알파폴드3’뛰어넘는 차세대 바이오 AI 모델‘K-Fold’개발
KAIST 연구진이 구글 딥마인드의 ‘알파폴드3(AlphaFold3)’를 뛰어넘는 차세대 바이오 AI 모델 ‘K-Fold’ 개발에 나섰다. 이번 연구를 통해 KAIST는 빠르고 정확한 신약 개발, 낮은 실패율, 그리고 AI 기반 과학 혁신을 실현하며, ‘AI가 과학을 돕는 시대’를 넘어 ‘AI가 과학을 이끄는 시대’를 여는 주역으로 떠오를 전망이다.
KAIST(총장 이광형)는 과학기술정보통신부가 주관하는‘AI 특화 파운데이션 모델 개발 사업’의 주관기관으로 선정되어, 의과학·바이오 분야 AI 파운데이션 모델 개발에 본격 착수했다고 7일 밝혔다.
KAIST는 이번 사업을 통해 국내 최고 수준의 인공지능(AI) 연구 역량을 바이오 분야에서도 입증하고, 신약 개발 등 첨단 바이오 AI 연구에 활용할 수 있는 차세대 파운데이션 모델 ‘K-Fold’를 개발할 계획이다.
최근 구글 딥마인드의 ‘알파폴드3(AlphaFold3)’나 ‘Boltz2’ 등 최신 모델이 신약 개발·질병 연구·바이오 산업의 핵심 기술인 ‘단백질 구조 예측’의 성과를 이뤘지만, 데이터 통계에 의존한 방식으로 인해 정확도와 예측 속도 면에서 한계가 있었다.
이에 KAIST는 단백질 안에서 일어나는 물리·화학적 상호작용의 원리를 스스로 배우는 새로운 AI 방식을 도입했다. 이 기술은 단백질이 여러 형태로 변하는 모습과 분자 간 결합의 세기까지 정확하게 예측할 수 있다. 또한 예측 속도가 매우 빨라, 실험실이나 산업 현장에서 바로 활용할 수 있는 수준의 AI 신약 개발 도구로 발전할 전망이다.
이번 과제를 위해 KAIST는 ‘팀 KAIST(Team KAIST)’를 구성해 교내 AI 및 바이오 분야 최고의 전문가들을 결집했다.
화학과 김우연 교수가 과제를 총괄하며, 김재철AI대학원 황성주·안성수 교수가 핵심 AI 모델 개발을 담당하고, 생명과학과 오병하·김호민·이규리 교수가 단백질 데이터 수집·정제·검증을 맡는다. 이 연구진은 KAIST AI연구원 및 InnoCORE 연구단(AI-CRED) 소속으로, 학제 간 융합 연구를 통해 시너지를 극대화할 계획이다.
개발된 K-Fold 모델의 상용화는 KAIST 스핀오프 기업 ㈜히츠(HITS, 대표 김우연)가 맡는다. 히츠는 클라우드 기반 웹 플랫폼 ‘하이퍼랩(HyperLab)’을 통해 K-Fold 모델을 설치 없이 웹에서 바로 이용할 수 있는 서비스인 ‘서비스형 소프트웨어(SaaS)’ 형태로 제공한다.
또한 KAIST 졸업생 창업기업인 아토랩(Atolab)은 보안이 중요한 기관을 위해, 하이퍼랩(HyperLab)을 기관 내부 전용 서버(프라이빗 클라우드)나 자체 설치형 시스템(온프레미스, On-premise)으로 구축해 제공할 예정이다.
특히 글로벌 생명과학 기업 머크(Merck Life Science)는 자사의 디지털 실험 도구 플랫폼(디지털 케미스트리 솔루션, Digital Chemistry Solution)에 K-Fold 모델을 적용해, 전 세계 3만 곳 이상의 연구실이 이 기술을 활용할 수 있도록 지원할 예정이다. 이를 통해 K-Fold 모델이 글로벌 시장으로 빠르게 확산될 전망이다.
