의 창의적인 의료 기술이 집결, 소개되는 전시회인데 올해는 국내외 1200여 개 회사가 참가해, 첨단의료기기·병원설비·의료정보시스템·헬스케어·의료 관련 용품 등 3만여 종의 기술과 관련 제품을 선보인다. KAIST는 10개의 독립 전시실 및 별도로 마련된 K-방역특별관에서 ʻ코로나대응 과학기술 뉴딜사업단ʼ이 연구 중인 한국형 방역패키지 기술 10종을 선보인다. K-방역특별관에는 남택진 교수(산업디자인학과) 연구팀과 신성이엔지에서 공동으로 개발한 ʻ이동형 음압병동ʼ의 모듈이 전시된다. 이번 전시회에서는 전시회 관람객들이 ʻ이동형 음압병동ʼ을 직접 체험할 수 있도록 병동의 음압 기능을 실제로 가동시킬 예정이다. KAIST 코로나대응 과학기술 뉴딜사업단은 이번 전시회에서 감염병 치료 현장에 투입된 의료 인력의 고충을 덜어주고 진단 과정을 최소화하는 기술을 위주로 공개된다. 우선 박형순 교수(기계공학과) 연구팀은 `찜통 방호복'의 단점을 대대적으로 개선한 `스마트 방호복 냉각 통기 시스템' 기술을 전시한다. 기존 제품군 대비 무게를 대폭 줄인 것과 동시에 냉각 기능을 추가한 것이 특징이다. 냉각기는 방호복 내부의 공기를 순환 및 냉각시키며, 호흡기 보호구는 필터링 된 외부 공기를 유입하는 방식으로 작동해 쾌적성 및 감염에 대한 안전성을 모두 확보했다. 나노마이크로기술을 이용한 초고속 분자진단시스템도 전시된다. 정기훈 교수(바이오및뇌공학과) 연구팀은 샘플 추출부터 결과까지 10분 이내 PCR(Polymerase Chain Reaction) 검사가 가능한 `실시간 광열 PCR 시스템'을 전시한다. 복잡하고 부피가 크며 측정 시간이 오래 걸리는 기존 기술의 한계를 극복해 현장 진단에 유용하게 활용될 것으로 기대되는 기술이다. 또 다른 진단 기술로는 예종철 교수(바이오및뇌공학과) 연구팀이 흉부 X-ray 영상을 기반으로 감염병을 신속하게 진단할 수 있는 인공지능 소프트웨어가 시연된다. 환자들의 흉부 X-ray 영상 데이터를 분석해 폐렴의 중증도 변화를 구별해내는 인공지능 소프트웨어다. 흉부 X-ray 결과만 가지고도 해당 환자가 코로나19 및 바이러스성 폐렴·박테리아성 폐렴·결핵·기타 질병·정상군 중 어느 범주에 속해있는지를 1분 이내 진단해 시각적인 정보로 제공하는 기술이다. 이와 함께 의료 현장에서 수시로 사용되는 다양한 의료기구들을 5분 안에 멸균할 수 있는 `플라즈마 멸균기'와 살균기가 포함된 `이동형 클리닉 모듈'도 출품된다. 최원호 교수(원자력및양자공학과)가 스타트업 기업인 플라즈맵과 공동으로 연구, 개발한 `의료용 저온 플라즈마 멸균기'다. 플라즈마란 고체-액체-기체의 상태를 넘어선 제4의 물질 상태라고 불리며 탁월한 살균 능력을 발휘한다. 최 교수팀의 멸균기와 이동형 클리닉 모듈은 고가의 대형 장비를 활용해 장시간 멸균하던 기존 기술의 단점을 혁신적으로 보완한 것이 특징이다. 이 밖에 기계공학과 김성수 교수팀과 박해원 교수팀이 각각 수동식 주들 것·음압 앰뷸런스 기술과 전동식 주들 것·음압 챔버 기술을 전시한다. 배상민 교수(산업디자인학과) 연구팀은 가족이 함께 사는 집에서 특정 구역을 자가격리 공간으로 만드는 `자가격리 키트'를 선보인다. 화장실이 딸린 방의 입구에 차단막을 부착해 문밖에 있는 가족들과 생활공간을 물리적으로 차단하는 방호 제품이다. 차단된 공간 내부 창문에는 음압기를 연결해 자가격리 기간 중 음압 환경을 유지하면 바이러스의 유출 가능성을 최소화하고 호흡기를 통한 2차 감염을 예방할 수 있다. 김형수 교수(기계공학과) 연구팀은 바이러스 등의 오염원들을 효과적 포집해 정화할 수 있는 `이동형 싸이클론 음압 펌프' 기술을 공개한다. 주변에 비해 공기의 압력이 낮은 음압 공간은 공기가 밖으로 흘러나가지 않아 병원균과 바이러스의 이동을 막는 역할을 한다. 김 교수팀의 음압 기술은 밀폐된 공간 안에서 공기 흐름의 방향성을 생성하도록 설계됐다. 이를 활용해 오염원을 집중적으로 흡입해 정화하고 특정 공간의 음압 환경 유지하는 것으로 호흡기 질환 바이러스 확산 예방할 수 있는 기술이다. 특히 작년 공개돼 많은 관심을 받았던 김일두 교수(신소재공학과) 연구팀은 반투명·생분해성·항바이러스 필터 개발 성과와 서브 마이크론 섬유(0.15~0.5μm 직경) 제조 설비를 전시한다. 김 교수 연구팀이 개발한 반복 사용이 가능한 비말 차단 필터는 KC 마스크 인증 성능 합격 판정을 받았다. 식품의약품안전처(식약처)에 보건용 마스크 허가를 신청한 후 현재 보완 시험을 진행 중이다. 빠르면 올 4월 중에는 패션 마스크 용도로 시판하기 위해 준비 중이다. 우리 대학 ʻ코로나대응 과학기술 뉴딜사업단ʼ은 작년 7월 과학기술정보통신부의 지원을 받아 출범했다. 과학기술로 감염병 위기를 극복하고 항바이러스 신산업 창출을 통해 경제 발전에 이바지하기 위해 만들어졌다. 3월 현재 사업단에는 우리 대학 교수와 연구원·학생 등 464명에 달하는 내부 구성원과 기업·병원·연구소 소속의 인원 503명이 참여하고 있다.이광형 총장은 18일 오후 전시장을 방문해 "전시 시제품이 방역 현장에 실질적인 도움을 제공할 수 있도록 관련 기술의 실증·고도화를 적극 추진해 달라ˮ라고 당부하며 연구진을 격려할 예정이다.
