본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%A8%B8%EC%8B%A0%EB%9F%AC%EB%8B%9D
최신순
조회순
누구나 천연물 합성 경로 예측 가능하다
식물은 고착생활을 하면서 환경 스트레스에 대응하기 위해 진화적으로 다양하고 복잡한 천연물을 만들고 있다. 이 천연물들은 인류의 생존에도 필수적인 역할을 하고 있는데 미국식품의약국(FDA) 승인 저분자 약물의 30% 이상이 식물 천연물에 기초하고 있다는 사실이 이를 증명하고 있다. 한국 연구진이 딥러닝을 활용, 천연물의 역-생합성 경로를 예측하는 모델을 제시해 천연물 기반 의약품 대량 생산에 활용될 수 있도록 해 화제다. 우리 대학 생명과학과 김상규 교수 연구팀과 김재철AI대학원 황성주 교수 연구팀의 공동연구를 통해 천연물 생합성 경로를 예측하는 딥러닝 모델을 개발하고 부산대학교 박정빈 교수 연구팀과 협업을 통해 관심있는 누구나 모델을 활용할 수 있도록 인터넷 웹사이트(readretro.net)를 구축했다고 14일 밝혔다. 천연물 활용 및 대량 생산을 위해서는 생합성 경로를 밝히는 것이 필수적이다. 하지만 복잡한 구조를 가진 많은 약용 천연물의 생합성 경로가 잘 밝혀져 있지 않아 현재는 식물로부터 직접 추출해 사용하고 있다. 생합성 경로 연구는 도전적이지만 이를 밝히고 생합성 효소를 찾을 수 있다면 천연물의 활용 가치를 증진할 수 있다. 식물 천연물 생합성 경로 연구의 첫 단계는 식물이 어떻게 물질을 합성하는지 그 경로를 역추적(역합성 경로를 제시)하는 것으로 시작된다. 공동연구팀은 딥러닝을 활용해 천연물의 역-생합성 경로를 예측하는 모델을 제시했다. 이번 연구에서 연구팀은 발전된 역합성 모델과 생화학적 직관을 결합해 성공적으로 천연물 생합성 경로 예측을 수행하는 인공지능 모델을 개발했다. 연구팀은 개발한 인공지능의 이름을 ‘역합성을 읽어내는 모델’이라는 뜻을 담아 ‘리드레트로(READRetro)’라고 명명했다. 이 모델은 천연물 역합성을 예측하는 인공지능 모델 중 최고의 성능을 보이는 것으로 확인되었고 이를 개별 연구자들이 쉽게 활용할 수 있도록 구현했다는 데 의미를 가진다. 김상규 교수는 “식물이 어떻게 복잡한 천연물을 만들 수 있게 되었는지 이해하는 기초 연구에서부터 천연물 기반 의약품을 대량으로 생산하기 위한 합성생물학 연구 등에 활용이 기대된다. 추후 합성 경로를 매개하는 효소를 예측하거나 거대 분자의 역합성 예측 정확도를 높이는 연구를 실시할 계획이다” 라고 말했다. 또한 김 교수는 “이번 연구는 2022년 KAIST 인공지능연구원에서 주최한 멜팅 팟(Melting pot) 세미나에서 저와 황성주 교수가 발제자와 토론자로 만난 인연으로 시작됐다. KAIST가 표방하는 융합이 생화학자와 전산학자의 힘을 합쳐 이끌어 낸 좋은 연구로 큰 의미를 갖는다고 생각한다”고 강조했다. 생명과학과 김태인 석박사통합과정과 김재철AI대학원 이슬 석박사통합과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘뉴 파이톨로지스트(New Phytologist)'에 출판됐다. (논문명 : READRetro: natural product biosynthesis predicting with retrieval-augmented dual-view retrosynthesis). 한편 이번 연구는 KAIST POST-AI, 한국연구재단, 과학기술정보통신부 등의 지원을 받아 수행됐다.
2024.08.14
조회수 3061
변화에 민감한 사용자도 맞춰주는 인공지능 기술 개발
인공지능 심층신경망 모델의 추천시스템에서 시간이 지남에 따라 사용자의 관심이 변하더라도 변화한 관심 또한 효과적으로 학습할 수 있는 인공지능 훈련 기술 개발이 요구되고 있다. 사용자의 관심이 급변하더라도 기존의 지식을 유지하며 새로운 지식을 축적하는 인공지능 연속 학습을 가능하게 하는 기술이 KAIST 연구진에 의해 개발됐다. 우리 대학 전산학부 이재길 교수 연구팀이 다양한 데이터 변화에 적응하며 새로운 지식을 학습함과 동시에 기존의 지식을 망각하지 않는 새로운 연속 학습(continual learning) 기술을 개발했다고 5일 밝혔다. 최근 연속 학습은 훈련 비용을 줄일 수 있도록 프롬프트(prompt) 기반 방식이 대세를 이루고 있다. 각 작업에 특화된 지식을 프롬프트에 저장하고, 적절한 프롬프트를 입력 데이터에 추가해 심층신경망에 전달함으로써 과거 지식을 효과적으로 활용한다. 이재길 교수팀은 기존 접근방식과 다르게 작업 간의 다양한 변화 정도에 적응할 수 있는 적응적 프롬프팅(adaptive prompting)에 기반한 연속 학습 기술을 제안했다. 현재 학습하려는 작업이 기존에 학습하였던 작업과 유사하다면 새로운 프롬프트를 생성하지 않고 그 작업에 할당된 프롬프트에 추가로 지식을 축적한다. 즉, 완전히 새로운 작업이 입력될 때만 이를 담당하기 위한 새로운 프롬프트를 생성하도록 하고 연구팀은 새로운 작업이 들어올 때마다 클러스터링이 적절한지 검사해 최적의 클러스터링 상태를 유지하도록 했다. 연구팀은 이미지 분류 문제에 대해 작업 간의 다양한 변화 정도를 가지는 실세계 데이터를 사용해 방법론을 검증했다. 이 결과 연구팀은 기존의 프롬프트 기반 연속 학습 방법론에 비해, 작업 간의 변화 정도가 항상 큰 환경에서는 최대 14%의 정확도 향상을 달성했고, 작업 간의 변화가 클 수도 있고 작을 수도 있는 환경에서는 최대 8%의 정확도 향상을 달성했다. 또한, 제안한 방법에서 유지하는 클러스터 개수가 실제 유사한 작업의 그룹 개수와 거의 같음을 확인했다. 온라인 클러스터링을 수행하는 비용이 매우 작아 대용량 데이터에도 쉽게 적용할 수 있다. 연구팀을 지도한 이재길 교수도 "연속 학습 분야의 새로운 지평을 열 만한 획기적인 방법이며 실용화 및 기술 이전이 이뤄지면 심층 학습 학계 및 산업계에 큰 파급효과를 낼 수 있을 것이다ˮ고 말했다. 전산학부 김도영 박사과정 학생이 제1 저자, 이영준 박사과정, 방지환 박사과정 학생이 제4, 제6 저자로 각각 참여한 이번 연구는 최고권위 국제학술대회 `국제머신러닝학회(ICML) 2024'에서 지난 7월 발표됐다. (논문명 : One Size Fits All for Semantic Shifts: Adaptive Prompt Tuning for Continual Learning) 한편, 이 기술은 과학기술정보통신부 재원으로 정보통신기획평가원의 지원을 받아 사람중심인공지능핵심원천기술개발사업 AI학습능력개선기술개발 과제로 개발한 연구성과 결과물(2022-0-00157, 강건하고 공정하며 확장 가능한 데이터 중심의 연속 학습)이다.
