본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%B0%94%EC%9D%B4%EC%98%A4%EC%B9%A9
최신순
조회순
박제균 교수, 2017 한국바이오칩학회 학술대상 수상
우리 대학 바이오및뇌공학과 박제균 교수가 지난 9일 (사)한국바이오칩학회 주관으로 부산 파라다이스호텔에서 열린 2017년 추계학술대회에서 학술대상을 수상했다. 사단법인 한국바이오칩학회는 바이오칩 기술 발전에 기여하기 위해 2006년 설립된 학술단체로 매년 학술적 성과 및 바이오융합 산업에의 기여도 등을 기반으로 학술대상 수상자를 선정해서 수여하고 있다. 박 교수는 미세유체공학 및 랩온어칩 등 바이오칩 기술을 개발한 업적을 인정받았다. 박 교수는 관련 분야 최고의 국제학술지인 바이오센서와 바이오전자(Biosensors and Bioelectronics), 랩온어칩(Lab on a Chip) 등의 국제저널 편집위원 활동 및 마이크로타스(μTAS) 2015 국제학술대회장을 역임했다.
2017.11.20
조회수 10073
남윤기 교수, 한국바이오칩학회 신인학술상 수상
우리 학교 바이오및뇌공학과 남윤기 교수 (39)는 지난 달 13일 (사)한국바이오칩학회 주관으로 강원대학교에서 열린 2013년 추계학술대회에서 신인학술상을 수상했다. 남 교수는 신경과학과 바이오칩 융합연구를 통해 신경세포칩(Neuron-on-a-Chip) 기술을 개발한 업적을 인정받았다. (사)한국바이오칩학회는 바이오칩 분야의 연구업적이 탁월한 만 40세 미만의 젊은 연구자를 2008년부터 매년 1 ~ 2명 선정해 신인학술상을 수여하고 있다.
2013.12.06
조회수 13816
나노 바이오칩 질병진단 시대 본격 개막
정기훈 교수 - 1초이내 극미량의 용액 내 DNA 염기 검출 가능해 - - 반도체 양산공정 활용해 상용화 성큼 -- 글로벌 신약개발 및 각종 질환 조기진단기술로서의 활용 기대 - 혈액 몇 방울로 집에서 암을 포함해 모든 질환을 진단할 수 있다는 연구 성과가 최근 쏟아져 나오고 있다. 첨단기술이 집약된 ‘바이오칩’ 덕분인데 KAIST 연구진이 이 칩을 상용화 할 수 있는 연구에 성공했다. 향후 실시간 초고감도 DNA 분석은 물론, 신약개발용 약물 스크리닝 등 다양한 질환의 조기진단기술에 크게 기여할 수 있을 것으로 기대된다. 우리 학교 바이오및뇌공학과 정기훈 교수 연구팀이 3차원 나노플라즈모닉스 구조를 이용해 검출가능 한계를 수십배 이상 향상시킨 초고감도 바이오칩 양산기술 개발에 성공했다. 이번 연구 성과는 재료 및 나노분야 세계적 학술지인 ‘어드밴드스 머터리얼스(Advanced Materials)’ 5월호(2일자) 표지논문으로 선정됐다. 나노플라즈모닉스는 금속나노구조표면에 빛을 집광시켜 특정파장의 세기를 크게 향상 시킬 수 있는 나노광학 분야다. 최근 DNA, 단백질, 항체 또는 세포 등을 감지하는 위한 바이오칩 개발에 필수적인 기술로 학계에서 커다란 관심을 받고 있다. 그러나 사람머리카락의 1/1000의 크기를 갖는 금속나노구조를 넓은 면적의 유리기판에 균일하게 제작하기가 어려워 상용화에 커다란 걸림돌이었다. 정기훈 교수 연구팀은 반도체 양산공정을 활용해 이를 해결했다. 연구팀은 유리기판 위에 은나노 필름을 입히고 열을 가해 은나노섬을 만들었다. 이후 반도체에 적용되는 식각공정을 이용해 3차원 금속나노구조를 유리기판에 균일하게 형성하고 나서 은나노 입자를 증착시켰다. 이 구조는 나노플라즈모닉 현상을 유발하는 다수의 나노갭을 갖고 있어 입사되는 빛의 세기를 수십배 향상시킬 수 있다. 또한, 상용화중인 반도체 증착공정을 그대로 사용 가능하기 때문에 즉시 양산기술에 적용할 수 있는 장점을 갖고 있다. 