2021.03.17
조회수 102535
코로나 중증 환자용 이동형 음압병동 개발
작년 11월 초부터 시작된 3차 코로나 대유행으로 중증 환자 수가 급증하면서 음압 병상 부족 사태가 심화되는 가운데, 이를 신속하게 해결할 수 있는 이동형 음압병동이 우리 대학 연구진에 의해 개발됐다. 음압병동은 중증 감염병 환자 치료에 필수적인 시설이다. 우리 대학 산업디자인학과 남택진 교수 연구팀은 코로나 대응 과학기술 뉴딜사업단(단장 배충식 공과대학장)의 한국형 방역패키지 기술 개발사업의 일환으로 작년 7월부터 연구해온 '이동형 음압병동(Mobile Clinic Module, 이하 MCM)'을 개발하고 시범 운영에 들어갔다. MCM은 고급 의료 설비를 갖춘 음압 격리 시설로 신속하게 변형하거나 개조해 사용할 수 있는 것이 특징인데, 진단검사 · 영상의학 · 의료물품 공급 · 의무기록 관리와 환자 식사 제공 등 기존 병원의 인프라와 함께 활용해야 한다. 연구팀은 작년 12월 28일부터 서울 노원구에 있는 한국원자력의학원에 4개의 중환자 병상을 갖춘 병동을 설치한 후, 의료진과 일반인으로 구성한 모의 환자그룹을 대상으로 의료 활동과 환자 일상 등 치료 전 과정을 점검하는 시뮬레이션에 들어갔다. 이달 15일까지 모의 운영을 진행한 뒤 의료진과 환자의 사용성·안정성·만족도 등을 임상 검증한 후 본격적인 상용화에 나설 계획이다. 남 교수 연구팀이 개발한 MCM은 약 450㎡(136평) 규모로 가로 15m x 세로 30m 크기다. 이 MCM은 음압 시설을 갖춘 중환자 케어용 전실과 4개의 음압병실, 간호스테이션 및 탈의실, 그리고 각종 의료장비 보관실과 의료진실로 꾸며져 있다. 음압 프레임·에어 텐트·기능 패널 등의 시설을 갖춘 MCM은 부품을 조합해 신속하게 음압 병상이나 선별진료소 등으로 변형 또는 개조해서 사용할 수 있다. 이뿐만 아니라 기존 중환자 병상을 음압 병상으로 전환하는 데도 매우 효과적이다. 이에 따라, MCM이 본격 상용화되면 코로나19 중환자용 음압 병상 부족난을 해소하는 데에도 큰 도움이 될 것으로 기대된다. 컨테이너나 텐트 등을 활용해 짓는 기존의 조립식 감염 병동은 건설과 장비 확보에 비용이 많이 들고, 기능적으로는 임시 수용 시설에 불과하다는 게 단점으로 꼽힌다. 따라서 중환자를 수용하기 위한 전문적인 의료 시설로 사용하기에는 역부족이다. 남 교수 연구팀은 안전한 음압 환경을 형성하는 독자적인 기기인 '음압 프레임'을 설계하고 이를 '에어 텐트'와 연결하는 모듈형 구조에 접목해 최소한의 구조로 안정적인 음압병실을 구축할 수 있는 MCM 기술 개발에 성공했다. 음압 프레임이 양방향으로 압력을 조절해 두 에어 텐트 공간(예: 전실과 병실)을 효과적으로 음압화하는 원리다. 텐트에 '기능 패널'을 조합해 중환자 치료에 필요한 의료 설비나 기본 병실 집기를 구축할 수 있다. 또 모듈 조합을 통해 음압병동 및 선별진료소, 음압화 중환자 병상, 음압화 일반병실 등 목적에 맞는 의료 시설로 사용할 수 있다. 연구팀 관계자는 "병실 모듈 제작에 걸리는 시간은 14일 정도며 이송 및 설치 또한 통상적으로 5일 안에 가능하다ˮ고 말했다. 특히, 전실과 병실로 구성된 MCM의 기본 유닛은 모듈 재료가 현장에 준비된 상태에서 15분 이내에 설치가 가능한 게 특징이다. 이밖에 기존 조립식 병동으로 증축할 경우와 비교할 때 약 80% 정도 비용을 절감할 수 있다고 연구팀 관계자는 설명했다. 또한, 감염병 사태 이후 보관이 어려운 기존 조립식 병동과는 다르게 부피와 무게를 70% 이상 줄인 상태로 보관할 수 있어 군수품처럼 비축해놨다가 감염병이 유행할 때 빠르게 도입해 설치할 수 있다는 것도 큰 장점이다. 모듈화된 패키지는 항공 운송도 가능해 병동 전체의 수출도 기대할 수 있다. 다년간의 사용자 중심 시스템 디자인 노하우를 보유 중인 남택진 교수 연구팀은 환자·의료인 등 실사용자를 위해 기능성·경제성·효용성 등을 종합적으로 고려한 안전한 음압병동 개발을 목표로 작년 7월부터 관련 기술 개발을 진행해왔다. 사용 편의성·감성적 경험 및 독창성 등을 만족시키기 위해서 입원 치료 환경 구축을 위한 의료 자문을 포함, 의료진과의 협력을 통해 감염 치료 프로세스를 이해하는 등 음압병동 디자인에 필요한 요구사항을 현장에서 확립하는 연구도 동시 진행했다. 그 결과, 의료 활동과 환자의 일상을 지원하는 다양한 기능 패널 아이디어와 옥외 주차장·공터·실내 체육관 등 기존 병원의 유휴 공간을 활용할 수 있는 병동 구축을 통해 기존 의료자원과 연계하는 모듈러 시스템을 완성하는 데 성공했다. 남 교수 연구팀은 특히 한국원자력의학원 의료진들과 공동으로 이동형 감염병원 표준 운영 절차(SOP, Standard Operation Procedure)를 개발해 감염병 대응 과정의 안전성을 확보하는 한편 이동 음압병동을 처음 운영하는 의료진들의 현장 활용도를 높였다. 