2024.08.06
조회수 2274
문일철 교수팀, 북경대와 영국 ICL 제치고 ICML 2024 챌린지 우승
우리 대학 산업및시스템공학과 문일철 교수 연구팀이 세계 최고 수준의 기계학습 학회인 ‘국제머신러닝학회(ICML, International Conference on Machine Learning) 2024’에서 개최된 ‘멀티모달 작업계획 생성 경진대회(EgoPlan)’에서 다수의 세계 연구팀을 모두 제치고 1위로 우승을 했다고 30일 밝혔다. 본 대회는 7월 21일부터 27일까지 오스트리아 비엔나에서 개최됐으며, 참가자는 북경대(中), 북경 AGI연구소(中) 및 임페리얼칼리지 런던(Imperial College London, 英) 등의 6개국 13개 기관이 참여해 경쟁했다. 우리 연구팀은 국내 유일의 참가 기관으로 7월 26일 우승상 및 혁신상을 수상했다. 이번 대회는 인공지능이 주방에서 요리하는 과정을 비디오 및 지문으로 학습한 이후, 경험하지 못한 요리 과정에서 상식적으로 합당한 의사결정을 내려 조리할 수 있는지를 경쟁하는 시합이었다. 이는 시각 정보와 지문 정보 등의 멀티모달 정보를 조합하며, 학습에 반영되지 않은 상식까지 반영해 의사결정을 내리는 시험이다. 이 기술은 최소한의 학습만으로도 로봇이 다양한 멀티모달 정보 및 기초 상식을 활용해 자율 제조 및 서비스를 수행할 수 있도록 개발하는 것이 핵심이다. 산업및시스템공학과 이광현(석사과정), 강미나(석사과정) 등 총 11명의 팀으로 참가한 응용인공지능 연구실(이하 AAILab) 팀은 상식 기반 추론을 통한 작업계획 생성의 정확도 1위 성능으로 우승상(Outstanding Champion Award) 및 기술의 우수성을 인정받아 혁신상(Innovation Award)을 수상해, 2개 상을 동시에 수상했다. 이번 대회를 위해 AAILab 팀은 멀티모달 대규모 모델의 파인튜닝 학습에 대한 연구 개발 결과를 적용해 우승을 차지했다. 문일철 교수는 “중국팀들이 대회를 위해 위챗(WeChat) 대화방까지 마련해 서로 협력한다는 얘기를 전해 듣고는 경쟁이 치열하다고 느꼈다. 하지만 KAIST 팀도 각고의 노력으로 우승할 수 있었다. 학생들이 두 달 동안 거의 잠을 자지 못했다”고 우승 소회를 밝혔다. 그리고 문 교수는 “이번 대회의 출제 문제는 요리하는 인공지능이지만, 사실 테슬라에서 시험하고 있는 휴머노이드 제조 로봇에 활용될 수 있는 상식을 가진 인공지능을 만드는 기술이 본질이다. 많은 중국 참가자가 보여주듯이 중국의 로봇 및 인공지능 기술 선점 노력을 엿볼 수 있다”라고 분석했다. 이번 연구는 정보통신기획평가원(IITP)에서 지원한 사람중심인공지능 핵심원천기술개발사업 중 ‘이종데이터기반 상식 추출, 이해, 추론을 위한 인공지능 기술개발(연구책임자 문일철)’을 통해 이뤄졌다.
