-
AI로 방사성 오염 '아이오딘' 제거용 최적 신소재 발굴
원자력 에너지 활용에 있어 방사성 폐기물 관리는 핵심적인 과제 중 하나다. 특히 방사성 ‘아이오딘(요오드)’는 반감기가 길고(I-129의 경우 1,570만 년), 이동성 및 생체 유독성이 높아 환경 및 인체에 심각한 위험을 초래할 수 있다. 한국 연구진이 인공지능을 활용해 아이오딘을 제거할 원자력 환경 정화용 신소재 발굴에 성공했다. 연구팀은 향후 방사성 오염 흡착용 분말부터 오염수 처리 필터까지 다양한 산학협력을 통해 상용화를 추진할 예정이다.
우리 대학 원자력및양자공학과 류호진 교수 연구팀이 한국화학연구원 디지털화학연구센터 노주환 박사가 협력하여, 인공지능을 활용해 방사성 오염 물질이 될 수 있는 아이오딘을 효과적으로 제거하는 신소재를 발굴하는 기술을 개발했다고 2일 밝혔다.
최근 보고에 따르면 방사능 오염 물질인 아이오딘이 수용액 환경에서 아이오딘산염(IO3-) 형태로 존재하는 것으로 밝혀졌으나, 기존의 은 기반 흡착제는 이에 대해 낮은 화학적 흡착력을 가져 비효율적이었다. 따라서 아이오딘산염을 효과적으로 제거할 수 있는 새로운 흡착제 신소재 개발이 시급한 실정이다.
류호진 교수 연구팀은 기계학습을 활용한 실험 전략을 통해 다양한 금속원소를 함유한 ‘이중층 수산화물(Layered Double Hydroxide, 이하 LDH)’이라는 화합물 중 최적의 아이오딘산염 흡착제를 발굴했다.
이번 연구에서 개발된 구리-크롬-철-알루미늄 기반의 다중금속 이중층 수산화물 Cu3(CrFeAl)은 아이오딘산염에 대해 90% 이상의 뛰어난 흡착 성능을 보였다. 이는 기존의 시행착오 실험 방식으로는 탐색이 어려운 방대한 물질 조성 공간을 인공지능 기반의 능동학습법을 통해 효율적으로 탐색해 얻어낸 성과다.
연구팀은 이중층 수산화물(이하 LDH)이 고엔트로피 재료와 같이 다양한 금속 조성을 가질 수 있고 음이온 흡착에 유리한 구조를 지녔다는 점에 주목했다. 그러나 다중금속 LDH의 경우 가능한 금속 조합이 너무 많아 기존의 실험 방식으로는 최적의 조합을 찾기 어려웠다.
이를 해결하기 위해 연구팀은 인공지능(기계학습)을 도입했다. 초기 24개의 2원계 및 96개의 3원계 LDH 실험 데이터로 학습을 시작해, 4원계 및 5원계 후보 물질로 탐색을 확장했다. 이 결과 전체 후보 물질 중 단 16%에 대해서만 실험을 수행하고도 아이오딘산염 제거에 최적인 신소재 물질을 찾아낼 수 있었다.
류호진 교수는 “인공지능을 활용하면 방대한 신소재 후보 물질 군에서 방사성 오염 제거용 물질을 효율적으로 찾아낼 가능성을 보여, 원자력 환경 정화용 신소재 개발에 필요한 연구를 가속화하는데 기여할 것으로 기대된다”고 말했다.
류 교수 연구팀은 개발된 분말 기술에 대한 국내 특허를 출원했으며 이를 기반으로 해외 특허 출원을 진행 중이다. 연구팀은 향후 방사성 오염 흡착용 분말의 다양한 사용 환경에서의 성능을 고도화하고, 오염수 처리 필터 개발 분야에서 산학 협력을 통한 상용화 방안을 추진할 예정이다.
우리 대학 신소재공학과를 졸업한 이수정 박사와 한국화학연구원 디지털화학연구센터 노주환 박사가 제1 저자로 참여한 이번 연구는 이번 연구 결과는 환경 분야 국제 저명 학술지인 ‘위험물질 저널(Journal of Hazardous Materials)'에 5월 26일 온라인 게재됐다.
※논문명: Discovery of multi-metal-layered double hydroxides for decontamination of iodate by machine learning-assisted experiments
※DOI: https://doi.org/10.1016/j.jhazmat.2025.138735
이번 연구는 과학기술정보통신부 한국연구재단의 원자력기초연구지원사업과 나노·소재기술개발사업의 지원으로 수행됐다.
2025.07.02
조회수 57
-
KAIST-(주)아리텍바이오 ‘맞손’ 자원순환형 친환경 ESG 캠퍼스 구축 협력
우리 대학 ㈜아리텍바이오(대표 주윤상·김리아)와 6월 30일 대전 본원에서 업무협약을 체결하고, 지속 가능한 스마트 자원순환 캠퍼스 실현을 위한 협력에 나선다고 30일 밝혔다.
이번 협약은 음식물쓰레기 수거·활용의 자동화 및 고도화를 통해, KAIST의 ESG(환경·사회·지배구조) 경영 실천을 구체화하려는 취지에서 출발했으며, 1단계로 올해 하반기에 외국인 교수 아파트에서 실증 사업을 시작해 향후 전체 캠퍼스로 확대할 계획이다.
우리 대학 캠퍼스 내에서 발생하는 음식물쓰레기를 자체적으로 처리하고 이를 비료 등으로 재활용하는 자원 순환형 친환경 모델을 단계적으로 구축할 방침이다. 이를 통해 자원 낭비 최소화, 운영 비용 절감, 탄소 배출 저감 등 지속 가능한 캠퍼스 운영 체계를 실현할 계획이다.