한국원자력의학원 조민수 박사(비상진료부장)는 "코로나 대응에 있어서 환자와 의료진이 안전한 환경에서 중증 환자 치료까지 이뤄지도록 설계·제작했다ˮ고 설명했다. 조 부장은 이어 "국내외 확대 보급 시 원자력의학원에 설치된 이동형 음압병동이 의료진 교육훈련센터 기능을 수행할 수 있다ˮ면서 "필요시에는 실제 의료현장에서의 운영 지원도 가능하다ˮ고 밝혔다. 남택진 교수팀의 이번 연구는 KAIST 코로나 대응 과학기술 뉴딜사업의 지원을 받아 이뤄졌는데 사용자 연구부터 디자인·시제품 개발에 이르기까지 6개월 만에 임상적 운영이 가능한 병동 개발을 완료했다. 에어 텐트 형태의 음압병동 시제품은 과제 협약업체인 신성이엔지에서 제작을 맡았는데 6~8개의 중환자 병상을 갖춘 이동형 감염병원의 경우 3~4주 이내 납품이 가능하다. 연구 총괄을 맡은 남택진 KAIST 산업디자인학과 교수는 "MCM은 병동 증축을 최소화하며 주기적으로 반복될 감염병 위기에 필수적인 방역시스템으로 자리를 잡게 될 것ˮ이라고 말했다. 남 교수는 이어 "세계 최초로 개발한 MCM의 하드웨어와 운용 노하우를 향후 K-방역의 핵심 제품으로 추진하고 수출까지 기대할 수 있다ˮ고 덧붙였다. 한편, KAIST는 과기정통부로부터 후원을 받아 작년 7월부터 교내에 코로나 대응 과학기술 뉴딜사업단을 공식 출범시켜 관련 연구를 진행 중이다. 배충식 사업단장(공과대학장)이 이끄는 이 사업단은 KAIST가 보유한 과학기술을 활용해 코로나19에 발 빠르게 대응하고 국가적 위기를 기회로 전환하자는 목표 아래 KAIST 교수진 위주의 연구 책임자 45명 및 외부 참여 교수를 포함해 총 464명의 연구진이 감염 예방-진단-치료 등 항·감염 전주기에 대응하는 과학기술 기반 한국형 방역패키지를 개발하고 있다.
2021.01.07
조회수 58645
김희탁 김상욱 교수, 멤브레인 필요 없는 새로운 물 기반 전지 개발
우리 대학 생명화학공학과 김희탁 교수와 신소재공학과 김상욱 교수 공동 연구팀이 전기화학 소자의 핵심 부품인 멤브레인을 사용하지 않고도 에너지 효율 80% 이상을 유지하면서 1천 번 이상 구동되는 새로운 개념의 물 기반 아연-브롬 전지를 개발했다. 이번 연구를 통해 일본, 미국의 수입에 의존해 온 다공성 분리막이나 불소계 이온교환막을 사용하지 않는 기술로, 해당 기술에 대한 대외 의존도를 낮출 수 있을 것으로 기대된다. 이주혁 박사과정과 변예린 박사후연구원이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced materials)’12월 27일자 표지논문에 선정됐다.(논문명: High-Energy Efficiency Membraneless Flowless Zn-Br Battery: Utilizing the Electrochemical-Chemical growth of Polybromides) 최근 태양광, 풍력 등 신재생에너지의 불안정한 전력 공급을 해결하기 위해 전기 에너지를 미리 저장했다가 필요한 시간대에 사용할 수 있는 에너지저장장치(ESS)가 주목받고 있다. 현재는 리튬이온전지가 에너지저장장치용 이차전지로 사용되고 있으나 발화성 유기 전해액 및 리튬계 소재로 인한 발화의 위험성을 지니고 있다. 지난 2017년부터 올해 10월까지 총 21건의 에너지저장장치 화재사고가 발생했으며, 전체 에너지저장장치 시설 1천 490개 중 35%인 522개의 가동이 중단되기도 했다. 이러한 이유로 물을 전해질로 사용한 비 발화성 물 기반 이차전지 기술이 에너지저장장치용 차세대 이차전지로 주목받고 있다. 특히 다양한 물 기반 전지 기술 중 아연과 브롬을 활물질로 사용하는 아연-브롬 레독스 흐름 전지는 높은 구동 전압 및 높은 에너지 밀도를 가져 1970년대부터 지속해서 개발돼왔다. 그러나 아연-브롬 레독스 전지는 브롬이 아연과 반응해 전지 수명을 단축시키는 문제로 인해 상용화가 지연됐다. 이러한 반응을 억제하기 위해 펌프를 이용해 브롬이 함유된 전해질을 외부 탱크로 이송해 왔으나, 이는 펌프 구동을 위한 에너지 소모 및 브롬에 의한 외부 배관이 부식되는 문제를 동반한다. 브롬을 포획하는 전해질 첨가제 및 브롬의 이동을 차단할 수 있는 멤브레인에 대한 개발이 진행됐으나, 가격증가 및 출력 저하의 문제점이 발생했다. 김희탁 교수와 김상욱 교수 공동 연구팀은 일본, 미국에 의존하던 값비싼 멤브레인 소재와 어떠한 첨가제도 사용하지 않는 새로운 물 기반 아연-브롬 전지를 개발했다. 전해질 내의 이온과 외부 전기회로 사이의 전자를 주고받는 한정된 역할만 수행하던 전극의 기능에 멤브레인과 첨가제가 담당하던 브롬을 포획할 수 있는 기능을 추가했다. 