2024.07.30
조회수 3558
탁지훈 박사과정, 2023 구글 PhD 펠로우 선정
우리 대학 김재철AI대학원 박사과정 탁지훈 학생(지도교수 신진우)이 ‘2023 구글 PhD 펠로우’에 선정됐다. 구글 PhD 펠로우십은 컴퓨터 과학과 관련된 유망 연구 분야에서 우수한 성과를 낸 대학원생을 지원하는 장학 프로그램으로 올해는 전 세계에서 67명이 선발됐다. 선정된 펠로우에게는 1만 달러의 장학금과 구글 각 분야 전문가 멘토와의 일대일 연구 토의, 피드백 등의 혜택이 주어진다. 탁지훈 학생은 기계학습(Machine Learning) 분야에서 메타학습(Meta-learning)과 뉴럴필드(Neural Field) 분야의 탁월한 연구 성과를 인정받아 선정되었다. 기계학습 분야에서는 총 19명의 학생이 선발되었으며 아시아 대학에서는 탁지훈 학생이 유일하다. 탁지훈 학생은 특히 기존 뉴럴필드 학습의 한계점들을 새로운 메타학습 방법론을 제안하여 효과적으로 극복한 것으로 평가받는다. 구체적으로는 뉴럴필드 학습에서의 세 가지 비효율적 요소인 학습 시간, 학습 메모리 그리고 저장 공간을 효율적인 메타학습을 제안하여 효율화 하였으며, 이를 활용한 데이터 형태에 구애받지 않은 데이터 압축 기술 역시 제안하였다. 이러한 다양한 연구들은 NeurIPS, ICML, ICLR 등 기계학습 및 딥러닝 분야의 최고 학회에 다수 선정되었다. 또한 그는 구글 딥마인드 연구진들과 협력하여 메타학습과 뉴럴필드 연구를 수행한 바 있다. 시상식은 8월 29일부터 8월 30일 양일간 가상으로 열린 구글 PhD 펠로우십 서밋(Google PhD Fellowship Summit)에서 진행됐으며, 수상자 리스트는 구글 홈페이지에 게시되어있다. 구글은 KAIST 교수진과 학생을 대상으로 연구비 지원(Research Grant), 신진 연구자 지원(Research Scholar), 구글 클라우드 플랫폼 크레딧(GCP Credits), 익스플로어CSR(exploreCSR), PhD 펠로우십(PhD Fellowship), 학생 학회 후원(Student Travel Grants) 등 다양한 산학협력 프로그램으로 지원을 제공했다. (홈페이지 주소 : https://research.google/outreach/phd-fellowship/recipients)
2023.10.31
조회수 5381
변화된 데이터에서 인공지능 공정성 찾아내다
인공지능 기술이 사회 전반에 걸쳐 광범위하게 활용되며 인간의 삶에 많은 영향을 미치고 있다. 최근 인공지능의 긍정적인 효과 이면에 범죄자의 재범 예측을 위해 머신러닝 학습에 사용되는 콤파스(COMPAS) 시스템을 기반으로 학습된 모델이 인종 별로 서로 다른 재범 확률을 부여할 수 있다는 심각한 편향성이 관찰되었다. 이 밖에도 채용, 대출 시스템 등 사회의 중요 영역에서 인공지능의 다양한 편향성 문제가 밝혀지며, 공정성(fairness)을 고려한 머신러닝 학습의 필요성이 커지고 있다. 우리 대학 전기및전자공학부 황의종 교수 연구팀이 학습 상황과 달라진 새로운 분포의 테스트 데이터에 대해서도 편향되지 않은 판단을 내리도록 돕는 새로운 모델 훈련 기술을 개발했다고 30일 밝혔다. 최근 전 세계의 연구자들이 인공지능의 공정성을 높이기 위한 다양한 학습 방법론을 제안하고 있지만, 대부분의 연구는 인공지능 모델을 훈련시킬 때 사용되는 데이터와 실제 테스트 상황에서 사용될 데이터가 같은 분포를 갖는다고 가정한다. 하지만 실제 상황에서는 이러한 가정이 대체로 성립하지 않으며, 최근 다양한 어플리케이션에서 학습 데이터와 테스트 데이터 내의 편향 패턴이 크게 변화할 수 있음이 관측되고 있다. 이때, 테스트 환경에서 데이터의 정답 레이블과 특정 그룹 정보 간의 편향 패턴이 변경되면, 사전에 공정하게 학습되었던 인공지능 모델의 공정성이 직접적인 영향을 받고 다시금 악화된 편향성을 가질 수 있다. 일례로 과거에 특정 인종 위주로 채용하던 기관이 이제는 인종에 관계없이 채용한다면, 과거의 데이터를 기반으로 공정하게 학습된 인공지능 채용 모델이 현대의 데이터에는 오히려 불공정한 판단을 내릴 수 있다. 연구팀은 이러한 문제를 해결하기 위해, 먼저 `상관관계 변화(correlation shifts)' 개념을 도입해 기존의 공정성을 위한 학습 알고리즘들이 가지는 정확성과 공정성 성능에 대한 근본적인 한계를 이론적으로 분석했다. 예를 들어 특정 인종만 주로 채용한 과거 데이터의 경우 인종과 채용의 상관관계가 강해서 아무리 공정한 모델을 학습을 시켜도 현재의 약한 상관관계를 반영하는 정확하면서도 공정한 채용 예측을 하기가 근본적으로 어려운 것이다. 이러한 이론적인 분석을 바탕으로, 새로운 학습 데이터 샘플링 기법을 제안해 테스트 시에 데이터의 편향 패턴이 변화해도 모델을 공정하게 학습할 수 있도록 하는 새로운 학습 프레임워크를 제안했다. 이는 과거 데이터에서 우세하였던 특정 인종 데이터를 상대적으로 줄임으로써 채용과의 상관관계를 낮출 수 있다. 제안된 기법의 주요 이점은 데이터 전처리만 하기 때문에 기존에 제안된 알고리즘 기반 공정한 학습 기법을 그대로 활용하면서 개선할 수 있다는 것이다. 즉 이미 사용되고 있는 공정한 학습 알고리즘이 위에서 설명한 상관관계 변화에 취약하다면 제안된 기법을 함께 사용해서 해결할 수 있다. 제1 저자인 전기및전자공학부 노유지 박사과정 학생은 "이번 연구를 통해 인공지능 기술의 실제 적용 환경에서, 모델이 더욱 신뢰 가능하고 공정한 판단을 하도록 도울 것으로 기대한다ˮ고 밝혔다. 연구팀을 지도한 황의종 교수는 "기존 인공지능이 변화하는 데이터에 대해서도 공정성이 저하되지 않도록 하는 데 도움이 되기를 기대한다ˮ고 말했다. 이번 연구에는 노유지 박사과정이 제1 저자, 황의종 교수(KAIST)가 교신 저자, 서창호 교수(KAIST)와 이강욱 교수(위스콘신-매디슨 대학)가 공동 저자로 참여했다. 이번 연구는 지난 7월 미국 하와이에서 열린 머신러닝 최고권위 국제학술 대회인 `국제 머신러닝 학회 International Conference on Machine Learning (ICML)'에서 발표됐다. (논문명 : Improving Fair Training under Correlation Shifts) 한편, 이 기술은 정보통신기획평가원의 지원을 받은 `강건하고 공정하며 확장가능한 데이터 중심의 연속 학습' 과제 (2022-0-00157)와 한국연구재단 지원을 받은 `데이터 중심의 신뢰 가능한 인공지능' 과제의 성과다.