정기훈 교수는 “이 기술은 유리기판위에 표면강화라만분광기술을 접목해 별도의 형광물질 없이 나노몰 수준의 DNA 염기 4종류를 1초 안에 구분했다”며 “각종 질환을 조기에 진단할 수 있는 바이오칩을 일반 반도체공정을 이용해 넓은 면적의 기판 위에 3차원 나노구조를 저렴하고도 정밀하게 제작할 수 있는 양산기술을 확보하게 됐다”고 말했다. 한편, KAIST 바이오및뇌공학과 정기훈 교수(제1저자 오영재 박사과정 학생)이 수행한 이번 연구는 교육과학기술부가 지원하는 한국연구재단의 도약연구자지원사업 등의 일환으로 실시됐다. 그림1. 유리기판에 넓은 면적으로 제작된 나노플라즈모닉 기판의 사진. 그림2. 나노플라즈모닉 기판의 전자현미경 사진(단면도) 및 전자기장 시뮬레이션. 전자현미경 사진은 3차원적인 금속나노구조가 형성된 것을 보여주고 있으며 이를 통해 나노미터 수준의 갭(gap)을 가진 구조를 설계해 국소 전자기장 극대화를 통해 라만분광 신호 증가를 유도하였음. 시뮬레이션은 나노갭에서 강화된 전자기장을 나타냄. 그림3. 초고감도 나노플라즈모닉 기판의 대면적(직경4인치) 나노공정 순서도. a) 은나노섬을 증착해 식각과정의 마스크로 사용. b) 식각과정을 통한 유리 나노필라어레이(glass nanopillar arrays) 형성. c) 증착을 통한 다수의 나노갭을 가지는 나노플라즈모닉 구조 형성. 그림4. 좌측 : 정기훈 교수, 우측 : 오영재 박사과정(제1저자) 그림5. 논문표지
2012.05.02
조회수 17406
바이오및뇌공학과 황현두 군, μTAS 2009 국제학회에서 젊은 연구자 포스터 우수상 수상
KAIST 바이오및뇌공학과 박사과정 황현두(지도교수 박제균) 학생이 지난 11/1-5일 제주도에서 열린 ‘μTAS 2009 국제학회 (제13회 극소형 생물/화학분석시스템 국제학술회의, The 13th International Conference on Miniaturized Systems for Chemistry and Life Sciences)’에서 ‘광전자유체제어 기술로 수용액 상에 존재하는 생체분자의 확산계수를 빠르게 측정할 수 있는 방법(Diffusion measurement of biomolecules using rapid generation of black hole in a molecular solution by optoelectrofluidics)’에 관한 논문으로 ‘젊은 연구자 포스터 우수상(Young Researcher Poster Award Winner)’을 수상했다. 황씨는 세계 유수의 대학과 연구기관으로부터 발표된 약 600 여 편의 Poster 논문 가운데 다단계 전문가 심사를 거쳐 선정된 3명의 수상자 중의 한명으로 결정됐다. 황씨는 지난해 San Diego에서 개최된 μTAS 2008 국제학회에서도 여행경비 일부를 보조 받는 ‘Student Travel Grant’를 받은 바 있었다. 바이오및뇌공학과에서 학부과정을 3년만에 조기 졸업 한 황씨는 1년 6개월만에 석사논문을 완성하고, 지난 2007년 9월 박사과정에 입학하여 그동안 2년여에 걸친 박사과정 기간 동안 Analytical Chemistry, Langmuir, Lab on a Chip, Applied Physics Letters 등 우수국제 저널에 제1저자의 논문 10편을 이미 출판한 바 있다. 이 중 광전자유체제어기술로 미세입자를 조절하는 새로운 결과는 2009년 1월호 Lab on a Chip 표지논문으로 선정된 바 있어 논문의 우수성과 창의성을 세계적으로 입증한 바 있었다. 이밖에 황씨는 2007년도 한국바이오칩학회 우수논문발표상, 2008년 서암학술장학재단 제17기 국내 박사과정연구지원 이공계 부문 장학생으로 선정된 바 있다.