질소가 삽입된 미세기공 구조를 전극 표면에 도입해 미세기공 내부에서 비극성 브롬을 극성 폴리브롬화물로 전환한 뒤, 질소 도핑 카본과 폴리브롬화물간 쌍극자-쌍극자 상호 작용을 통해 폴리브롬화물을 기공 내부에 고정했다. 이 기술은 멤브레인의 기능을 전극이 담당하므로 고가의 멤브레인이 필요 없으며, 브롬을 외부 탱크가 아닌 전극 내부에 저장함으로써 펌프 및 배관을 제거할 수 있어 가격 저감 및 에너지 효율을 증대했다. 연구팀이 개발한 다기능성 전극을 이용한 멤브레인을 사용하지 않는 물 기반의 아연-브롬 전지는 리튬-이온 전지보다 45배 저렴할 뿐 아니라, 에너지 효율 83% 이상을 보이며 1천 사이클 이상 운전이 가능하다. 김상욱 교수는 “차세대 물 기반 전지의 한계를 극복하기 위한 나노소재 기술을 이용한 새로운 해결책을 제시했다”라고 말했다. 김희탁 교수는 “이번 연구를 통해 기존보다 안전하고 경제적인 에너지저장장치의 개발이 가속화되기를 기대한다”라고 말했다. 이번 연구는 KAIST 나노융합연구소, 에너지클라우드 사업단, 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단의 지원을 받아 수행됐다. 그림 1. 브롬 활물질을 전극내부에서 폴리브롬화물로 전환하여 저장하는 다기능성 전극의 메커니즘의 모식도와 멤브레인을 장착하지 않고 구동되는 전지의 실제 모습 그림 2. 질소가 도핑된 미세기공이 코팅된 다기능성 전극의 제조 과정
2020.01.08
조회수 12930
이현주 교수, 배기가스 정화용 로듐 앙상블 촉매 개발
〈 정호진 박사과정, 이현주 교수 〉 우리 대학 생명화학공학과 이현주 교수가 포항공대 한정우 교수와의 공동 연구를 통해 자동차 배기가스 정화에 사용할 수 있는 분산도 100%의 로듐 앙상블 촉매를 개발했다. 연구팀의 촉매는 자동차 배기가스 정화 반응에서 시중의 디젤 산화 촉매에 비해 50도 낮은 온도에서 100%의 전환율을 달성하는 성능을 보였다. 연구팀의 앙상블 촉매는 기존의 단일원자 촉매, 나노입자 촉매와는 다른 개념으로 금속 앙상블 자리(ensemble site)가 필요한 다양한 분야에 적용 가능할 것으로 기대된다. 정호진 박사과정이 1저자로 참여한 이번 연구 결과는 화학 분야 국제 학술지 ‘미국 화학회지(JACS, Journal of the American Chemical Society)’ 7월 5일자 온라인 판에 게재됐다. (논문명 : Fully Dispersed Rh Ensemble Catalyst to Enhance Low-Temperature Activity, 저온 활성 향상을 위한 완전히 분산된 로듐 앙상블 촉매) 다양한 불균일계 촉매 중 귀금속 촉매는 높은 활성을 보이기 때문에 널리 사용된다. 하지만 귀금속의 희소가치 때문에 귀금속 사용 효율을 극대화하는 것이 매우 중요하다. 단일원자 촉매는 모든 금속 원자가 촉매 반응에 참여할 수 있기 때문에 널리 사용되지만, 금속 원자가 독립적으로 존재하기 때문에 앙상블 자리가 필요한 촉매 반응에서 촉매 성능을 발휘하지 못한다. 한편 프로필렌(C3H6)과 프로판(C3H8) 등의 탄화수소는 대표적인 자동차 배기가스 오염물질로 반드시 촉매 산화 반응을 통해 이산화탄소(CO2)와 물(H2O)로 전환한 뒤 배출돼야 한다. 탄소-탄소, 탄소-수소 결합을 깨뜨려야만 탄화수소 산화반응이 진행되기 때문에 촉매 반응을 위해서는 금속 앙상블 자리를 확보하는 것이 필수적이다. 연구팀은 문제 해결을 위해 100%의 분산도를 갖는 로듐 앙상블 촉매를 개발해 자동차 배기가스 정화반응에 적용했다. 100%의 분산도를 갖는다는 것은 모든 금속 원자가 표면에 드러나 있기 때문에 모든 원자가 반응에 참여할 수 있다는 의미이다. 이는 단일원자 촉매도 동일하게 갖는 특징이지만, 앙상블 촉매는 100% 분산도와 더불어 두 개 이상의 원자가 붙어있는 앙상블 자리가 존재한다는 장점 또한 갖고 있다. 그 결과 일산화탄소(CO), 일산화질소(NO), 프로필렌, 프로판 산화 반응에서 모두 우수한 저온 촉매 성능을 보였다. 이는 탄화수소 산화 반응 성능이 없는 단일원자 촉매나 낮은 금속 분산도로 인해 저온 촉매 성능이 떨어지는 나노입자 촉매의 단점을 보완한 것이다. 특히 연구팀이 개발한 분산도 100%의 로듐 앙상블 촉매는 상용화된 디젤 산화 촉매(DOC, diesel oxidation catalysts)보다 높은 활성과 내구성을 가져 실제 자동차 배기가스 정화에 적용 가능할 것으로 기대된다. 이현주 교수는 “이번에 개발한 촉매는 기존의 단일원자, 나노입자 촉매와는 다른 새로운 금속 촉매 개념으로 학술적으로 기여하는 바가 크다”며 “자동차 배기가스 정화 촉매 분야에도 산업적으로 적용 가능해 가치가 큰 연구이다”고 말했다. 이번 연구는 한국연구재단 선도연구센터사업 초저에너지 자동차 초저배출 사업단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 분산도 100% 로듐 앙상블 촉매를 이용한 자동차 배기가스 정화 반응 개념도 그림2. 단일 원자 촉매와 앙상블 촉매의 촉매 구조와 성능 비교 모식도 그림3. EDS-mapping 분석법을 통해 관찰한 단일 원자 촉매, 앙상블 촉매, 나노입자 촉매 구조 사진