2023.10.30
조회수 4847
10월 이달의 과학기술인상에 신영수 교수 선정
과학기술정보통신부와 한국연구재단은 ‘이달의 과학기술인상’ 10월 수상자로 신영수 우리 대학 전기전자공학부 교수를 선정했다. ‘이달의 과학기술인상’은 우수한 연구개발 성과로 과학기술 발전에 공헌한 연구개발자를 매월 1명씩 선정해 과기정통부 장관상과 상금 1000만원을 주는 상이다. 신영수 교수가 연구한 반도체 포토리소그래피는 패턴이 새겨진 마스크에 빛을 비춰 웨이퍼에 소자를 형성해가는 과정으로 반도체 수율을 결정하는 가장 중요한 공정이다. 웨이퍼에 다각형을 만들기 위해서는 마스크에 훨씬 복잡한 패턴을 그려 넣어야 한다. 이런 패턴을 찾아가는 과정을 OPC(Optical Proximity Correction)라고 한다. 기존 OPC는 마스크 형상을 고치고 시뮬레이션으로 웨이퍼 이미지를 확인하는 과정을 반복해야 해 시간이 걸린다. 이에 신 교수는 마스크 형상과 웨이퍼 이미지의 집합을 이용해 기계학습 모델을 만들었다. 이후 더 빠르고 해상도가 높은 OPC 최적화 기술을 개발했다. 마스크 형상과 웨이퍼 이미지 집합을 대량으로 갖고 있다면 이 집합을 이용해 뇌를 훈련하듯 기계학습 모델을 만들 수 있다는 점에 착안해 성과를 냈다. 신 교수는 또 생성형 인공지능으로 기존에 없었던 레이아웃 패턴을 생성하는 방법도 개발했다. 이렇게 생성된 레이아웃 패턴과 기존 샘플 패턴을 같이 활용해 리소그래피 최적화에 적용하자 모델 정확도가 높게 나타났다. 이 기술은 반도체 공정을 개선하고 해외 의존도가 높은 OPC 솔루션의 자립도를 높여 국내 반도체 산업 발전에 기여할 전망이다. 신 교수는 “기존 반도체 리소그래피 연구와 달리 머신러닝과 인공지능을 적용했다는 점에서 차별성이 크다”며 “소수 외국회사가 독점하면서 발생하는 라이선스 비용과 기술개발 정체 문제를 해결하는 데 기여하기를 기대한다”고 했다.
2023.10.04
조회수 3951
전기및전자공학부 노유지 박사과정, 2022 마이크로소프트 리서치 PhD 펠로우 선정
우리 대학 전기및전자공학부 박사과정 노유지 학생(지도교수 황의종)이 ‘2022 마이크로소프트 리서치 PhD 펠로우’에 선정됐다. 마이크로소프트 리서치 PhD 펠로우십은 컴퓨터과학과 관련된 유망 연구 분야에서 우수한 성과를 낸 대학원생을 지원하는 장학 프로그램으로, 올해는 전 세계에서 36명이 선발됐으며, 한국 기관에서는 전기및전자공학부의 노유지 학생이 유일하게 선정됐다. 선정된 펠로우에게는 1만달러의 장학금과 마이크로소프트 각 분야 전문가 멘토와의 연구 토의, 인턴십 등의 혜택이 주어진다. 노유지 학생은 신뢰 가능한 인공지능(Trustworthy AI)을 위한 알고리즘 개발에 대한 탁월한 연구 성과를 인정받아 “머신러닝(Machine Learning)” 분야의 펠로우로 선정되었다. 특별히, 특정 집단을 차별하지 않는 공정한 인공지능 학습의 효율성을 획기적으로 높인 학습 방법론을 개발하고, 더 나아가 인공지능 모델의 공정성과 견고성을 동시에 달성할 수 있는 최초의 알고리즘을 제안하여 주목을 받았다. 본 연구 성과들은 머신러닝 분야 최고 국제학술대회인 ICML, ICLR, NeurIPS 등에 발표됐다. 또한 데이터마이닝 분야 최고 국제학술대회인 ACM SIGKDD에서 튜토리얼을 공동으로 진행하여, 신뢰 가능한 인공지능 기법에 대한 최신 연구 관점을 학계에 공유하였다. 현재는 엔비디아 리서치에서 연구 인턴십을 진행하며 더욱 큰 규모의 인공지능 공정성 문제를 해결할 수 있는 다양한 방법론을 개발하고 있다. 수상자 리스트 및 인터뷰는 마이크로소프트 홈페이지와 유튜브에서 확인할 수 있다. 수상자 리스트 : https://www.microsoft.com/en-us/research/academic-program/phd-fellowship/2022-recipients/ 수상자 인터뷰 (글로벌) : https://www.youtube.com/watch?v=T4Q-XwOOoJc 수상자 인터뷰 (아시아) : https://www.youtube.com/watch?v=qwq3R1XU8UE
2022.10.21
조회수 6563
인공지능 심층 학습(딥러닝) 서비스 구축 비용 최소화 가능한 데이터 정제 기술 개발