특히 이번 사업의 핵심 중 하나는 자율주행 기술을 활용한 음식물쓰레기 수거 시스템으로 올해 하반기에 도입할 예정이다. 자율주행 차량이 학생 식당 등에서 발생한 음식물쓰레기를 자동 수거하고 처리장으로 운반하는 방식으로, 자동화된 자원순환 시스템을 구현함으로써 기술 기반 ESG 실천의 대표 사례가 될 것으로 기대된다.
이번 실증 사업은 KAIST 시설부의 창의적이고 도전적인 문제의식에서 비롯됐다. 윤여갑 시설팀장은 “음식물쓰레기를 단순 폐기물이 아닌 자원으로 인식하고, 이를 효과적으로 재활용할 수 있는 방안을 마련하고 있다”며, “KAIST의 지속 가능한 캠퍼스 정착을 위한 행정적 노력도 병행하고 있다”고 밝혔다.
우리 대학은 자원순환 기술의 실증을 통해 음식물쓰레기 처리 비용을 절감함은 물론, 이를 비료화하여 교내 수목과 스쿨팜 등에 활용하는 자원 선순환 모델을 구축할 예정이다. 이번 기술 융합형 스마트 자원순환 캠퍼스 모델은 지역 사회와 연계하여 향후 스마트 도시 생태계 조성에도 긍정적인 파급 효과를 가져올 것으로 기대된다.
김경수 KAIST 대외부총장은 “KAIST는 기술로 가치를 창출하고 사회적 책임을 실천하는 글로벌 선도대학으로서, 미래 기술과 지속 가능성의 조화를 모색하고 있다”며 “기술 기반 ESG 실천을 바탕으로 캠퍼스 혁신을 이끌고, 이를 지역 및 국가 차원의 환경 혁신으로 확산해 나갈 것”이라고 말했다.
2025.06.30
조회수 116
-
짠 음식의 뇌종양 악화 유발 원인 세계 최초 밝혀
짠 음식을 자주 섭취하는 식습관이 건강에 해롭다는 것은 널리 알려진 사실이다. 그런데 최근 KAIST 연구진은 짠 음식이 뇌종양까지 악화시킬 수 있다는 사실을 세계 최초로, “왜 나빠지는지", "무엇이 그 과정을 유도하는지", "어떤 유전자가, 어떤 단백질이 작용하는지"까지 분자적 인과관계를 입증해 주목받고 있다.
우리 대학 생명과학과 이흥규 교수 연구팀이 고염식이 장내 미생물 구성을 변화시키고, 이로 인해 증식이 증대된 미생물에 의해 분비되는 대사물질인‘프로피오네이트(propionate)‘가 장내에 과도하게 축적되어 뇌종양을 악화시킨다는 사실을 밝혀냈다.
연구팀은 뇌종양 마우스 모델을 이용한 실험에서 이 같은 사실을 입증했다. 마우스에게 4주간 짠 사료를 섭취하게 한 뒤 종양세포를 주입하자 일반식이 그룹에 비해 생존율이 크게 낮아지고 종양 크기가 증가하는 것을 확인했다. 이어 항생제로 장내 미생물을 제거하거나, 무균 마우스에 분변(고염사료 섭취한 사람의 대변에 해당되는 마우스 분변 샘플) 미생물을 이식하는 실험에서도 유사한 뇌종양 악화 반응이 관찰되었다. 이는 장내 미생물 변화가 뇌종양 악화의 핵심 요인임을 보여주는 증거이다.
특히, 연구팀은 장내 미생물 중 박테로이드 불가투스(Bacteroides vulgatus)라는 균이 고염식이에 따라 증가하고, 이 균이 프로피오네이트(propionate)라는 효소(Pccb)의 발현을 높인다는 사실을 발견했다.
그 결과, 장내에서 프로피오네이트 농도가 비정상적으로 상승했으며, 이 물질은 뇌종양 세포에서 산소가 충분한데도 마치 부족한 것처럼 ‘저산소유도인자-1알파(HIF-1α)’를 활성화시켰다. 이는 다시 ‘형질전환성장인자-베타(TGF-β)’를 증가시켜 제1형 콜라겐(COL1A1)을 과하게 만들게 하여 종양 세포가 더 쉽게 퍼지고 악성도를 높이게 하였다.
이러한 분자적 기전은 실제 뇌종양 중 가장 악성도가 높은 교모세포종(Glioblastoma) 환자의 암세포 데이터 분석을 통해서 임상 적용 가능성을 제시하였다. 마우스와 인간 종양세포에서 공통적으로 발현된 관련 유전자들로 인해 환자의 생존율이 낮아짐을 보여주었다.
이흥규 교수는 “이번 연구는 짠 음식 섭취가 장내 미생물 생태계를 변화시키고, 그 결과 생성된 대사산물이 뇌종양을 악화시킬 수 있음을 세계 최초로 분자 수준에서 규명한 것”이라며, “향후 뇌종양 환자를 대상으로 한 식이 조절 연구와 장내 미생물 기반 치료 전략 개발의 기초 자료로 활용될 수 있을 것”이라고 밝혔다.
공동 제1 저자로는 KAIST 김채원 박사(현. 미국 하버드 의과대학 부속 보스턴 어린이병원 박사후연구원)와 김현진 박사(KAIST 생명과학연구소 박사후연구원)가 참여했으며, 연구 결과는 생의학 분야 권위 학술지인 저널 어브 익스페리멘탈 메디슨(Journal of Experimental Medicine)에 5월 22일 자에 게재됐다.
논문 : Gut dysbiosis from high-salt diet promotes glioma via propionate-mediated TGF-β activation https://doi.org/10.1084/jem.20241135
이번 연구는 과학기술정보통신부와 한국연구재단이 지원하는 개인기초연구사업 및 바이오의료기술개발사업의 일환으로 수행됐다.
