본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%A7%88%EA%B7%B8%EB%85%BC
최신순
조회순
마그논 3차원 제어 세계 첫 규명- 뉴로모픽·양자기술 게임체인저로
전류없이 자석으로 정보 전달이 가능한 마그논(스핀파)으로 처리하는 마그논 홀 효과는 지금까지 2차원 평면에서만 가능하다고 알려져 있는데 그 한계를 뛰어넘는다면 어떨까? 마그논이 3차원 공간에서 활용가능하다면 입체적 회로 등 자유로운 설계부터 인간의 뇌 정보와 같이 차세대 뉴로모픽(뇌 모사형) 연산 구조 등 다양한 분야에서 활용될 수 있다. KAIST와 국제공동연구진은 기존에 마그논 개념을 뛰어넘어, 3차원 공간에서도 자유롭고 복잡하게 움직일 수 있다는 3차원 마그논 홀 효과를 세계 최초로 예측했다. 우리 대학 물리학과 김세권 교수가 독일 마인츠 대학의 리카르도 자르주엘라 박사와 공동연구를 통해, 복잡한 자석 구조(쩔쩔맴 자성체, topologically textured frustrated magnets) 내에서 마그논(스핀파)과 솔리톤(스핀들의 소용돌이)의 상호작용이 단순하지 않고 복잡하게 설명된다는 사실을 세계 최초로 밝혀냈다. 전자의 움직임처럼 정보를 전달할 수 있는 마그논(스핀 파동)은 전류를 쓰지 않고 정보를 전달해 열이 나지 않는 차세대 정보 처리 기술로 주목받고 있다. 지금까지의 마그논 연구는 스핀들이 한 방향으로 가지런히 정렬된 단순한 자석에서만 이루어졌고 이를 설명하는 수학도 비교적 단순한 ‘가환(Abelian) 게이지 이론’이었다. 연구팀은 쩔쩔맴 자성체와 같은 복잡한 스핀 구조에서는 마그논이 여러 방향에서 복잡하게 상호작용하고 얽히며 이 움직임은 기존보다 한 차원 높은 수학인 ‘비가환(non-Abelian) 게이지 이론’을 적용했고, 이를 세계 최초로 입증했다. 이번 연구는 향후 마그논을 이용한 저전력 논리소자, 토폴로지 기반 양자 정보 처리 기술 등에 응용될 수 있는 가능성을 제시함으로써 미래 정보기술의 판도를 바꿀 가능성을 보여주고 있다. 기존 선형 자성체에서는 자기 상태를 나타내는 값(질서 변수)이 벡터로 주어지며, 이에 기반한 마그노닉스 연구에서는 마그논이 스커미온과 같은 솔리톤 구조에서 이동할 때, U(1) 가환 게이지장이 유도된다고 해석되어 왔다. 이는 솔리톤과 마그논의 상호작용은 양자전기역학(QED)과 유사한 구조를 가지며, 이를 통해 2차원 자성체에서의 마그논 홀 효과와 같은 여러 실험적 결과를 잘 설명해 왔다. 하지만 연구팀은 이번 연구를 통해, 쩔쩔맴 자성체에서는 질서 변수가 단순한 벡터가 아닌 쿼터니언(quaternion)으로 표현되어야 하고, 그 결과 마그논이 느끼는 게이지장도 단순한 U(1) 가환 게이지장이 아닌 SU(3) 비가환 게이지장이 된다는 점을 이론적으로 최초 규명했다. 이는 곧 쩔쩔맴 자성체 안에는, 기존의 자성체에서 보이던 한두 가지 종류의 마그논이 아닌, 세 가지 종류의 마그논이 존재하며, 이들 각각이 솔리톤과 복잡하게 얿혀 상호작용하게 된다는 뜻이다. 이러한 구조는 전자기 힘을 설명하는 양자전기역학(QED)보다는, 양자색역학(QCD)과 유사한 구조를 갖는다는 점에서 큰 의미를 지닌다. 김세권 교수는 “이번 연구는 쩔쩔맴 자성체의 복잡한 질서 속에서 발생하는 마그논의 동역학을 설명할 수 있는 강력한 이론적 틀을 제시했다”며, “비가환 마그노닉스를 최초로 제시함으로 양자 자성 연구 전반에 영향을 줄 수 있는 개념적 전환점이 될 것”이라고 말했다. 이번 연구 결과는 독일 마인츠대학 리카르도 자르주엘라(Ricardo Zarzuela) 박사가 제 1저자로 물리 분야 세계적인 학술지 `피지컬 리뷰 레터스(Physical Review Letters)‘에 5월 6일 자로 게재됐다. ※ 논문명 : Non-Abelian Gauge Theory for Magnons in Topologically Textured Frustrated Magnets, Phys. Rev. Lett. 134, 186701 (2025) DOI: https://doi.org/10.1103/PhysRevLett.134.186701 이번 연구는 한국연구재단 해외우수과학자 유치사업 플러스(브레인 풀 플러스)의 지원을 받아 수행됐다.