2018.07.23
조회수 10530
김유천 교수, 부작용 낮춘 레이저 치료제 개발
〈 노 일 구 박사과정, 김 유 천 교수 〉 우리 대학 생명화학공학과 김유천 교수 연구팀이 기존 광역학 치료제(PhotoDynamic Therapy, 이하 PDT)의 단점을 보완한 근적외선 형광물질 기반의 PDT를 개발했다. 노일구 박사과정이 1저자로 참여하고 바이오및뇌공학과 박지호 교수 연구팀이 공동으로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 2018년도 3월 25일자 표지논문에 게재됐다. PDT는 약물이나 유전자가 아닌 빛을 이용하는 치료법으로 레이저를 특정부위에 쬐어 산소를 독성을 갖는 활성산소로 변화시켜 세포를 자가 사멸(apoptosis)로 유도할 수 있는 기술이다. 이 기술은 피부병 치료 등 일상에서도 많이 활용되는 치료법이다. 그러나 기존에 이용하는 PDT 조영제의 경우 낮은 효율을 가질 때 오히려 암세포의 유전변형이 발생해 치료효과 감소 등의 부작용이 나올 수 있다. 따라서 치료효과를 극대화하기 위해선 원하는 위치에 많은 물질을 전달하는 것이 중요하며 이를 위해 세포 소기관인 미토콘드리아에 치료효과를 집중시키는 연구가 진행 중이다. PDT 조영제로 인해 만들어진 활성산소는 미토콘드리아의 막을 공격해 세포 사멸을 일으킨다. 암세포의 미토콘드리아는 일반 세포와 비교했을 때 미토콘드리아 막의 전위 차이가 높아 양전하의 소수성 물질이 더 잘 투입되는 특성이 있다. 연구팀은 이러한 PDT 조영제 효과를 극대화하기 위해 미토콘드리아 타겟팅 그룹인 트리페닐포스포늄, PDT 증강제인 브롬화물, 그리고 용해도 증가를 위한 아민 그룹으로 구성된 물질을 개발했다. 연구팀은 이 기술을 종양이 이식된 실험용 쥐에 주입한 후 종양 부위에 빛을 조사해 항암효과를 유도했고 이를 분석했을 때 효과적으로 표적 치료가 이뤄지는 것을 확인했다. 이 물질은 근적외선 영역에서의 흡광 및 발광을 통한 662 나노미터(nm) 영역 레이저를 사용한다. 이를 통해 기존 가시광선 조영제가 마이크로미터 수준의 깊이를 보였다면 연구팀의 기술은 밀리미터까지 투과성을 가지며 진단 시 가시광역 조영제 보다 100배 이상 감도가 우수한 특성을 갖고 있다고 밝혔다. 연구를 주도한 노일구 박사과정은 “암세포 미토콘드리아에 오래 머물러 있어 레이저를 조사했을 때 원하는 부분에만 부작용 없이 효과적인 치료가 가능하다는 장점이 있다”며 “치료 후 독성이 없이 분해돼 기존 조영제의 단점을 극복할 수 있을 것이다”고 말했다. 김유천 교수는 “기존에 이용되는 진단 및 치료제를 한 단계 더 발전시킨 새로운 플랫폼의 개발을 통해 부작용을 최소화하고 다양한 질병을 치료하는 데 유용하게 사용될 것으로 기대한다”고 말했다. 이번 연구는 글로벌프론티어 지원사업 ABC 바이오매스 사업단 및 한국연구재단의 중견연구자지원사업, 바이오의료기술개발지원사업을 통해 수행됐다. □ 그림 설명 그림1. Advanced science 3월 25일자 3호 표지 그림2. 완성된 물질의 화학구조, 미토콘드리아 타겟팅 효과 및 레이저에 따른 ROS 생성 그래프
2018.04.17
조회수 13532
(재)유전자동의보감사업단, 제2회 바이오시너지 기업파트너스 심포지엄 개최
인공지능 시스템을 이용한 천연물 소재 개발기술 발표와 사업단 및 관련기업 간 상호협력 방안 논의를 위한 ‘바이오시너지 기업파트너스 심포지엄’이 17일 열린다. 우리대학과 미래창조과학부 산하 (재)유전자동의보감사업단(단장 이도헌 교수·바이오및뇌공학과)은 한국건강기능식품협회 후원으로 17일 오후 2시30분부터 이화여자대학교 LG컨벤션센터에서 ‘바이오시너지 기업파트너스 심포지엄’을 개최한다. 올 심포지엄은 작년 5월에 열린 ‘바이오시너지 워크숍’행사에 이어 (재)유전자동의보감사업단이 두 번째로 주관, 개최하는 행사다. 이 심포지엄에는 미래부와 식약처·사업단 연구책임자들은 물론 바이오헬스케어 분야의 국내·외 학자와 관련 기업인·전문가들이 대거 참가해서 향후 기술개발 방향과 시장수요 예측·시장중심의 맞춤형 기술이전과 사업화 유망기술 발굴 등에 관해 심도 있게 논의한다. 