2025.06.02
조회수 1122
-
한순규 교수팀, 한국 최초 신렛(Synlett) 최우수논문상 수상
우리 대학 화학과 한순규 교수 연구팀이 독일의 유서 깊은 학술 출판사 티메(Thieme)가 수여하는 2024 신렛(Synlett) 최우수 논문상(Synlett Best Paper Award 2024)을 수상했다고 30일 밝혔다. 티메는 매해 유기화학 분야 SCI 저널인 신렛에 출판된 논문 중 최우수 논문 1편을 선정해 최우수 논문상을 수여해왔다.
한순규 교수 연구팀은 지난 10여 년간 천연물 합성 연구에 집중하며 다양한 생리활성을 가지는 이차대사물의 효율적이고 독창적인 합성법을 개발했다. 특히 광대싸리나무에서 유래하는 초복잡 세큐리네가 천연물 합성분야에서는 세계적인 선도그룹으로 괄목할 만한 연구성과를 성취했다.
수상 논문에서 한순규 교수 연구팀은 세계 최초로 자연에서 극소량만 얻을 수 있는 희귀한 천연물인 4α-하이드록시알로세큐리닌과 세큐린진 F를 시중에 쉽게 구할 수 있는 시작 물질로부터 인공적으로 처음부터 끝까지 만들어내는 데 성공했다. 세큐리네가 천연물은 뇌의 구조와 기능을 변화시키는 신경가소성을 유도해 알츠하이머, 우울증, 파킨슨병 같은 뇌 질환 치료제 후보로 주목받고 있다.
한 교수 연구팀은 식물에서의 추출을 통해서는 극히 소량만 확보할 수 있는 해당 천연물을 효율적으로 합성할 수 있는 원천기술을 개발하는데 성공했다.
신렛(Synlett) 편집장 데바브라타 마이티 교수(Debabrata Maiti, 봄베이 인도공대, IIT Bombay)는 ”이 논문은 뇌질환 치료 후보물질로 주목받는 천연물인 4α-하이드록시알로세큐리닌과 시큐리닌 F의 세계 최초 인공적으로 합성한 연구로 그 중요성을 높이 평가해 ‘최우수 논문’으로 선정했다”고 밝혔다.
이어 “이번 연구는 천연 세큐리네가 화합물이 향후 어떤 생체 표적과 작용하는지를 규명하는데 기여하거나, 차세대 정밀 치료제 개발에도 활용될 것으로 기대된다”고 전했다.
한순규 교수는 “본 상의 이전 수상자인 세계 유기합성화학 분야의 슈퍼스타인 필 바란(Phil Baran, 2019)이나 일본 나고야 대학 나노카본 및 분자기반 재료화학분야의 개척자 이타미 켄이치로(Kenichiro Itami, 2016) 등은 현재 유기화학 학계를 이끌고 있는 세계적인 석학이다”라며, “본 수상이 매우 영광이며 앞으로 더욱 막중한 학자적 책임감을 가지고 인류에 도움이 되는 연구를 진행하겠다”고 수상 소감을 밝혔다.
수상 논문은 연구수행 시점 기준으로 제1 저자 박상빈 석박사통합과정 대학원생과 제2, 3 저자 김도영, 양우일 학부생이 함께 진행하였고 신렛(Synlett)에 2023년 6월 23일에 게재됐다.
※ 논문명: Total Synthesis of 4α-Hydroxyallosecurinine and Securingine F, Securinega Alkaloids with a C4-Hydroxyl Handle for Biofunctional Derivatizations
※ DOI: 10.1055/a-2047-9680
신렛 최우수 논문상 수상자에게는 3,000유로의 상금이 주어지며, 한순규 교수는 6월 12일 티메 사의 화학세미나인 티메 케미나(Thieme Cheminar)를 통해 온라인으로 수상 기념 강연을 진행할 예정이다.
2025.05.30
조회수 1052
-
KAIST-농림축산식품부와 맞손, 우리나라 농업의 미래를 바꾼다
우리 대학은 농림축산식품부와 협력하여 우리나라 농업의 미래의 이끌 첨단 과학기술 연구 수행, 창업생태계 조성, 및 융복합 인재 양성을 위해 업무협약을 체결한다.
업무협약식은 KAIST 대전 본원에서 개최되며 농림축산식품부 송미령 장관과 KAIST 이광형 총장 등 20여 명이 참석한 가운데 진행된다.
이번 협약은 KAIST 공학생물학대학원 김상규 교수가 합성생물학 등 첨단기술을 농업 분야에 적용하여 현장의 문제를 해결하기 위한 협력 연구를 계기로 추진됐다. 농업의 현장성과 과학기술의 융합 가능성을 보여주며, 농식품부와 KAIST 간 보다 체계적인 협력체계로 이어지는 중요한 전환점이 되었다.
우리 대학은 그동안 첨단바이오 기반의 디지털 농업 분야에서 혁신적인 융합연구와 창업 활동을 수행해 왔지만, 영농 분야의 창의적인 인재 양성을 위한 교육 프로그램이 부족한 실정이었다.
이를 보완하기 위해, 2023년부터 농식품부의 영농창업특성화 대학*과 KAIST 연구실을 연계하는 그린 유알피(Green URP)**를 통해 농업 문제 해결형 연구를 발굴·수행하고, 융복합 인재를 양성해 왔다.