최근 다양한 분야에서 인공지능 심층 학습(딥러닝) 기술을 활용한 서비스가 급속히 증가하고 있다. 서비스 구축을 위해서 인공지능은 심층신경망을 훈련해야 하며, 이를 위해서는 충분한 훈련 데이터를 준비해야 한다. 특히 훈련 데이터에 정답지를 만드는 레이블링(labeling) 과정이 필요한데 (예를 들어, 고양이 사진에 `고양이'라고 정답을 적어줌), 이 과정은 일반적으로 수작업으로 진행되므로 엄청난 노동력과 시간적 비용이 소요된다. 따라서 훈련 데이터 구축 비용을 최소화하는 방법 개발이 요구되고 있다. 우리 대학 전산학부 이재길 교수 연구팀이 심층 학습 훈련 데이터 구축 비용을 최소화할 수 있는 새로운 데이터 동시 정제 및 선택 기술을 개발했다고 12일 밝혔다. 일반적으로 심층 학습용 훈련 데이터 구축 과정은 수집, 정제, 선택 및 레이블링 단계로 이뤄진다. 수집 단계에서는 웹, 카메라, 센서 등으로부터 대용량의 데이터가 정제되지 않은 채로 수집된다. 따라서 수집된 데이터에는 목표 서비스와 관련이 없어서 주어진 레이블에 해당하지 않는 분포 외(out-of-distribution) 데이터가 포함된다 (예를 들어, 동물 사진을 수집할 때 재규어 `자동차'가 포함됨). 이러한 분포 외 데이터는 데이터 정제 단계에서 정제돼야 한다. 모든 정제된 데이터에 정답지를 만들기 위해서는 막대한 비용이 소모되는데, 이를 최소화하기 위해 심층 학습 성능 향상에 가장 도움이 되는 훈련 데이터를 먼저 선택해 레이블링하는 능동 학습(active learning)이 큰 주목을 받고 있다. 그러나 정제와 레이블링을 별도로 진행하는 것은 데이터 검사 측면에서 중복적인 비용을 초래한다. 또한 아직 정제되지 않고 남아 있는 분포 외 데이터가 레이블링 단계에서 선택된다면 레이블링 노력을 낭비할 수 있다. 이재길 교수팀이 개발한 기술은 훈련 데이터 구축 단계에서 데이터의 정제 및 선택을 동시에 수행해 심층 학습용 훈련 데이터 구축 비용을 최소화할 수 있도록 해준다. 우리 대학 데이터사이언스대학원에 재학 중인 박동민 박사과정 학생이 제1 저자, 신유주 박사과정, 이영준 박사과정 학생이 제2, 제4 저자로 각각 참여한 이번 연구는 최고권위 국제학술대회 `신경정보처리시스템학회(NeurIPS) 2022'에서 올 12월 발표될 예정이다. (논문명 : Meta-Query-Net: Resolving Purity-Informativeness Dilemma in Open-set Active Learning) 데이터의 정제 및 선택을 동시에 고려하기 위해서 구체적으로 가장 분포 외 데이터가 아닐 것 같은 데이터 중에서 가장 심층 학습 성능 향상에 도움이 될 데이터를 선택한다. 즉, 주어진 훈련 데이터 구축 비용 내에서 최고의 효과를 내도록 데이터의 순도(purity) 지표와 정보도(informativeness) 지표의 최적 균형(trade-off)을 찾는다. 순도와 정보도는 일반적으로 서로 상충하므로 최적 균형을 찾는 것이 간단하지 않다. 이 교수팀은 이러한 최적 균형이 정제 전 데이터의 분포 외 데이터 비율과 현재 심층신경망 훈련 정도에 따라 달라진다는 점을 발견했다. 이 교수팀은 이러한 최적 균형을 찾아내기 위해 추가적인 작은 신경망 모델을 도입했다. 연구팀은 추가된 모델을 훈련하기 위해 능동 학습에서 여러 단계에 걸쳐 데이터를 선별하는 과정을 활용했다. 즉, 새롭게 선택돼 레이블링 된 데이터를 순도-정보도 최적 균형을 찾기 위한 훈련 데이터로 활용했고, 레이블이 추가될 때마다 최적 균형을 갱신했다. 이러한 방법은 목표 심층신경망의 성능 향상을 위해 추가적인 상위 레벨의 신경망을 사용하였다는 점에서 메타학습(meta-learning)의 일종이라 볼 수 있다. 연구팀은 이 메타학습 방법론을 `메타 질의 네트워크'라고 이름 붙이고 이미지 분류 문제에 대해 다양한 데이터와 광범위한 분포 외 데이터 비율에 걸쳐 방법론을 검증했다. 그 결과, 기존 최신 방법론과 비교했을 때 최대 20% 향상된 최종 예측 정확도를 향상했고, 모든 범위의 분포 외 데이터 비율에서 일관되게 최고 성능을 보였다. 또한, `메타 질의 네트워크'의 최적 균형 분석을 통해, 분포 외 데이터의 비율이 낮고 현재 심층신경망의 성능이 높을수록 정보도에 높은 가중치를 둬야 함을 연구팀은 밝혀냈다. 제1 저자인 박동민 박사과정 학생은 "이번 기술은 실세계 능동 학습에서의 순도-정보도 딜레마를 발견하고 해결한 획기적인 방법ˮ 이라면서 "다양한 데이터 분포 상황에서의 강건성이 검증됐기 때문에, 실생활의 기계 학습 문제에 폭넓게 적용될 수 있어 전반적인 심층 학습의 훈련 데이터 준비 비용 절감에 기여할 것ˮ 이라고 밝혔다. 연구팀을 지도한 이재길 교수도 "이 기술이 텐서플로우(TensorFlow) 혹은 파이토치(PyTorch)와 같은 기존의 심층 학습 라이브러리에 추가되면 기계 학습 및 심층 학습 학계에 큰 파급효과를 낼 수 있을 것이다ˮ고 말했다. 한편, 이 기술은 과학기술정보통신부 재원으로 정보통신기획평가원의 지원을 받아 SW컴퓨팅산업원천기술개발사업 SW스타랩 과제로 개발한 연구성과 결과물(2020-0-00862, DB4DL: 딥러닝 지원 고사용성 및 고성능 분산 인메모리 DBMS 개발)이다.