머크사 관계자는 “전 세계 연구 커뮤니티의 과학자들에게 AI 기반 신약 개발 기술과 솔루션을 제공해 본 과제에 기여하길 기대한다”고 밝혔다.
KAIST는 이번에 개발한 핵심 AI 모델(7B급 메인 모델과 2B급 경량 모델)을 누구나 자유롭게 사용할 수 있도록 ‘아파치 2.0’ 라이선스 형태로 공개할 예정이다. 이를 통해 국내 연구자와 기업들이 AI·바이오 기술을 더 쉽게 활용하고 발전시킬 수 있는 환경을 만들 계획이다.
또한 한국바이오협회 및 한국제약바이오협회는 850여 개 회원사를 대상으로 K-Fold 기반 실무자 교육과 AI 인재 양성 프로그램을 추진한다.
과제책임자인 김우연 교수는 “KAIST는 국내 최고 수준의 AI 연구 역량을 보유하고 있다. 이번 과제는 그 역량을 바이오 분야에서 입증할 기회”라며 “글로벌 최고 수준의 바이오 AI 모델을 통해 기술 주권 확보와 산업 혁신에 기여하겠다”라고 말했다.
정송 KAIST AI연구원장(김재철AI대학원장)은 “KAIST AI연구원은 과학과 AI의 융합을 선도해왔다”며, “이번 바이오 파운데이션 모델 개발은 ‘과학AI(AI for Science)’ 실현을 향한 첫걸음으로, 바이오를 넘어 소재·화학·물리 등 전 과학 분야에서 세계를 선도하는 연구기관으로 도약하겠다”고 밝혔다.
이광형 KAIST 총장은 “이번 사업은 ‘AI가 과학을 이끄는 시대’로의 전환을 보여주는 상징적 계기”라며, “KAIST는 세계 최고 수준의 AI·바이오 융합 연구로 국가 혁신과 인류의 미래를 선도하겠다”고 밝혔다.
‘희귀병과 치매가 닯았다’KAIST, 헌팅턴병 원인 단백질 새 기능 규명
전 NBC 뉴스 기자 찰스 서빈(Charles Sabine)과 미국의 전설적 포크 가수 우디 거스리(Woody Guthrie)의 공통점은 희귀 유전성 질환인 헌팅턴병을 앓았다는 점이다. 헌팅턴병은 근육 조정 능력 상실, 인지 기능 저하, 정신적 문제를 동반하는 대표적인 신경계 퇴행성 질환이다. 국내외 연구진은 이 병의 원인 단백질인 헌팅틴 단백질이 변형될 뿐 아니라, 세포 골격을 유지하는 중요한 기능을 수행한다는 사실을 새롭게 규명했다. 이번 발견은 헌팅턴병의 발병 원인 이해를 넓히고, 세포 골격 이상이 관여하는 알츠하이머병, 파킨슨병, 근위축증 등 다른 퇴행성 질환 연구에도 기여할 것으로 기대된다.
우리 대학은 생명과학과 송지준 교수 연구팀이 오스트리아 과학기술원(ISTA), 프랑스 소르본느대/파리 뇌연구원(Paris Brain Institute), 스위스 연방공대(EPFL) 등과 국제 공동연구를 통해, 초저온 전자현미경(cryo-EM)과 세포생물학적 기법을 통해 헌팅틴 단백질이 세포골격 미세섬유(F-actin)를 다발 형태로 배열하는 구조적 원리를 규명했다고 16일 밝혔다.
그동안 헌팅틴 단백질은 소포 운반이나 미세소관 기반 수송에 관여하는 등 세포골격을 ‘쓰는’ 역할만 한다고 알려져 있었으나, 연구팀이 헌팅틴 단백질이 세포골격 자체를 물리적으로 조직한다는 사실을 밝혀냈다. 이번 연구는 헌팅틴 단백질의 새로운 역할을 분자 수준에서 세계 최초로 증명한 것으로 평가된다.