* 영농창업특성화 대학: 충남대, 경북대, 전남대, 전북대, 연암대
**그린 유알피(Green Undergraduate Research Program): 학부 학생들의 농업 분야 연구 프로그램
이번 협약을 계기로, 우리 대학은 수요맞춤형 URP 프로그램을 강화하고, 2026년부터 공학생물학대학원 중심으로 디지털 그린바이오 석박사 트랙을 신설할 예정이다. 이를 통해 농업 현장 문제 해결을 위한 기술 개발과 함께, 창업으로 이어질 수 있는 단계별 프로그램도 함께 제공할 계획이다.
아울러 미래 농업 분야 연구 협력을 확대하고, 그린바이오 벤처캠퍼스*와의 연계를 통해 농산업 혁신 생태계를 조성하고 지속 가능한 농업기술 기반을 마련해 나갈 방침이다.
*그린바이오 벤처캠퍼스: 농림부에서 추진하는 그린바이오 분야에 특화된 벤처 창업·기업을 발굴·육성하기 위한 전문 시설
농식품부 송미령 장관은 “기후변화, 농업인력 감소 등 난제에 대응하여 농산업의 기술혁신과 융합 인력 양성이 시급한 과제가 되었다”며, “이러한 때에 KAIST와 농식품부가 업무협약을 체결하여 과학기술을 기반으로 농업현장의 문제를 해결하고 농업의 미래 성장산업화를 위해 함께 협력해 나갈 수 있게 되어 매우 뜻깊게 생각하며, 내실있는 성과들이 나올 수 있도록 농식품부도 적극 협력하겠다”고 밝혔다.
이광형 총장은 “KAIST는 첨단 바이오, AI 디지털 기술을 바탕으로 농업혁신의 허브가 되고자 한다. 공학생물학대학원을 중심으로 농업 현장의 문제를 첨단기술로 풀어내는 융합 인재를 양성 및 창업 지원을 통해서, 과학기반의 농업 생태계가 구축되도록 적극 지원하겠다”고 밝혔다.
2025.04.24
조회수 1386
-
AI 기반 효소 발굴하여 새로운 미생물 설계 가능
효소는 세포 내에서 일어나는 생화학적 반응을 촉매하는 단백질로, 세포의 대사 과정에서 핵심적인 역할을 수행한다. 이에 따라 새로운 효소의 기능을 규명하는 것은 미생물 세포공장 구축에서 핵심적인 과제다.
KAIST 연구진이 인공지능(AI)을 활용해 자연에 존재하지 않는 새로운 효소를 설계함으로써, 미생물 세포공장 구축을 가속화하고 신약·바이오 연료 등 차세대 바이오산업의 개발 가능성을 크게 높였다.
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 AI를 활용한 효소 기능 예측 기술의 발전 과정과 최신 동향을 정리하고, AI가 새로운 효소를 찾고 설계하는데 어떤 역할을 해왔는지 분석하여 ‘인공지능을 이용한 효소 기능 분류’를 발표했다.
이상엽 특훈교수 연구팀은 이번 연구에서 머신러닝(Machine learning)과 딥러닝(Deep learning)을 활용한 효소 기능 예측 기술의 발전 과정을 체계적으로 정리·분석하여 제공했다.
초기의 서열 유사성 기반 예측 기법에서부터 합성곱 신경망, 순환 신경망, 그래프 신경망, 그리고 트랜스포머(Transformer) 기반 대규모 언어 모델까지 다양한 AI 기법이 효소 기능 예측 연구에 접목된 사례를 다루며, 이들 기술이 단백질 서열에서 의미 있는 정보를 어떻게 추출하고, 예측 성능을 극대화하는지를 분석했다.
특히, 딥러닝 기술을 활용한 효소 기능 예측은 단순한 서열 유사성 분석을 넘어, 구조적·진화적 정보 등 아미노산 서열에 내재된 효소의 촉매 기능과 관련된 중요한 특성을 자동으로 추출함으로써 보다 정밀한 예측이 가능하다는 점이 강조됐다.
이는 기존의 생명정보학적 접근법과 비교해 인공지능 모델이 가지는 차별성과 장점을 부각하는 중요한 부분이다.
또한, 생성형 인공지능 모델의 발전에 기반하여, 기존 효소 기능 예측을 넘어 자연계에 존재하지 않는 새로운 기능을 가진 효소를 생성하는 기술이 미래 연구 방향이 될 것으로 제시했다. 이러한 AI 기반 효소 예측 및 설계 기술의 지속적인 발전은 향후 바이오 산업과 생명공학 연구의 방향성에 큰 변화를 가져올 것으로 전망했다.
공동 제 1저자인 생명화학공학과 김하림 박사과정생은 “AI 기반 효소 기능 예측 및 효소 설계는 대사공학, 합성 생물학 및 헬스케어 등 다양한 분야에서 매우 중요”하다고 말했다.
이상엽 특훈교수는“AI 활용 효소 기능 예측은 다양한 생물학적 문제 해결에 효과적으로 적용될 수 있는 가능성을 보여주며 바이오 분야 전반의 연구를 가속화하는 데 크게 기여할 것.”이라고 밝혔다.
해당 논문은 셀(Cell) 誌가 발행하는 생명공학 분야 권위 저널인 `생명공학 동향(Trends in Biotechnology)'에 3월 28일자 게재됐다.
※ 논문명 : Enzyme Functional Classification Using Artificial Intelligence doi.org/10.1016/j.tibtech.2025.03.003
※ 저자 정보 : 김하림(한국과학기술원, 공동 제1 저자), 지홍근(한국과학기술원, 공동 제1 저자), 김기배(한국과학기술원, 제3 저자), 이상엽(한국과학기술원, 교신저자) 포함 총 4명
한편, 이번 연구는 과기정통부가 지원하는 석유 대체 친환경 화학기술 개발 사업의‘바이오 제조 산업 선도를 위한 첨단 합성 생물학 원천기술 개발’, 그리고 과기정통부와 보건복지부가 지원하는 ‘딥러닝 기반 합성 생물학을 이용한 혁신구조 항생제 개발’ 과제의 지원을 받아 수행됐다.