2025.05.22
조회수 353
마그논 오비탈 홀 효과로 반도체 발열문제 실마리
기존 정보처리 기술을 혁신적으로 발전시켜 초고속 초고집적 차세대 반도체 기술을 구현할 것으로 기대되는 스핀트로닉스와 오비트로닉스는 줄발열*로 인한 에너지 소모 문제가 필연적으로 동반되는 치명적인 결점이 있었다. 한국 연구진이 초저전력 오비탈** 기반 정보처리 기술의 기틀을 세울 수 있을 기술을 개발하여 화제다. *줄 발열: 도체에 전류가 흐를 때 일어나는 발열 현상. **오비탈: 입자 회전 운동으로 발생되는 각운동량을 뜻함. 우리 대학 물리학과 김세권 교수 연구팀이 포항공과대학교 물리학과 이현우 교수팀과의 공동 연구로 반강자성체*에서 마그논 오비탈 홀 효과**를 세계 최초로 발견해 물리 및 화학 분야 세계적인 학술지 `나노 레터스(Nano Letters)'에 게재했다고 17일 밝혔다. *반강자성체: 인접한 원자의 전자스핀이 서로 반대로 정렬하여 순 자성이 없는 물질을 말함. *마그논 오비탈 홀 효과: 축구의 바나나킥처럼, 마그논이 회전방향(오비탈)에 따라 진행궤적이 휘어지는 현상을 의미한다. 마그논계에서의 오비탈 홀 효과는 기존에 예측된 바가 없는 새로운 현상이기에 학문적으로 흥미로우며, 기존 스핀 자유도에 국한되었던 마그논 동역학을 오비탈 자유도를 통해 한 단계 확장하는 의의가 있음. 마그논*을 이용한 스핀트로닉스 소자의 경우 줄 발열로 인한 에너지 소모 없이 기존의 컴퓨팅 기술을 대체할 수 있다는 장점이 있어 전 세계 각국 학계에서 경쟁적으로 연구가 이뤄지고 있다. 마그논 스핀에 관해서는 지난 수십 년간 활발히 연구됐으나, 마그논 오비탈의 특성에 관한 이론 정립은 아직 아무도 시도하지 않은 문제였다. *마그논: 양자화된 스핀 파동을 뜻함. 물리학과 김세권 교수 연구팀은 MnPS3(삼황화린망간)와 같이 벌집 격자를 이루는 2차원 반강자성체에서 강한 마그논 오비탈 홀 효과가 나타난다는 것을 세계 최초로 발견했다. 기존에 알려진 마그논 홀 효과는 스핀궤도결합에 기인하기에 그 크기가 작은 데 반해, 이번 연구를 통해 발견된 마그논 오비탈 홀 효과는 스핀궤도결합과 무관하게 결정구조에서 기인해 크기가 상당히 크다는 것을 연구팀이 이론적으로 보였다. 또한 연구팀은 전기적으로 마그논 오비탈 홀 효과를 측정할 수 있는 실험방법도 제시했다. 이는 스핀 자유도에만 국한되어 있던 마그논 연구의 범위를 스핀과 오비탈로 확장한 연구 결과로 마그논 오비트로닉스라는 연구의 새 장을 열어 줄 것으로 예상된다. 김세권 교수는 "마그논 오비탈과 그 수송이론의 정립은 아직 세계적으로 아무도 시도하지 않은 독창적이고 도전적인 문제이고, 기존 정보처리 기술의 한계를 혁신적으로 뛰어넘는 초저전력 오비탈 기반 정보처리 기술의 기틀을 세울 수 있을 것ˮ이라고 기대감을 내비쳤다. 이번 연구는 우리 대학 김세권 교수, 고경춘 박사, 안대현 학생, 그리고 포항공과대학교 이현우 교수의 공동 연구로 진행되었으며, 삼성미래기술육성사업, 한국연구재단 해외우수과학자 유치사업 플러스(브레인 풀 플러스), 세종과학펠로우십의 지원을 받아 수행됐다.