연구팀은 헌팅틴 단백질이 세포골격 미세섬유(F-actin)에 직접 결합하고, 두 개의 헌팅틴 단백질이 짝을 이루면서 약 20나노미터 간격으로 세포골격을 다발 형태로 가지런히 묶어준다는 것을 확인했다.
이렇게 형성된 세포골격 다발은 신경세포 간 연결망 발달에 핵심적 역할을 한다. 실제로 헌팅틴 단백질이 결핍된 신경세포에서는 신경세포의 구조적 발달이 저해되는 현상이 관찰됐다.
제1 저자인 KAIST 김재성 박사과정생은 “이번 연구를 통해, 그동안 베일에 싸여 있던 불치병인 헌팅턴병 원인 단백질의 작용 기전을 이해하는 새로운 관점을 제시했다”라고 말했다.
KAIST 생명과학과 송지준 교수는 “이번 성과는 헌팅턴병 발병 메커니즘을 이해하는 데 중요한 단서를 제공할 뿐 아니라, 세포골격 관련 질환 연구에도 파급 효과가 클 것으로 기대한다”며, “세포 분열, 이동, 기계적 신호 전달 등 다양한 생명 현상에서 헌팅틴 단백질의 역할을 새롭게 조명할 수 있는 길을 열었다”고 말했다.
이번 연구는 KAIST 김재성 박사과정생·김형주 박사(현 하버드대), 파리 뇌연구원 헤미 카펜티어(Remi Carpentier) 연구원, 마리아 크리스티나 가피치(Mariacristina Capizzi) 연구원 등이 제1 저자로 참여하여 국제 학술지 ‘사이언스(Science)’ 자매지인 ‘사이언스 어드밴시스(Science Advances)’ 9월 19일 자에 출판됐다.
※논문명: Structure of the Huntingtin F-actin complex reveals its role in cytoskeleton organization,
DOI: https://doi.org/10.1126/sciadv.adw4124
※공동 교신저자: KAIST 송지준 교수를 비롯해 오스트리아 ISTA 플로리안 슈어(Florian Schur) 교수, 프랑스 소르본대/파리 뇌연구원 산드린 훔베르(Sandrine Humbert) 교수
한편 이번 연구는 보건복지부 글로벌연구협력지원사업(한-스위스 바이오헬스 국제공동연구) 및 한-오스트리아 협력기반조성사업의 지원을 받아 수행됐다.
단백질간 '소통' 알츠하이머 독성 완화 규명..치료 길 열어
전 세계 치매 환자는 약 5,000만 명으로 추산되며, 이 중 약 70% 이상을 차지하는 알츠하이머병은 대표적인 신경 퇴행성 뇌질환이다. 한국 연구진이 알츠하이머병의 두 핵심 병리 단백질인 타우와 아밀로이드 베타가 실제로 직접 소통하며 독성을 조절한다는 사실을 세계 최초로 분자 수준에서 규명했다. 이번 성과는 알츠하이머병의 병태생리를 새롭게 바라보게 하는 한편, 질환 조기 진단을 위한 바이오마커 발굴과 신경퇴행성 뇌질환 치료제 개발에 중요한 단서를 제공할 것으로 기대된다.
우리 대학 화학과 임미희 교수(금속신경단백질연구단 단장) 연구팀이 국가과학기술연구회(NST, 이사장 김영식) 산하 한국기초과학지원연구원(KBSI, 원장 양성광) 첨단바이오의약연구부 이영호 박사 연구팀과 공동연구, 한국과학기술연구원(KIST, 원장 오상록) 뇌과학연구소 김윤경 박사, 임성수 박사 연구 참여로, 알츠하이머병의 주요 병리 단백질 중 하나인 타우의 미세소관 결합 영역(microtubule-binding domain)이 아밀로이드 베타와 직접적인 상호작용(타우-아밀로이드 베타 커뮤니케이션)을 통해 응집 경로를 변화시키고, 세포 독성을 완화할 수 있음을 분자 수준에서 규명했다고 24일 밝혔다.