이번 심포지엄에서는 특히 사업단과 공동연구를 수행 중인 네덜란드의 대표적인 식품연구소인 니조(NIZO)의 엘스 반 호펜(Els Van Hoffen) 실장(Senior Project Manager), 네덜란드 국립응용과학연구소 TNO의 수잔 워페리스(Suzan Wopereis) 책임연구원(Senior Scientist)이 참석해 각각 니조(NIZO)와 TNO의 최신 연구내용과 지난 5년 동안의 기술개발 내용 등에 관해 중점 소개한다. OECD 발표자료에 따르면 2014년 글로벌 식품산업의 규모는 약 5.5조 달러(약 6,152조원)이며 매년 4.4% 성장하고 있는데 이는 세계 식품시장의 트렌드가 음식을 소비하는 차원에서 유기농 등 안전식품, 기능성 건강식품 위주로 변화하고 있기 때문이다. 농·식품 R&D로 경제성장을 견인한 대표적인 네덜란드는 니조(NIZO)와 TNO 등 시장 친화적인 식품관련 연구소를 중심으로 연구가 이뤄지고 있는데 1948년 낙농업체들이 공동 설립한 니조(NIZO)와 약 30년 전 네덜란드 정부가 세운 TNO는 전체 운영비의 70% 이상을 민간업체들과의 협력이나 개인투자자들과 프로젝트를 진행해서 벌어들이고 있다. 두 전문가의 발표가 끝난 후에는 권오란 이화여대 교수가 사업단이 개발한 기술과 천연물 분야 관련기업 등 산업계와의 상호 연계방안을 모색하는 등 기업인들과 연구 책임자들 간의 관심방안에 대한 토론을 주관, 진행한다. 이밖에 강연 홀 복도에는 발표와 토론이 끝난 후 참석자들이 사업단이 보유중인 기술을 한 눈에 볼 수 있도록 전시관을 꾸며놨으며 기업인들 간에 자연스럽게 상담을 할 수 있는 자리도 함께 마련했다. 이도헌 사업단장은 “2013년 11월 출범이후 사업단은 5개 연구 분야인 모델·소재·표적 마커·인체 연구에 역량을 집중한 결과, 성분기반의 바이오 헬스케어와 관련한 방대한 규모의 DB를 구축하고 이를 기반으로 천연물 성분의 인체작용을 분석할 수 있는 세계 최대 규모의 가상인체(인공지능) 시스템을 구축했다” 며 “이번 심포지엄에서 사업단과 관련기업들 간에 공동연구 및 연구 성과에 대한 공동 활용방안에 대한 심층적인 논의가 이뤄졌으면 한다”고 말했다. 참가 문의 042-350-8651.
2017.07.14
조회수 10597
제2회 전국 고등학교 동아리 SW 경진대회 개최
우리대학과 충남대학교(총장 오덕성)가 ‘전국 고등학교 동아리 소프트웨어(SW) 경진대회’ 참가자를 모집한다. 지난해에 이어 두 번째 개최되는 이 경진대회는 우리대학 SW교육센터와 충남대 SW중심대학사업단이 공동으로 주관하고 미래창조과학부와 정보통신기술진흥센터(IITP)가 주최한다. 두 대학은 SW를 통한 창의적 문제해결 능력 및 협업 능력제고 등 전국 고교생을 대상으로 우수 SW 인재발굴과 SW 동아리 활성화를 위해 작년 11월 이 대회를 처음 개최했다. 이 대회에는 일반고·특성화고·자율고(자사고, 자공고)·특목고(외고, 마이스터고, 과학고, 영재고, 체육고 등 포함) 등 모든 유형의 전국 고등학교 교내 SW관련 동아리에 소속된 학생이면 누구나 3~5명 단위로 프로젝트팀을 구성해 참여할 수 있다. 이번 대회의 프로젝트 주제는 ‘SW를 통한 일상생활 속의 아이디어 실현’이지만 관심 있는 분야에 대한 어떠한 아이디어든 사실상 제한이 없다. 지난 대회에서는 전국에서 120여 개 팀이 예선에 참여하는 등 높은 참여율을 보였는데 본선에 진출한 24개 팀 가운데 ‘SWAG팀(인천청라고)’이 금상을 받았다. 경진대회에 참가를 희망하는 고등학생은 우리대학 SW교육센터 홈페이지( http://swe.kaist.ac.kr )에서 신청서와 프로젝트 개발 계획서를 다운받아 작성한 후 접수하면 된다. 예선 신청 접수기간은 17일부터 21일까지 5일간 이다. 신청자들은 1차 예선을 거치게 되는데 우리대학과 충남대는 참가 신청자들이 제출한 프로젝트 개발 계획서에 대한 심사를 한 다음 본선에 진출할 25개 팀을 선정, 8월 1일 홈페이지를 통해 예선결과를 발표할 계획이다. 10월 28일 우리대학 문지캠퍼스 슈펙스홀에서 치러질 예정인 본선대회에서는 팀별 전시부스에서 구현된 프로젝트 결과물(포스터 발표·데모) 발표를 통해 수상 팀을 최종 선정해 우리대학 신성철 총장과 오덕성 충남대 총장이 공동으로 시상한다. 수상자들에게는 상장과 함께 금상 1개 팀에는 200만원, 은상 2개 팀에게는 각 100만원, 그리고 동상 3개 팀에는 각 50만원의 상금이 수여되는 등 장려상까지 모든 수상 팀에게 상장과 함께 부상이 순위별로 차등 지급된다. 두 대학은 이밖에 본선 당일 참가자 및 참관학생 전원을 대상으로 전시부스 관람은 물론 고교생들의 SW에 대한 관심 제고를 위해 다양한 프로그램도 마련해 함께 진행할 방침이다. 문의 042-350-6022(KAIST SW교육센터), 042-821-8672(충남대 SW중심대학사업단).