2022.10.12
조회수 7324
전산학부 이하연, 전기및전자공학부 최유정, 2022 구글 PhD 펠로우 선정
우리 대학 전기및전자공학부 박사과정 최유정 학생(지도교수 유민수)과 전산학부 박사과정 이하연 학생(지도교수 황성주)이 ‘2022 구글 PhD 펠로우’에 선정됐다. 구글 PhD 펠로우십은 컴퓨터과학과 관련된 유망 연구 분야에서 우수한 성과를 낸 대학원생을 지원하는 장학 프로그램으로 올해는 전 세계에서 61명이 선발됐다. 선정된 펠로우에게는 1만 달러의 장학금과 구글 각 분야 전문가 멘토와의 일대일 연구 토의, 피드백 등의 혜택이 주어진다. 최유정 학생은 시스템 및 네트워크(Systems and Networking) 분야에서 펠로우로 선정됐다. 최유정 학생은 머신러닝을 위한 컴퓨터 구조 및 시스템 설계 분야의 탁월한 연구 성과를 인정받아 선정됐다. 이하연 학생은 기계학습(Machine Learning) 분야에서 신경망 구조 탐색(Neural Architecture Search)과 메타학습(Meta-learning) 분야의 탁월한 연구성과들을 인정받아 선정되었다. 최유정 학생은 머신러닝의 추론을 위한 컴퓨터 구조 및 시스템 설계에 대한 탁월한 연구 성과를 인정받았다. 특히 다수의 머신러닝 모델을 동시에 처리하여 연산 효율을 높이는 가속기 설계를 최초로 제안하여 주목을 받았다. 또한, 머신러닝 서버 및 시스템에 최적화된 스케줄링과 자원 관리 방법을 제안하여 효율적인 머신러닝 서비스 제공을 가능하게 하였다. 이러한 다양한 연구들은 HPCA, ASPLOS, DAC 등의 유수 컴퓨터 구조 분야 국제학술대회에 발표되었으며, 그의 연구는 매년 컴퓨터 구조 분야의 우수한 연구 성과를 선정하는 IEEE Micro Top Picks 2020에도 선정된 바가 있다. 이하연 학생은 메타 학습을 이용한 신경망 탐색 모델을 설계하여, 메타 학습과 신경망 탐색이라는 기계 학습의 주요 두 분야에서 탁월한 연구성과를 인정받았다. 신경망 탐색이라는 대규모 작업에 메타 학습을 적용하여 메타 학습의 확장성을 보였으며, 메타지식을 이용하여 빠른 신경망 탐색을 가능하게 했다. 이러한 다양한 연구성과들은 NeurIPS, ICLR 등 기계학습 및 딥러닝 분야의 최고 학회에 다수 선정되었다. 특히 5편 중 3편이 상위 5% 이내의 성적을 의미하는 스포트라이트 (spotlight), 1편이 상위 2% 이내의 성적을 의미하는 구두 (oral) 발표에 초청되었다. 또한 연구 인턴십을 통해 메타 (Meta) 연구진과 협력하여 효율적이며 고성능인 신경망 모델 탐색 연구를 수행하고 있다. 시상식은 COVID-19 상황으로 인해, 7월 27일부터 7월 28일 양일간 가상으로 열린 구글 PhD 펠로우십 서밋(Google PhD Fellowship Summit)에서 진행됐으며, 수상자 리스트는 구글 홈페이지에 게시돼 있다. (홈페이지 주소 : https://research.google/outreach/phd-fellowship/recipients)
2022.09.08
조회수 7068
문화기술대학원 배준형, 엄가람, 권하람, 이설희 학생팀, 2022 ACM CHI Student Game Competition 우승
우리 대학 문화기술대학원 박사과정 배준형, 석사과정 엄가람, 권하람, 이설희 학생팀(팀 지도교수: 도영임, 남주한)이 4월 30일에서 5월 6일간 미국 뉴올리언스에서 열린 2022 ACM CHI Student Game Competition <Transformative and Transgressive Play> 부문 우승자로 선정됐다고 밝혔다. HCI 분야에서 세계 최고 권위를 가진 ACM 인간-컴퓨터 상호작용 학회 (ACM Conference on Human Factors in Computing Systems, CHI) 트랙 중 하나인 Student Game Competition은 미래 게임 기술 개발 및 디자인에 영감을 줄 수 있는 새로운 아이디어를 선보이는 기회를 제공한다. 혁신적 인터페이스(Innovative Interface) 부문은 기존 관행을 뛰어넘는 상호작용 아이디어와 기술 진전을 다루며, 변혁적 및 초월적 플레이(Transformative and Transgressive Play) 부문은 게임이 아닌 영역이 게임과 결합하면서 어떻게 미래의 경계를 넘어서는가를 다룬다. 우승 게임 ‘Classy Trash Monster: An Educational Game for Teaching Machine Learning to Non-major Students’는 비전공 학생들도 AI 기술의 핵심인 기계 학습을 게임을 통해 쉽게 배우고 이해할 수 있도록 설계했으며, 미적이고 친근한 방식의 시각 디자인과 게임 플레이로 호평을 받아 수상작으로 선정됐다. 이 게임은 문화체육관광부와 한국콘텐츠진흥원의 <2020년 문화콘텐츠 R&D 전문인력 양성(문화기술 선도대학원): 게임 이머징 테크놀로지 R&D 전문인력 양성> 사업(연구책임자: 남주한 교수)에서 개설한 <게임 특강: 게임 디자인 프로젝트> 수업의 학생 참여 팀 프로젝트 결과물이다. 우승팀을 포함하여 수업에 참여했던 4팀이 ACM CHI Student Game Competition에 결과물을 제출하여 엄정한 심사를 거쳐 모두 학회 발표자로 선정되는 쾌거도 함께 거뒀다. 이 수업은 우리 대학 문화기술대학원 도영임 교수, 남주한 교수, 이정미 교수가 팀 티칭으로 진행하고, 산학협력 기관인 NCSOFT(대표: 김택진) 게임디자인랩의 이동교 실장, 김은동 팀장, 윤현석 팀장이 참여하여 산업 현장에 기반한 자문을 제공하고 학생들의 게임 디자인 개발을 지원했다. NCSOFT는 공동 수업 이외에도 NC 장학금 수여 및 산학연구과제 등을 지원하고 있다. 