알츠하이머병은 병리학적으로 신경세포 안에서 영양분과 신호물질을 운반하는 수송로 역할을 하는 단백질인 ‘타우’의 응집으로 형성된 ‘신경섬유 다발’과 뇌 속 신경세포 막에 뇌 발달, 세포 간 신호 전달, 신경세포 회복 등에 관여하는 아밀로이드 전구 단백질이 어떤 효소에 의해 비정상적으로 잘린 아밀로이드 베타 조각이 뭉쳐있는 ‘아밀로이드 베타 응집체’로 ‘아밀로이드 플라크(노인성 반점)’ 형태로 세포 내부와 외부에 각각 축적되는 특징을 보인다.
두 단백질은 공간적으로 분리된 위치에서 병적 구조물을 형성하지만, 타우와 아밀로이드 베타가 세포 내·외에 같이 존재하며 상호작용 가능성이 제시된 바 있다. 그러나 두 단백질의 직접적인 상호작용이 질환의 발병과 진행에 미치는 영향에 대한 분자 수준의 이해가 아직 명확히 밝혀지지 않은 상태다.
공동연구팀은 타우 단백질이 신경세포 안에서 미세소관(세포 내 수송로)에 붙는 구조(K18, R1-R4, PHF6*, PHF6) 중, K18, R2, R3이 아밀로이드 베타와 결합해 ‘타우–아밀로이드 베타 복합체(이종 복합체)’를 만들게 된다. 이 작용이 중요한 이유는 아밀로이드 베타가 원래대로라면 독성이 강한 딱딱한 섬유(아밀로이드 피브릴)로 쌓이게 되지만, 타우의 특정 부분이 붙으면 아밀로이드 베타가 독성이 낮고 덜 단단한 형태의 응집체 형성 경로로 전환할 수 있음을 밝혀냈다.
특히, 이들 타우 단백질의 반복 구조는 질환 발병과 연결되는 아밀로이드 응집이 처음 뭉치기 시작하는 과정(핵 형성 단계)을 지연시키고, 또한 질환 진행에 관계되는 아밀로이드 베타의 응집 속도와 구조적 형태를 동시에 변화시킨다. 그 결과, 뇌 세포 내·외 환경 모두에서 아밀로이드 베타가 일으키는 독성 수준을 뚜렷하게 감소시켰다.
이번 연구에서는 분광학, 질량분석, 등온 적정 열량측정법, 핵자기공명 등 정밀한 분석 기법과 함께 세포 기반 독성 평가를 결합해, 타우–아밀로이드 간 상호작용의 구조적, 열역학적, 기능적 특성을 종합적으로 분석했다.
그 결과, 타우 단백질의 특정부분(미세소관 결합 반복 구조)은 물과 잘 섞이는 성질(친수성)과 물과 잘 안 섞이는 성질(소수성)을 동시에 가지고 있고 이 두 성질의 균형이 잘 맞을 때, 타우는 아밀로이드 베타를 더 잘 결합하게 된다. 즉 타우의 성질이 아밀로이드 베타와의 결합력·응집 경로·독성 조절 능력을 결정짓는 핵심 요인임을 입증했다.
KBSI 이영호 박사는 “이번 연구는 난치성 신경퇴행성 질환인 치매의 발병 및 진행에 관한 새로운 분자 메커니즘을 규명했으며 특히, 분자 간 상호작용과 단백질 응집을 중심으로 한 다학제적 융합연구는 알츠하이머병과 파킨슨병 사이의 질환 간 상호작용은 물론, 치매, 당뇨병, 암 등 여러 질환 사이의 상호 연관성을 밝히는 데 중추적 역할을 할 것으로 기대된다”라고 밝혔다.