2025.04.17
조회수 4515
-
‘구멍 개수가 자연수가 아닌 도넛’과 같은 ‘비양자화된 Zak 위상을 갖는 메타물질’ 개발
수학에서는 도형을 분류할 때 구멍(genus)의 개수를 기준으로 삼기도 한다. 예를 들어, 구멍이 하나 있는 도넛(torus)은 구멍이 없는 구(sphere)와는 구분되지만, 머그컵과는 같은 부류에 속한다. 구멍의 개수처럼 도형을 구부리거나 늘이는 연속적인 변형에도 변하지 않는 성질을 위상적 성질이라 하며, 위상수학에서는 이러한 성질을 기준으로 도형을 구분한다.
이와 유사하게, 음향 양자 결정(phononic crystal)도 파동 특성이 갖는 위상적 성질에 따라 분류가 가능하다. 예를 들어, 1차원 음향 양자 결정은 Zak 위상이 0인 구조와 π인 구조로 구분할 수 있다.
우리 대학 기계공학과 전원주 교수 연구팀이 메타물질의 파동적 특성 관점에서 “도넛 구멍의 개수가 꼭 자연수여야만 할까?"라는 질문을 바탕으로, 위상적 성질이 0이나 π로 양자화된 기존 분류 체계를 넘어, 0과 π 사이의 비양자화된 성질을 갖는 메타물질을 개발하였다.
이러한 비양자화된 위상적 성질의 도입은, 그동안 학계의 난제로 꼽히던 파장 대비 매우 작은 크기의 음향 양자 결정으로 파동 에너지를 제어하는 문제를 해결하는 데 중요한 실마리가 되었다.
더 나아가, 비양자화된 Zak 위상을 원하는 값으로 자유자재로 조정함으로써, 메타물질 내 집속되는 파동의 주파수를 조절할 수 있다. 이를 통해 목표 주파수의 파동을 제어하거나, rainbow trapping과 같이 파동 에너지를 주파수별로 원하는 위치에 집속할 수 있게 되었다 (그림 1(b) 참고). 전원주 교수 연구팀은 연구실 핵심 기술 중 하나인 ‘음향 블랙홀 기반의 포노닉 빔 설계 기술’을 위상 절연체(topologial insulator) 분야에 활용하여 연구 성과를 이끌어냈다.
전원주 교수는 “양자화된 Zak 위상 개념 위주로 연구되던 기존 메타물질 설계 방식을 넘어, 비양자화된 Zak 위상을 갖는 구조를 개발함으로써 주파수와 집속 위치 관점에서 파동에너지를 정밀하게 제어할 수 있게 되었다”며, “이번 연구에서 제시한 비양자화된 Zak 위상을 활용한 새로운 개념의 파동 집속 기술은 향후 초미세 진동 감지 센서, 고효율 에너지 하베스팅 장치 등 파동 집속이 필요한 다양한 공학적 응용으로 이어질 수 있을 것”이라고 말했다.
이번 연구는 박성민 박사과정(현, KAIST 기계기술연구소 연수연구원)이 제1저자로 참여했으며, 기계공학 분야 국제 학술지인 Mechanical Systems and Signal Processing (JCI 기준 상위 2.5%(5/183))에 4월 1일 게재되었다.
※ 논문명: Phononic crystals with non-quantized Zak phases for controlling interface state frequencies
한편, 본 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행되었다.
2025.04.14
조회수 2559
-
235종 화학물질 친환경 생산 ‘세포공장 설계도’ 완성
기후 위기와 화석 연료 고갈은 전 세계적으로 지속 가능한 화학물질 생산의 필요성을 높이고 있다. 미국의 BioMADE (바이오메이드) 사업 등 바이오 제조 경쟁력 강화는 전 세계 중요한 국가 과제로 인식되고 있다. 우리 대학 연구진이 미생물 5종을 컴퓨터 시뮬레이션하여 산업에 가장 많이 쓰이는 바이오 연료, 플라스틱 등 원료가 되는 235가지 화학물질을 친환경적으로 생산하는데 성공하였고 상용화 가능성을 제시하여 주목받고 있다.
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 다양한 산업용 미생물 세포공장의 생산 능력을 가상 세포를 이용해 종합적으로 평가하고, 이를 토대로 특정 화학물질 생산에 가장 적합한 미생물 균주를 선정하고 최적의 대사 공학 전략을 제시했다.
미생물 세포 공장은 재생 가능한 자원을 활용하여 친환경적인 화학물질 생산 플랫폼으로 각광받고 있으며, 미생물을 개량하기 위한 대사공학 기술은 이러한 세포공장 생산 효율을 극대화하는 핵심 도구로 자리 잡고 있다.
그러나 미생물 세포 공장을 구축하기 위해 필요한 균주 선정의 어려움과 복잡한 대사 경로 최적화 등의 문제점은 실질적인 공정 적용에 큰 장애물로 작용하고 있다.
기존 연구에서는 방대한 생물 실험과 정교한 검증 과정을 통해 수많은 미생물 균주 중 최적의 균주와 효율적인 대사공학 전략을 도출하려 했으나, 이 과정은 막대한 시간과 비용이 소요되는 문제점이 있었다.
최근에는 미생물 전체 유전체 정보를 바탕으로 유기체 내 대사 네트워크를 재구성한 유전체 수준의 대사 모델을 이용한 컴퓨터 시뮬레이션으로 대사 흐름을 체계적으로 분석할 수 있게 됨에 따라, 기존의 생물 실험 한계를 극복하고 최적의 균주 선정 및 대사 경로 설계 문제를 혁신적으로 접근할 수 있는 새로운 가능성이 제시되고 있다.