우승팀과 발표팀의 발표 논문과 영상은 CHI EA '22: CHI Conference on Human Factors in Computing Systems Extended Abstracts에 4월 28일 실렸다. (우승) Classy Trash Monster: An Educational Game for Teaching Machine Learning to Non-major Students (배준형, 엄가람, 권하람, 이설희, 남주한, 도영임) https://dl.acm.org/doi/10.1145/3491101.3516487 (발표) Play With Your Emotions: Exploring Possibilities of Emotions as Game Input in NERO (Valérie Erb, 김해수, Tatiana Chibisova, 이정미, 도영임) https://dl.acm.org/doi/10.1145/3491101.3516485 (발표) The Melody of the Mysterious Stones: A VR Mindfulness Game Using Sound Spatialization (김헤이븐, 최재란, 도영임, 남주한) https://dl.acm.org/doi/10.1145/3491101.3516490 (발표) Evoker: Narrative-based Facial Expression Game for Emotional Development of Adolescents (홍석현, 최연수, 성유진, 진유리, 도영임, 이정미) https://dl.acm.org/doi/10.1145/3491101.3516486
2022.05.24
조회수 7784
최초 머신러닝 기반 유전체 정렬 소프트웨어 개발
우리 대학 전기및전자공학부 한동수 교수 연구팀이 머신러닝(기계학습)에 기반한 *유전체 정렬 소프트웨어를 개발했다고 12일 밝혔다. ☞ 유전체(genome): 생명체가 가지고 있는 염기서열 정보의 총합이며, 유전자는 생물학적 특징을 발현하는 염기서열들을 지칭한다. 유전체를 한 권의 책이라고 비유하면 유전자는 공백을 제외한 모든 글자라고 비유할 수 있다. 차세대 염기서열 분석은 유전체 정보를 해독하는 방법으로 유전체를 무수히 많은 조각으로 잘라낸 후 각 조각을 참조 유전체(reference genome)에 기반해 조립하는 과정을 거친다. 조립된 유전체 정보는 암을 포함한 여러 질병의 예측과 맞춤형 치료, 백신 개발 등 다양한 분야에서 사용된다. 유전체 정렬 소프트웨어는 차세대 염기서열 분석 방법으로 생성한 유전체 조각 데이터를 온전한 유전체 정보로 조립하기 위해 사용되는 소프트웨어다. 유전체 정렬 작업에는 많은 연산이 들어가며, 속도를 높이고 비용을 낮추는 방법에 관한 관심이 계속해서 증가하고 있다. 머신러닝(기계학습) 기반의 인덱싱(색인) 기법(Learned-index)을 유전체 정렬 소프트웨어에 적용한 사례는 이번이 최초다. 전기및전자공학부 정영목 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `옥스포드 바이오인포메틱스(Oxford Bioinformatics)' 2022년 3월에 공개됐다. (논문명 : BWA-MEME: BWA-MEM emulated with a machine learning approach) 유전체 정렬 작업은 정렬해야 하는 유전체 조각의 양이 많고 참조 유전체의 길이도 길어 많은 연산량이 요구되는 작업이다. 또한, 유전체 정렬 소프트웨어에서 정렬 결과의 정확도에 따라 추후의 유전체 분석의 정확도가 영향을 받는다. 이러한 특성 때문에 유전체 정렬 소프트웨어는 높은 정확성을 유지하며 빠르게 연산하는 것이 중요하다. 일반적으로 유전체 분석에는 하버드 브로드 연구소(Broad Institute)에서 개발한 유전체 분석 도구 키트(Genome Analysis Tool Kit, 이하 GATK)를 이용한 데이터 처리 방법을 표준으로 사용한다. 이들 키트 중 BWA-MEM은 GATK에서 표준으로 채택한 유전체 정렬 소프트웨어이며, 2019년에 하버드 대학과 인텔(Intel)의 공동 연구로 BWA-MEM2가 개발됐다. 연구팀이 개발한 머신러닝 기반의 유전체 정렬 소프트웨어는 연산량을 대폭 줄이면서도 표준 유전체 정렬 소프트웨어 BWA-MEM2과 동일한 결과를 만들어 정확도를 유지했다. 사용한 머신러닝 기반의 인덱싱 기법은 주어진 데이터의 분포를 머신러닝 모델이 학습해, 데이터 분포에 최적화된 인덱싱을 찾는 방법론이다. 데이터에 적합하다고 생각되는 인덱싱 방법을 사람이 정하던 기존의 방법과 대비된다. BWA-MEM과 BWA-MEM2에서 사용하는 인덱싱 기법(FM-index)은 유전자 조각의 위치를 찾기 위해 유전자 조각 길이만큼의 연산이 필요하지만, 연구팀이 제안한 알고리즘은 머신러닝 기반의 인덱싱 기법(Learned-index)을 활용해, 유전자 조각 길이와 상관없이 적은 연산량으로도 유전자 조각의 위치를 찾을 수 있다. 연구팀이 제안한 인덱싱 기법은 기존 인덱싱 기법과 비교해 3.4배 정도 가속화됐고, 이로 인해 유전체 정렬 소프트웨어는 1.4 배 가속화됐다. 연구팀이 이번 연구에서 개발한 유전체 정렬 소프트웨어는 오픈소스 (https://github.com/kaist-ina/BWA-MEME)로 공개돼 많은 분야에 사용될 것으로 기대되며, 유전체 분석에서 사용되는 다양한 소프트웨어를 머신러닝 기술로 가속화하는 연구들의 초석이 될 것으로 기대된다. 한동수 교수는 "이번 연구를 통해 기계학습 기술을 접목해 전장 유전체 빅데이터 분석을 기존 방식보다 빠르고 적은 비용으로 할 수 있다는 것을 보여줬으며, 앞으로 인공지능 기술을 활용해 전장 유전체 빅데이터 분석을 효율화, 고도화할 수 있을 것이라 기대된다ˮ고 말했다. 한편 이번 연구는 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 데이터 스테이션 구축·운영 사업으로서 수행됐다.