2017.07.10
조회수 14837
박희성 교수, 맞춤형 단백질 변형기술 동물 모델 적용에 성공
우리 대학 화학과 박희성 교수 연구팀이 아주대 의과대학 박찬배 교수와의 공동 연구를 통해 동물 모델에서 단백질의 아세틸화 변형을 조절할 수 있는 기술을 개발했다. 인간의 질병 연구에 대표적으로 쓰이는 쥐 모델에서 단백질 아세틸화를 조절할 수 있게 돼 다양한 질병의 원인을 밝힐 수 있을 것으로 기대된다. 이번 연구는 미래창조과학부의 글로벌프런티어사업(의약바이오컨버젼스연구단, 단장 김성훈)과 지능형 바이오시스템 설계 및 합성연구단(단장 김선창), 식약처의 미래 맞춤형 모델동물개발 연구사업단(단장 이한웅)의 지원을 받아 수행됐다. 이번 연구 결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 21일자 온라인 판에 게재됐다. 우리 몸의 세포에서 만들어지는 2만 여종의 단백질은 생합성 이후 인산화, 아세틸화, 당화 등 200여 종의 다양한 변형(post-translational modification)이 발생하게 된다. 세포 내 단백질들은 다양한 변형을 통해 기능과 활성이 조절되며 이러한 변형은 생체 내에서 세포 신호 전달 및 성장 등 우리 몸의 정상적인 신진대사 활동을 조절하는 매우 중요한 역할을 한다. 하지만 유전적 또는 환경적 요인으로 인해 단백질 변형이 비정상적으로 일어나면 세포의 신호 전달, 대사 활동 등이 손상돼 암, 치매, 당뇨를 포함한 다양한 중증 질환을 유발한다. 기존에는 이러한 비정상적 단백질 변형을 동물 모델에서 인위적으로 유발시키고 제어하는 기술이 존재하지 않아 질병의 원인 규명 및 신약 개발 연구에 어려움이 있었다. 박 교수팀은 2016년 9월 다양한 비정상 변형 단백질을 합성할 수 있는 맞춤형 단백질 변형 기술을 개발해 사이언스(Science)지에 발표한 바 있다. 연구팀은 기존 연구를 더 발전시켜 각종 암과 치매 등의 이유가 되는 퇴행성 신경질환의 원인인 비정상적인 단백질 아세틸화를 동물 모델에서 직접 구현하는 기술을 개발했다. 연구팀은 이 기술을 바탕으로 실험용 쥐의 특정한 발달 단계나 시기에 표적 단백질의 특정 위치에서 아세틸화 변형을 조절할 수 있음을 증명했다. 또한 다른 조직에 영향을 주지 않고 간이나 콩팥 등 특정 조직이나 기관에서만 표적 단백질의 아세틸화 변형 제어가 가능함을 확인했다. 연구팀은 “이 기술은 암과 치매 등 단백질의 비정상적 변형으로 발생하는 각종 질병의 바이오마커 발굴 등 질병 원인 규명 연구의 획기적인 전기를 마련할 것으로 기대된다”고 말했다. 박희성 교수는 “실용화 될 경우 지금까지 실현이 어려웠던 다양한 질병에 대한 실질적 동물 모델을 제조할 수 있을 것으로 전망된다”며 “향후 맞춤형 표적 항암제 및 뇌신경 치료제 개발 등 글로벌 신약 연구에 새 패러다임을 열 것이다”고 말했다. □ 그림 설명 그림1. 아세틸화 변형 조절 마우스 개발 및 아세틸화 제어 결과 그림2. 비정상적인 단백질 변형 및 각종 질병의 모식도
2017.03.06
조회수 13202
항공우주공학과, 제1회 극초음속 국제 심포지엄 개최
우리 대학 항공우주공학과는 오는 27(일)-30일(수) KI빌딩 퓨전홀에서 고속 공기역학/열·유체/추진 분야 전문가들이 한자리에 참석한 가운데 ‘제 1회 극초음속 국제 심포지엄’을 개최한다. 극초음속 기술은 미래의 첨단/지능화된 초고속 비행체 개발에 절대적으로 필요한 기술로, 미국, 러시아, 독일, 프랑스, 호주 등을 중심으로 연구되고 있다. 미국은 현재 다양한 프로그램을 통해 극초음속 추진 기술을 확보하고 스크램제트 비행체의 비행시험을 성공리에 수행한 바 있으며, 호주는 HIFire 등 국제협력 프로그램을 통해 극초음속 핵심기술 연구를 수행하고 있다. 국내에서도 근래에 극초음속 추진기관, 달 탐사선 등 산학연에서 연구를 진행하고 있으나, 우주선진국에 비해 그 경험이 아직은 미약한 실정이다. 이번 심포지엄은 ‘극초음속 연구 현황’, ‘열/화학적 비평형 모델링’, ‘스크램제트 추진기관 및 지상시험’, ‘시험설비, 유동 측정 및 진단 기술’ 이라는 4가지 대주제로, 극초음속 기술과 관련하여 많은 경험을 보유한 세계적 석학(국외 11명, 국내 5명)을 중심으로 최신 기술동향 전파 및 기술 교류의 장을 마련하며, 산학연 기술교류 네트워크를 통해 극초음속 연구인력 확산 및 극초음속 분야의 학문적인 연구 분위기 조성에 기여하고자 한다. 조직위원장인 박기수 KAIST 항공우주공학과 교수는 “극초음속 기술 및 활용에 관한 폭넓은 지식을 얻고자 하는 산업체와 연구소의 연구원 및 대학원생들에게 좋은 기회가 될 것”이라고 말했다. 본 심포지엄은 국방과학연구소(ADD 초고속 공기흡입엔진 특화연구실)와 공동 주최하며 현대로템㈜, ㈜비츠로테크, ㈜데크카본, 한국항공우주연구원, 대전마케팅공사, 한국추진공학회, 서울대학교 우주융합대학원 사업단 및 KAIST 초고속비행체 특화연구센터의 후원을 받아 진행된다. 등록 및 관련 문의는 항공우주공학과(042-350-3726, gisu82@kaist.ac.kr)로 하면 된다. 첨부 : 초대의 글 및 세부일정 안내 1부.