이에 생명화학공학과 이상엽 특훈교수 연구팀은 대장균 (Escherichia coli), 효모 (Saccharomyces cerevisiae), 고초균 (Bacillus subtilis), 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum), 슈도모나스 푸티다 (Pseudomonas putida) 이상 5종의 대표적인 산업 미생물의 화학물질 생산 능력을 235가지 유용 물질을 대상으로 종합적으로 평가했다.
연구팀은 유전체 수준의 대사 모델을 이용하여 이들 미생물이 생산할 수 있는 화학물질의 최대 이론 수율과 실제 공정에서 달성 가능한 최대 수율을 계산하여 각 화학물질 생산에 가장 적합한 균주를 선정할 수 있는 기준을 마련하였다.
연구팀은 특히 타 생물에서 유래한 효소 반응을 미생물에 도입하거나, 미생물이 사용하는 보조인자를 교환하여 대사 경로를 확장하는 전략을 제안했다.
이러한 전략을 통해 기존 미생물의 선천적 대사능력을 초과하는 수율 향상이 가능함을 확인했으며, 메발론산, 프로판올, 지방산, 아이소프레노이드와 같은 산업적으로 중요한 다양한 화학물질의 생산 수율이 증가했다.
또한 연구팀은 가상세포 내 대사흐름 분석 기법을 사용하여 각 화학물질 생산을 극대화 시키기 위해 필요한 균주 개량 전략을 제시하였다. 특정 효소 반응과 목표 화학물질 생산의 상관관계 및 효소 반응과 대사물질 간 관계를 정량적으로 분석하여 상향 및 하향 조절해야할 효소 반응을 도출하였다.
이를 통해 연구팀은 단순히 높은 이론적 수율뿐 아니라 실제 생산능을 극대화할 수 있는 구체적인 전략을 제시했다.
이번 논문의 제 1저자인 김기배 박사는 “타 생물에서 유래한 대사 경로의 도입과 보조인자 교환 전략을 활용하면 기존 한계를 뛰어넘는 새로운 미생물 세포공장을 설계할 수 있다.”며, “본 연구에서 제공하는 전략은 미생물 기반 생산 공정을 더욱 경제적이고 효율적으로 발전시키는데 핵심적인 역할을 할 것”이라고 설명했다.
또한, 이상엽 특훈교수는 “이번 연구는 시스템 대사공학 분야에서 미생물 균주 선정과 대사경로 설계 단계에서 어려움을 줄이고, 보다 효율적인 미생물 세포공장 개발을 위한 핵심 참고자료가 될 것”이라며, “향후 바이오 연료, 바이오플라스틱, 기능성 식품 소재 등 다양한 친환경 화학물질 생산 기술 개발에 크게 기여할 것으로 기대된다.” 고 밝혔다.
생물공정연구센터 김기배 박사가 참여한 이번 논문은 국제 학술지 네이처(Nature) 誌가 발행하는 `네이처 커뮤니케이션즈(Nature Communications)'에 동료 심사를 거쳐 3월 24일 字 게재됐다.
※ 논문명 : 미생물 세포 공장의 역량에 대한 종합적 평가 (Comprehensive evaluation of the capacities of microbial cell factories)
※ 저자 정보 : 김기배 (한국과학기술원, 제1 저자), 김하림 (한국과학기술원, 제2 저자) 및 이상엽(한국과학기술원, 교신저자) 포함 총 3 명
한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제의 지원, 그리고 합성생물학핵심기술개발 사업의‘바이오제조 산업 선도를 위한 첨단 합성생물학 원천기술 개발’과제의 지원을 받아 수행됐다.
2025.04.07
조회수 2732
-
고성능 촉매 개발, 반도체 핫전자 기술을 통해 해결하다
우리 대학 화학과 박정영 석좌교수, 신소재공학과 정연식 교수, 그리고 KIST 김동훈 박사 공동 연구팀이 반도체 기술을 활용하여 촉매 성능에 특정 변인이 미치는 영향을 정량적으로 분석할 수 있는 새로운 플랫폼을 성공적으로 구현했다. 이를 통해 대표적인 다경로 화학 반응인 메탄올 산화 반응에서 메틸 포르메이트 선택성을 크게 향상시켰으며, 이번 연구는 차세대 고성능 이종 촉매 개발을 앞당기는 데 기여할 것으로 기대된다고 1일 밝혔다.
다경로 화학 반응에서는 반응성과 선택성의 상충 관계로 인해 특정 생성물의 선택성을 높이는 것이 어려운 문제로 남아 있다. 특히, 메탄올 산화 반응에서는 이산화탄소와 더불어 고부가 가치 생성물인 메틸 포르메이트가 생성되므로, 메틸 포르메이트의 선택성을 극대화하는 것이 중요하다.
그러나 기존 불규칙적인 구조의 이종 촉매에서는 금속-산화물 계면 밀도를 비롯한 여러 변인이 동시에 촉매 성능에 영향을 미치기 때문에 특정 변수가 개별적으로 미치는 영향을 분석하는 것이 어렵다. 이에 KAIST-KIST 공동 연구팀은 균일하게 정렬된 금속산화물 나노 패턴을 구현할 수 있는 반도체 기술을 활용하여 이종 촉매 성능에 영향을 미칠 수 있는 다른 변인을 통제하고, 오로지 금속산화물의 물성만이 촉매 성능에 미치는 영향을 정량적으로 분석하였다. 구체적으로, 산소 공극 (Oxygen Vacancy)의 양을 조절하기 위해 다양한 환경에서 열처리한 세륨 산화물 (CeOx) 나노 패턴을 제작하고, 이를 백금(Pt) 박막 촉매 위에 전사하여 금속산화물의 산소 공극이 메틸 포르메이트 선택성에 미치는 영향을 분석했다.