2022.04.17
조회수 8999
신소재 영상화 및 머신러닝을 활용한 미래 개척
우리 대학 신소재공학과 홍승범 교수 연구팀이 KAIST 10대 플래그쉽 분야이자, 글로벌 특이점 과제인 `KAIST 신소재 혁명: M3I3 이니셔티브' 과제의 배경, 역사, 진행 상황 그리고 미래 방향을 제시했다고 31일 밝혔다. 홍 교수 연구팀은 다중스케일 다중모드 영상화 기술과 머신러닝(기계학습) 기법을 융합해서 고차원의 구조-물성 및 공정-구조 상관관계를 도출했다. 그리고 이를 인공지능과 3차원 다중 스케일 프린팅 기술을 활용해서 신소재 디자인부터 시장 진입까지의 기간을 획기적으로 단축할 수 있는 비전과 실행 플랫폼을 제안했다. M3I3 플랫폼은 고용량 에너지 소재 디자인에서 시작해서, 고밀도 메모리 소재, 고성능 자동차/항공 소재에도 응용 가능할 것으로 기대된다. 우리 대학 신소재공학과 홍승범 교수가 제1 저자로, 리오치하오 박사가 제2 저자로 참여하고, 육종민 교수, 변혜령 교수, 양용수 교수, 조은애 교수, 최벽파 교수, 이혁모 교수가 공동 저자로 참여한 이번 연구는 국제 학술지 `에이씨에스 나노(ACS Nano)' 2월 12일 字 온라인 출판됐다. (논문명 : Reducing Time to Discovery: Materials and Molecular Modeling, Imaging, Informatics, and Integration) 역사의 큰 흐름을 결정한 신소재는 시행착오와 도제식의 비결 전수를 통해서 발견 및 개발돼왔다. 각종 무기와 그릇, 그리고 장신구들이 좋은 예다. 광학현미경이 발명되면서 검의 미세구조와 검의 강도 혹은 경도 간의 상관관계를 이해하기 시작했고, 투과전자현미경과 원자간력 현미경의 발명으로 원자 수준의 분해능으로 신소재를 영상화하기 시작했다. 고려청자를 현재 재현하지 못하는 것은 고려 시대의 장인들이 그 비결을 남기지 않았기 때문이라고 우리는 가르치고 있다. 그러나, 미래에는 고려청자의 다중 스케일 구조를 영상화해서 데이터화 하고, 구조를 구현할 수 있는 공정 과정을 머신러닝의 힘을 빌려 역설계한다면, 고려청자를 재현하는 일은 가능할 것으로 보인다. 우리 대학 M3I3 플랫폼은 이처럼 다중 스케일 및 다중 모드 영상화 기술, 데이터 마이닝과 머신러닝, 그리고 다중 스케일 제조 기술을 접목해 미래에 필요한 신소재를 역설계해서 빠르게 공정 레시피를 확보할 수 있게 만들어준다. 이번 논문에서는 M3I3 플랫폼의 유효성을 확인하기 위해 배터리 소재에 적용하는 연구를 진행했다. 고용량 배터리 소재의 개발 기간을 단축할 수 있다는 것을 검증하기 위해서 20년간의 논문 자료를 50여 명의 학생이 읽고 데이터를 추출해 양극재의 에너지 밀도와 소재 조성 간의 상관관계를 도출했다. 그리고 논문에 나와 있는 공정, 측정 및 구조 변수들을 머신러닝 기법을 활용해 모델을 수립한 후, 무작위 조건에서 합성해 모델의 정확도를 측정함으로써 데이터 마이닝과 머신러닝의 우수성을 입증했다. 또한 투과전자현미경(TEM), 주사투과전자현미경(STEM), 원자간력현미경(AFM), 광학현미경 등의 다양한 현미경과 엑스레이(X-ray), 라만(Raman), UV/Visible/IR 등 다양한 분광 장비들을 통해 얻은 영상과 스펙트럼 데이터를 기반으로 다중 스케일 구조↔물성 상관관계를 도출하고, 여러 가지 공정변수 데이터를 수집해, 공정↔구조 상관관계를 수립하는 것이 M3I3 플랫폼의 중요한 핵심이다. 특히, 실험데이터와 시뮬레이션 데이터를 융합하고, 머신러닝으로 생성한 가상의 데이터를 과학적인 기준에 맞춰 유의미한 빅데이터로 만들면, 머신러닝을 활용해 물성→구조→공정으로 연결되는 역설계 알고리즘을 개발하는 것이 가능해지며, 이를 통해 미래에 필요한 물성을 갖는 신소재 공정 레시피를 신속하게 확보할 수 있게 된다. 제1 저자인 홍승범 교수는 "과학은 날카로운 관찰과 정량적 측정에서 시작한 학문이며, 기술의 발전으로 현재는 눈에 보이는 소재의 모양과 구조뿐만 아니라 눈에 보이지 않는 소재의 구조를 볼 수 있는 시대가 왔고, 물성마저 공간과 시간의 함수로 영상화할 수 있는 시대가 도래했다ˮ라며 "신소재 영상화 기술과 머신러닝 기술을 융합하고 3D 프린팅 기술을 다중 스케일 자동 합성 기술로 승화시키게 되면 20년 걸리던 신소재 개발 기간을 5년 이내로 단축할 수 있을 것이다ˮ 라고 말했다. 한편, 이번 연구는 글로벌 특이점 사업의 지원을 받아 수행됐다.
2021.04.01
조회수 90275
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2