우리 대학 임미희 교수는 “타우 단백질이 단순히 병리 생성에 기여하는 것이 아니라, 특정 미세소관 결합 반복 구조를 통해 아밀로이드 베타의 응집과 독성을 적극적으로 완화할 수 있는 분자적 기능을 수행한다는 점에서 기존의 병리적 이해에 새로운 전환점을 제시했다”라며, “이번 연구는 알츠하이머병뿐만 아니라 다양한 단백질 응집 기반 신경 퇴행성 뇌질환에서 치료 표적으로 작용할 수 있는 새로운 분자 모티프를 발굴했다는 데 의의가 있다”라고 말했다.
이번 연구는 KAIST 화학과 김민근 박사가 제1 저자로 국제 저명 학술지인 `네이처 케미컬 바이올로지(Nature Chemical Biology, Impact factor: 13.7, 화학 분야 상위 3.8%)'에 8월 22일 게재됐다.
※논문명: Interactions with tau’s microtubule-binding repeats modulate amyloid-β aggregation and toxicity
※DOI: 10.1038/s41589-025-01987-0
한편, 이번 연구는 한국연구재단의 기초연구사업(리더연구 및 중견연구), 중견연구자지원사업 및 세종과학펠로우십과 KBSI와 KIST 지원을 받아 진행됐다.
"왜 우울한가요?" 우울증 원인 규명하고 치료 실마리 밝혀
우울증(Major Depressive Disorder, MDD)은 전 세계적으로 가장 흔한 정신질환 중 하나지만, 그 분자적 발생 원인*은 여전히 명확히 규명되지 않은 상태다. 국내 연구진은 우울증이 단순한 신경세포 손상 때문만이 아니라, 특정 신경 신호 경로의 교란으로 발생할 수 있음을 밝혀내며, 특히 고령 우울증 환자에게 기존 항우울제가 반응하지 않는 분자적 원인을 규명했다. 이번 연구는 광유전학 기술을 활용한 신경 신호 조절 치료의 가능성을 제시했고, 고령 우울증 환자에게도 향후 ‘Numb’ 단백질을 표적으로 하는 새로운 치료 전략 개발의 실마리를 제공했다.
*분자적 발생 원인: 발병 원인에 대해 뇌 속 분자나 단백질, 유전자 수준에서 설명
우리 대학 생명과학과 허원도 석좌교수 연구팀, 국립과학수사연구원(국과수, 원장 이봉우) 이민주 법의관, 아주대학교의료원 (의료원장 한상욱) 병리과 김석휘 교수 연구팀과 협력하여, 극단 선택을 한 환자의 뇌 조직의 RNA 염기 분석과 면역조직화학 분석을 통해 우울증의 새로운 분자 기전을 규명하고, 광유전학(optogenetics) 기술을 통해 신경 회복을 유도하는 신호 경로를 조절함으로써 항우울 효과를 회복할 수 있음을 동물모델에서 증명했다고 19일 밝혔다.
연구팀은 기억과 감정을 담당하는 뇌 부위인 해마(hippocampus), 특히 ‘치아이랑(dentate gyrus, DG)’이라는 부분에 주목했다. 치아이랑은 해마 안에 정보가 처음으로 들어올 때 새로운 기억 생성, 신경세포가 자라고 감정 조절과 우울증과 연관이 있는 공간에 해당된다.
2가지의 대표적인 우울증 마우스 모델(콜티코스테로이드 스트레스 모델 및 만성 예측 불가능 스트레스 모델)을 이용해 스트레스가 유발될 때, 이 DG 부위에서 성장인자(FGF)라는 신호물질을 받아서 세포 안의 성장·분화 명령을 전달하는‘FGFR1(Fibroblast Growth Factor Receptor 1)’이라는 신호 수용체가 눈에 띄게 늘어났다.