연구 결과, 산소 공극이 가장 풍부하게 생성된 진공 환경에서 열처리한 CeOx-Pt 이종 촉매의 경우, 열처리를 하지 않은 CeO2-Pt 이종 촉매 대비 약 50% 향상된 메틸 포르메이트 선택성을 보였으며, 이는 반응 중 발생하는 핫 전자의 검출을 통해 실시간으로도 확인되었다. 또한, 연구팀은 양자역학 기반의 DFT 시뮬레이션을 통해 금속산화물 내부의 산소 공극이 이종 촉매의 성능에 미치는 영향을 이론적으로 규명하였다. 시뮬레이션 결과, 산소 공극은 금속/산화물 계면에 많은 양의 전자를 축적시키면서 반응 중간체 간 결합을 촉진하였고, 이로 인해 메틸 포르메이트 선택성이 향상됨을 확인하였다.
이에 대해 박정영 교수는 “이번에 개발한 반도체기반 플랫폼을 통해 핫전하와 촉매 선택성의 정량적 분석이 가능해짐에 따라 핫전하 기반의 광촉매 센서의 상용화 개발 및 핫전하 기반 광열촉매 시스템의 상용화 개발로 이어질 수 있다.”고 언급했다. 신소재공학과 정연식 교수는 “기존의 무작위 구조를 가진 촉매에서는 특정 변수의 영향을 정량적으로 분석하는 것이 어려웠으나, 반도체 기술을 활용한 이번 연구를 통해 보다 효율적인 이종 촉매 설계와 선택성 조절 전략을 제시할 수 있을 것으로 기대된다”고 밝혔다.
신소재공학과 이규락 박사, 화학과 송경재 박사, KIST 홍두선 박사가 공동 제 1 저자로 참여한 이번 연구는 국제학술지 ‘네이처 커뮤니케이션스 (Nature Communications)’에 3월 25일 자로 온라인 게재됐다. (논문 제목: Unraveling Oxygen Vacancy-Driven Catalytic Selectivity and Hot Electron Generation on Heterointerfaces using Nanostructured Platform)
이번 연구는 산업통상자원부 에너지혁신인재양성사업, 과학기술정보통신부 중견연구자지원사업, 그리고 과학기술정보통신부 국가전략기술소재개발사업 등의 지원을 받아 수행됐다.
2025.04.01
조회수 3267
-
6밀리초에 단백질 반응 순간 포착 성공
생명현상을 이해하고 나아가 신약 개발을 위해 단백질 상호 작용 및 효소-기질 반응 등 마이크로초(micro-second)~밀리초(milli-second) 수준의 짧은 시간 동안 일어난 현상을 이해하는 것이 핵심이다. KAIST 연구진이 생명 현상을 이해하는데 필수적인 생화학 반응의 변화를 수 밀리초 수준에서 정지시키고 분석하는 방법을 개발했다.
우리 대학 화학과 강진영 교수와 물리학과 이원희 교수의 공동 연구팀이 초고속 생화학 반응 연구를 위한 ‘패릴렌(parylene)’* 기반 박막 미세유체 혼합-분사 장치’를 개발했다고 24일 밝혔다.
*패릴렌: 단백질 반응을 초고속으로 관찰하기 위한 미세유체(microfluidics) 장치를 만드는 핵심 재료로 수 마이크로미터의 얇은 박막형태로 스프레이 제작이 가능하게 만든 소재임
이번 연구는 기존에 제시됐던 시간 분해 초저온 전자현미경(이하 TRCEM, Time-resolved cryo-electron microscopy) 기법의 한계를 극복해 기존 대비 시료 소모량을 1/3 수준으로 줄이면서 분석가능한 최소 반응시간을 기존 기술 대비 수십 배 향상하여 6밀리초(1,000분의 6초)까지 단축했다.
시간 분해 초저온 전자현미경은 단백질 복합체의 반응 중간 상태를 초저온에서 빠르게 냉동해 구조를 분석하는 기술로 최근 특별히 많은 주목을 받고 있다.
통상적인 초저온 전자현미경 분석에서는 짧은시간 존재하고 사라지는 반응 중간체를 포착하기 어려웠다. 이를 해결하기 위해 다양한 TRCEM 기법이 개발됐으나, 기존 기술은 많은 시료 소비와 제한된 시간 해상도 등의 한계로 어려움이 있었다. 연구침은 이를 극복하기 위해 초박막 패릴렌 소재를 적용한 새로운 혼합-분사장치를 개발했다.
본 장치는 시료의 양을 기존 대비 1/3 수준으로 줄여 실질적인 연구의 어려움을 개선했으며, 미세유체역학 소자 내에서 반응 개시에 드는 시료 혼합 시간을 0.5밀리초로 줄여 전체 반응시간을 6밀리초까지 줄였다. 연구팀은 또한 소자의 일체형 설계를 통해 실험의 정밀도와 재현성을 향상했다.
강진영 교수는 “이번 연구는 TRCEM 기법을 더욱 실용적으로 만들었으며, 구조 생물학 및 신약 개발, 효소 반응연구, 바이오 센서 개발 등 다양한 생명과학 및 의약 분야에서 패럴린 박막 소자의 폭넓은 활용 가능성을 제시했다”고 연구의 의의를 설명했다.
이원희 교수는 “연구팀은 앞으로 이를 활용한 생화학 반응 연구와 더 빠른 반응 분석을 위한 성능 향상을 목표로 연구를 이어갈 계획이다”라고 밝혔다.