2016.11.21
조회수 14382
BK21 플러스 우수사업단에 2개 KAIST 사업단 선정
BK21 플러스 우수사업단에 우리 대학의 다중스케일 생명화학공학 사업단(단장 이재형)과 디자인 3.0 사업단 : Big, Deep, Open(단장 이건표)이 각각 선정됐다. 한국연구재단은 지난 17일 서울 엘타워에서 이 같은 내용의‘BK21플러스 우수사업단(팀) 표창 시상식 및 사례발표회’를 가졌다. [사진설명] 17일 시상식에 참석한 이건표 단장(앞줄 오른쪽부터 세 번째)과 이재형 단장(세 번째 줄 왼쪽에서 두 번째) 이번 행사는 BK21플러스 사업 중간평가 대상 기존 사업단(팀) 중 교육·연구 부문 등에 탁월한 성과를 보인 사업단(팀)에 대한 사기를 진작시키고, 우수 사례를 공유·확산하는 기회를 마련하고자 진행됐다. 총 544개 사업단(팀) 중 11개 분야 26개 사업단(팀)이 선정됐으며, 우리 대학에서는 공학 분야와 디자인영상 분야가 각각 선정됐다. 시상식과 함께 4개 사업단의 우수사례 발표가 있었는데, 우리대학은 디자인 3.0 사업단이 발표에도 참여했다. ‘디자인 3.0 사업단’은 네덜란드 델프트공대의 디자인 포 인터랙션(DfI)학과와 조인트 마스터 학위 프로그램 운영을 비롯해 영국 왕립 예술 대학(Royal College of Art)의 이노베이션 디자인 엔지니어링 학과, 미국 신시내티 대학교의 디자인 • 건축 • 예술 • 기획 (DAAP) 프로그램과 교육연계프로그램을 실시하고 있다. 또 사업단 소속의 산업디자인학과는 글로벌 랭킹 전문 사이트 `랭커닷컴(Ranker.com)` 에서 실시한 2015년도 `세계 최우수 디자인 교육기관 부문(World Best Design Schools)` 순위 투표에서 23위에 선정됐다. ‘다중 스케일 생명화학공학 사업단’은 세계 최정상급 대학인 MIT, Georgia Tech, University of Texas at Austin, UC Santa Barbara 생명화학공학과(화학공학과)의 교육 프로그램을 비교·분석하고, 한국의 교육환경과 실정에 맞도록 조율하여 적용해 독창적이고 선도적인 교육·연구 프로그램을 운영 중에 있다. 2015 QS 세계대학 학과평가에서 '화학공학분야' 17위를 차지해 국내 1위를 차지하는 등 세계 저명대학과 대등한 위치를 차지하고 있다. 끝.
2016.06.20
조회수 10027
바이오부탄올 핵심생산효소 구조 및 특성 규명
이 상 엽 특훈교수 우리 대학 생명화학공학과 이상엽 교수 연구팀이 경북대학교 김경진 교수 연구팀과의 공동연구를 통해 친환경 차세대 에너지인 바이오부탄올의 핵심 생산 효소인 싸이올레이즈(Thiolase)의 구조 및 특성을 규명했다. 연구 결과는 네이처 커뮤니케이션즈(Nature Communications) 9월 22일자 온라인 판에 게재됐다. 바이오부탄올은 바이오연료로 이미 사용되고 있는 바이오에탄올을 능가할 수 있는 친환경 차세대 수송용 바이오연료로 각광받고 있다. 바이오부탄올의 에너지 밀도는 리터당 29.2MJ(메가줄)로 바이오에탄올(19.6MJ)보다 48% 이상 높고 휘발유(32MJ)와 큰 차이가 없다. 또한 폐목재, 볏짚, 잉여 사탕수수, 해조류 등 비식용 바이오매스에서 추출하기 때문에 식량파동 등에서도 자유롭다. 바이오부탄올의 가장 큰 장점은 휘발유와 비교했을 때 공기연료비, 기화열, 옥탄가 등 연료 성능이 비슷해 현재 자동차 등에 사용되고 있는 가솔린 엔진을 그대로 사용할 수 있다는 점이다. 바이오부탄올은 클로스트리듐이라는 미생물로부터 생산이 가능하지만 클로스트리듐의 주요 효소의 구조 및 기작 등에 대한 연구는 체계적으로 이뤄지지 못했다. 이 교수 연구팀은 이 미생물의 성능 향상을 위해 바이오부탄올 생합성에 필요한 주요 효소 중 하나인 싸이올레이즈의 3차원 입체구조를 포항방사광가속기를 이용해 규명했다. 이를 통해 일반적인 미생물의 효소에서는 발견되지 않고 클로스트리듐 내의 싸이올레이즈에서만 관찰되는 산화-환원 스위치 구조를 발견했다. 또한 가상세포모델 등을 활용한 시스템대사공학 기법을 활용해 이 싸이올레이즈가 실제 미생물 내에서 산화-환원의 스위치로 작동한다는 것을 증명했다. 연구팀은 밝혀낸 싸이올레이즈 구조의 원천기술을 활용해 활성이 향상된 돌연변이 효소를 설계했다. 그리고 이를 이용해 바이오부탄올 생산 미생물의 대사회로를 조작해 바이오부탄올 생합성이 향상되는 결과를 얻었다. 이상엽 교수는 “바이오부탄올 생합성 대사회로에서 가장 중요한 효소의 구조와 작용 기작을 세계 최초로 밝혔다”며 “싸이올레이즈 관련 원천기술을 활용해 바이오부탄올을 더욱 경제적으로 생산할 수 있는 대사회로 구축에 응용하겠다”고 말했다. 김상우, 장유신, 하성철 박사가 공동 1저자로 참여한 이번 연구는 미래창조과학부와 한국연구재단의 기후변화대응기술개발사업 및 글로벌프런티어 차세대바이오매스사업단 지원을 받아 수행됐다. □ 그림 설명 그림 1. 바이오부탄올 생산 효소(thiolase)의 구조 및 산화-환원 스위치 작용기작 그림 2. 바이오부탄올 생산을 위한 포도당 대사회로에서 바이오부탄올 생산 효소(thiolase)의 산화-환원 스위치 작용기작
2015.09.22
조회수 11740
<<
첫번째페이지
<
이전 페이지
1
2
3
4
>
다음 페이지
>>
마지막 페이지 4