2024.06.17
조회수 5500
기존 대비 10배 이상 빠른 마그논 전송현상 발견
우리 대학 물리학과 이경진, 김세권 교수 연구팀이 고려대학교 이동규 대학원생, 싱가포르국립대 양현수 교수, 이규섭 박사와 공동연구를 통해 *반강자성체에서 초고속 *마그논 전송을 실험적으로 관측하고 그 원리를 이론적으로 규명했다고 4일 밝혔다. ☞ 반강자성체(antiferromagnetic substance): 인접한 원자의 자기 모멘트들이 서로 반대방향으로 향하기 때문에 전체로서는 자력이 나타나지 않는 물질. 어떤 온도를 넘어서면 상자성체와 같은 자성을 나타낸다. ☞ 마그논(magnon): 자기 양자(Magnetic quantum)의 줄여진 신조어로 양자화된 스핀 파동을 뜻한다. 즉, 스핀파를 양자화한 준입자를 가리킨다. 양현수 교수 연구팀은 반강자성 절연체인 산화니켈(NiO)에서 마그논 전송속도가 그동안 알려져 있던 최대 속도보다 10배 이상 빠름을 실험적으로 관측했다. 그리고 이경진 교수 연구팀은 이러한 초고속 마그논 전송이 마찰력에서 기인함을 이론적으로 규명했다. 이 공동연구 결과는 반강자성 마그논을 이용한 정보처리 소자의 고속화 가능성을 열었다는 측면과 마찰력은 소자 특성을 나쁘게 한다는 기존 상식과 달리 짧은 거리에서 마그논 속도를 오히려 증가시킨다는 사실을 규명했다는 측면에서, 스핀트로닉스 분야 응용과 기초과학 모두에서 향후 관련분야 발전에 기여할 것으로 기대된다. 이규섭 박사와 이동규 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 나노테크놀로지(Nature Nanotechnology)'에 온라인 출판됐다. (논문명 : Superluminal-like magnon propagation in antiferromagnetic NiO at nanoscale distances). 산화니켈(NiO)은 반강자성 특성으로 인해 효율적인 마그논 전송이 가능하고, 전기적 절연특성으로 인해 스핀 정보 전송 시 열 손실이 없어 차세대 마그논 기반 스핀트로닉스 소자용 소재로 주목받고 있다. 양현수, 이경진 교수 공동연구팀은 2019년 산화니켈(NiO)을 통한 마그논 전류가 매우 큰 스핀 각운동량을 전달하며 그 결과 효율적으로 자화를 반전시킬 수 있음을 보고한 바 있다. [Science 366, 1125-1128 (2019)] 2019년 연구는 마그논이 운반하는 스핀의 크기에 집중한 반면, 이번 연구는 그 속도에 집중했다. 마그논 기반 스핀트로닉스 소자의 저전력 구동을 위해서는 마그논이 전달하는 스핀 정보의 크기와 속도 모두 중요하다. 기존 연구에서는 산화니켈(NiO)의 마그논 속도를 밀리미터 크기의 샘플에 대해 비탄성 중성자 산란을 이용해 간접 측정한 반면, 이번 연구에서는 나노미터 크기의 샘플에 대해 테라헤르츠 분광 장비(THz emission spectroscopy)를 활용해 마그논 속도를 직접 측정했다. 그 결과 기존 간접 측정에서 보고되었던 40km/s에 비해 10배 이상 큰 650 km/s의 빠른 마그논 전송을 관측했다. 이론 연구를 통해 이러한 초고속 마그논 전송이 산화니켈(NiO) 내에서 마그논이 경험하는 마찰력 때문임을 밝혔다. 이러한 초고속 전송 현상은 광학 분야에서 `빛보다 빠른 전송(Superluminal propagation)'으로 불리는 현상과 유사하다. 아인슈타인의 특수상대성 이론에 의하면 빛보다 빠른 전송은 불가능하지만, 손실이 있는 매체에 빛이 지나가는 경우 비정상적 분산관계로 인해 마치 빛보다 빠른 전송이 일어나는 것처럼 보이며 이는 인과율을 위배하지 않는다. 이번 연구에서 연구팀은 빛의 경우와 마찬가지로 마찰력을 갖는 반강자성 물질에서 마그논이 전송되는 경우 비정상적 마그논 분산관계로 인해 유사한 현상이 발생함을 밝혔다. 실제 마그논 소자의 구동 시간은 이러한 비정상적 초고속 마그논 전송에 의해 결정되므로 응용 소자 측면에서 파급력이 있을 것으로 기대된다. 또한 마찰력은 모든 물질에 존재하기 때문에, 이 연구에서 밝힌 초고속 마그논 전송은 매우 일반적 물리현상이라는 측면에서 기초 학문적 가치도 클 것으로 기대된다. 제1 저자인 이규섭 박사는 "자성체 기반의 이중 층에서의 `스핀 전류의 발생현상'을 시분해 테라헤르츠 분광 장비를 통해 비접촉 방식으로 검출하는 연구가 활발히 진행되고 있으며, 이번 연구를 통해 `스핀 전류의 발생에 이은 수송현상에 대한 동역학' 또한 분석됨을 보였다ˮ라며, "나노미터 두께의 정보 소자의 정보전달속도를 초고속 시분해능(~10 펨토초)로 분석하는 데 활발히 사용될 것으로 기대한다ˮ라고 말했다. 이번 연구는 한국연구재단 중견연구과제, SRC센터과제, 싱가포르 정부과제의 지원을 받아 수행됐다.
2021.11.05
조회수 10137
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1