이번 연구 결과는 화학과 석·박통합과정 황혜랑 연구원이 제 1저자로 국제학술지 어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials) 2025년 1월 28일 자에 온라인 게재됐다. (논문명: Integrated Parylene-Based Thin-Film Microfluidic Device for Time-Resolved Cryo-Electron Microscopy, doi.org/10.1002/adfm.202418224).
한편 이번 연구는 한국연구재단과 삼성미래기술육성재단, CELINE 컨소시엄의 지원을 받아 수행됐다.
2025.03.24
조회수 3274
-
암세포 발생 순간 되돌리는 분자스위치 발견
조광현 교수 연구팀은 암세포를 죽이지 않고 그 상태만을 변환시켜 정상 세포와 유사한 상태로 되돌리는 암 가역 치료 원천기술을 개발한 바 있다. 이번에는 정상세포가 암세포로 변화되는 순간의 유전자 네트워크에 암 가역화를 유도할 수 있는 분자스위치가 숨겨져 있음을 최초로 밝히는데 성공하였다.
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 정상세포에서 암세포로 변화하는 순간의 임계 전이(臨界轉移, critical transition) 현상을 포착하고 이를 분석해 암세포를 다시 정상세포로 되돌릴 수 있는 분자스위치를 발굴하는 기술 개발에 성공했다고 5일 밝혔다.
임계 전이란 물이 섭씨 100도에서 증기로 변하는 것처럼 특정 시점에 갑작스러운 상태변화가 일어나는 현상을 말한다. 정상세포가 유전적, 후성유전적 변화의 축적으로 인해 특정 시점에 암세포로 변화되는 과정에도 이러한 임계 전이 현상이 나타난다.
연구팀은 암 발생 과정에서 정상세포가 암세포로 전환되기 직전, 정상세포와 암세포들이 공존하는 불안정한 임계 전이 상태에 놓일 수 있음을 발견하고 이러한 임계 전이 상태를 시스템생물학 방법으로 분석해 암화 과정을 역전시킬 수 있는 암 가역화 분자스위치 발굴 기술을 개발했다. 그리고 이를 대장암세포에 적용해 암세포가 정상세포의 특징을 회복할 수 있음을 분자세포실험으로 확인했다.
암 발생의 임계 전이를 관장하는 유전자 네트워크의 컴퓨터 모델을 단일세포 유전자 발현 데이터로부터 자동 추론해내고 이를 시뮬레이션 분석해 암 가역화 분자스위치를 체계적으로 찾아내는 원천기술을 개발한 것이어서 향후 다른 암종의 가역 치료제 개발에도 응용될 수 있을 것으로 기대된다.
조광현 교수는 "정상세포가 되돌릴 수 없는 암세포 상태로 변화되기 직전의 임계 전이 순간을 포착해 암세포의 운명을 다시 정상세포 상태로 되돌릴 수 있는 분자스위치를 발굴해 낸 것이다ˮ라고 말했다.
이어 “특히 이번 연구에서는 그동안 수수께끼로 여겨졌던 암 발생 과정 이면의 세포 내에 어떠한 변화가 일어나는지를 유전자 네트워크 차원에서 상세히 밝혀냈다”며 “암세포의 운명을 다시 정상세포로 되돌릴 수 있는 중요한 단서가 바로 이러한 변화의 순간에 숨어있다는 것을 처음으로 규명한 연구다”라고 강조했다.
우리 대학 신동관 박사(現 국립암센터), 공정렬 박사, 정서윤 박사과정 학생 등이 참여했으며 서울대학교 연구팀이 대장암 환자 오가노이드(체외배양조직)를 제공해 진행된 이번 연구 결과는 와일리(Wiley)에서 출간하는 국제저널 `어드밴스드 사이언스(Advanced Science)' 1월 22일 字 온라인판 논문으로 출판됐다. (논문명: Attractor landscape analysis reveals a reversion switch in the transition of colorectal tumorigenesis) (DOI: https://doi.org/10.1002/advs.202412503)
한편 이번 연구는 과학기술정보통신부 한국연구재단의 중견연구사업과 기초연구실사업, 그리고 보건복지부 한국보건산업진흥원의 질병중심 중개연구사업의 지원을 통해 수행됐다.
2025.02.05
조회수 8096
-
박용근 교수, 아산의학상 젊은의학자상 수상
우리 대학 물리학과 박용근 교수가 아산사회복지재단(이사장 정몽준)이 선정한 제18회 아산의학상 젊은의학자부분 수상자로 선정됐다.
아산의학상은 기초의학 및 임상의학 분야에서 뛰어난 업적을 이룬 의과학자를 격려하기 위해 2008년 제정된 상으로 의과학 전문가들로 구성된 위원회의 심사과정을 통해 수상자를 선정하고 있다.
그 중 젊은의과학자상은 45세 미만의 의과학자에게 수여된다.
박용근 교수는 세포 및 조직을 염색 없이 고해상도 3D 영상으로 측정하고 분석할 수 있는 ‘홀로토모그래피’ 원천 기술을 개발하여 바이오이미징 분야에 혁신적인 기여를 하였다.
또한, 홀로토모그래피의 이론과 실용화에 성공하여 전통적인 현미경 기술의 한계를 극복하였다. 이를 통해 세포 치료제, 재생 의학 등 다양한 의학 분야에서 새로운 연구 가능성을 열어 의과학 연구의 효율성을 크게 향상시켰다.
특히, 인공지능과 홀로토모그래피를 결합해 라벨링없이 생체 시스템을 3D로 시각화하고, 다양한 생물학적 샘플 분석을 자동화한 기술도 발표하며 향후 의과학 연구에서 중요한 역할을 할 것으로 평가받고 있다.
시상식은 오는 3월 18일 서울 웨스틴 조선호텔에서 열릴 예정이다.
2025.01.21
조회수 2528