2009.11.12
조회수 24014
김학성 교수, 한국바이오칩 학회지인 '바이오칩 저널' SCIE 등재
생명과학과 김학성(金學成, 51세) 교수가 학회장을 맡고 있는 한국바이오칩학회에서 발간하는 학술지인 "바이오칩 저널(Biochip Journal)"이 "과학기술논문색인(SCI, Science Citation Index)" 확장판인 "SCIE(Science Citation Index Expanded)"에 공식 등재됐다. 이 저널은 2007년 초에 창간, 1년 6개월 만에 "SCIE"에 등재됐다. 저널의 "SCIE" 등재는 발표된 논문의 중요성, 인용 횟수 및 저널 편집자들의 명성 등을 평가하여 등재 여부를 결정한다. 통상적으로 "SCIE" 등재를 위해서는 분야에 따라 다소 차이는 있지만 최소 3년 이상 걸리는 것으로 알려져 있다. 현재 이 학회에는 대학, 연구소 및 기업체에서 바이오칩과 관련된 400여 명의 연구자가 회원으로 참가하고 있으며, 바이오칩에 대한 관심이 높아지면서 회원 수가 급격하게 증가하고 있는 추세다. 바이오칩은 생물에서 유래된 생체 유기물질 (단백질, 효소, 항체, 동식물 세포 및 기관, 신경세포 등)과 반도체 같은 무기물을 조합하여 기존의 반도체칩 형태로 만든 소자(device)로, 중요한 인체 정보나 생체분자(Biomolecules)들을 정량적(Quantitative), 혹은 정성적(Qualitative)으로 측정하는 장치로 DNA 칩, 단백질 칩(Protein Chip), 셀 칩(Cell Chip), 등을 지칭한다. 바이오칩이 중요한 이유는 사회적 측면으로는 포스트 게놈(Post Genome) 시대의 도래로 바이오 정보를 이용한 새로운 보건의료기술의 개발이 선진국을 중심으로 활성화되고 있으며, 경제수준이 향상됨에 따라 건강에 대한 관심이 증가하고 보다 나은 질의 삶을 영위하고자 하는 욕구가 커짐에 따라 질병의 진단 및 예방, 신약개발, 그리고 의료 복지에 대한 요구가 커지고 있기 때문이다. 최근 전 세계적으로 과학 기술의 발전 추세는 한마디로 "컨버전스(Convergence)" 라고 말할 수 있다. 즉, 다른 영역간의 융합(Fusion)을 통해 새로운 학문이나 기술 개념이 창출되는 추세다. 이런 융합 학문 시대에 가장 대표적인 것이 생명공학기술(BT, Bio Technology)과 정보기술(IT, Information Technology), 그리고 나노기술(NT, Nano Technology)이 접목된 분야이고 BT-IT-NT 융합의 대표적 주자가 바이오칩 이다. 즉, 바이오칩은 생명과학, 화학, 물리학, 의학, 기계공학, 전자공학, 화학공학 등의 많은 분야가 접목되어야 새로운 기술이나 제품의 개발이 가능하다. 세계적으로 미국과 유럽, 일본 등 과학 선진국이 바이오칩 상용화 연구를 서두르고 있어 조만간 바이오칩이 질병진단, 신약개발 및 의료산업 등에 널리 이용되는 단계에 접어 들 것으로 전망된다. 세계적인 주요 IT기업들도 새로운 시장 돌파구로 BT를 선택하고 이 중에서도 BT-IT-NT가 융합된 바이오칩 개발에 많은 연구비를 투자 하고 있다. 金 교수는 "바이오칩 저널의 SCIE 등재를 통해 국내에서 수행된 우수한 연구 논문을 국제적으로 널리 알리고, 한국바이오칩학회의 위상을 높일 수 있는 좋은 기회를 갖게 되었다"고 말했다.
2008.09.04
조회수 20187
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1