이후, FGFR1 유전자라는 특별 조건을 제거한 ‘조건부 녹아웃(conditional knockout,cKO) 마우스’를 활용하여 해당 수용체가 제거된 상황에서는 스트레스에 더 취약하고 우울 증상을 더 빠르게 나타낸다는 점을 규명했다. 이는 FGFR1이 정상적인 신경 조절 및 스트레스 저항에 중요한 역할을 한다는 것을 시사한다.
이어서 연구팀은 광유전학 기술을 활용해 스트레스 저항하는 데 매우 중요한 FGFR1을 빛으로 활성화할 수 있는 ‘optoFGFR1 시스템’을 개발, FGFR1이 부족한 우울증 마우스 모델에서 이를 활성화함으로써 항우울 효과가 회복되는 현상을 관찰했다. 즉, FGFR1 신호 활성화만으로도 우울 행동이 개선될 수 있음을 실험적으로 입증한 것이다.
하지만 놀랍게도 노화된 우울증 마우스 모델에서는‘optoFGFR1 시스템’을 통한 FGFR1 신호 활성화에도 항우울 효과가 나타나지 않았다. 이에 대한 원인을 탐색하던 중, 연구팀은‘Numb’이라는 단백질이 노화된 뇌에서 과도하게 발현돼 FGFR1의 신호전달을 방해한다는 사실을 밝혀냈다.
실제로 연구팀이 수행한 사후 인간 뇌 조직 분석에서도 나이가 든 우울증 환자에게서만 Numb 단백질의 특이적 과발현이 관찰됐다. 이후, 마우스 모델에 Numb을 억제하는 유전자 조절 도구(shRNA)를 발현시키고 동시에 FGFR1 신호를 활성화한 결과, 회복되지 않던 노화된 우울증 마우스 모델에서도 신경 발생과 행동이 정상 수준으로 회복되었다. 이는 Numb 단백질이 FGFR1 신호 경로의 ‘차단자’ 역할을 하며, 해마의 항우울 기전을 막는 주요 인자임을 보여준다.
KAIST 허원도 석좌교수는 “이번 연구는 우울증이 단순한 신경세포 손상만이 아니라, 특정 신경신호 경로의 교란에 의해 발생할 수 있음을 밝힌 데 큰 의미가 있다. 특히, 고령 환자에게 항우울제가 잘 듣지 않는 이유를 분자적으로 규명하고, 향후 Numb 단백질을 표적으로 하는 새로운 치료법 개발의 실마리를 제공할 것”이라고 말했다.
이어 “또한, KAIST의 뇌신경과학 역량과 국과수의 법의학 기반 뇌 분석 기술이 결합된 이번 융합연구를 통해, 향후 정신 질환 기초 연구와 임상 적용 간 연결 고리가 될 것으로 기대된다”라고 강조했다.
KAIST 생명과학과 신종필 박사과정이 제1 저자로 주도한 이번 연구는 국제 학술지 ‘익스페리멘탈 앤 몰리큘라 메디슨(Experimental & Molecular Medicine)’에 2025년 8월 15일 자로 게재됐다.
- 논문명: Dysregulation of the FGFR1 signaling in hippocampus facilitates depressive disorder
- DOI: https://doi.org/10.1038/s12276-025-01519-9
한편, 이번 연구는 과학기술정보통신부 한국연구재단 ASTRA 및 바이오 의료개발 기술 사업의 지원을 받았다.
빛으로 단백질 · mRNA를 원할 때 꺼내 쓴다
기존의 ‘광유전학적 분자 응축물 기술(생체 분자를 빛을 사용해 특정한 덩어리(응축체)로 뭉치게 하거나 풀리게 조절하는 기술)’은 세포 안에서 여러 단백질이나 RNA가 다양하게 섞이기 때문에 원하는 분자만 골라서 다루기 어렵다는 한계가 있었다. 이 한계를 넘어, 우리 연구진이 ‘빛’을 쪼여 세포 속 특정 단백질이나 유전정보(mRNA)를 원하는 시점에 꺼내 쓸 수 있는 기술을 개발하여 유전자 조절 기술, 신약 개발 등에서의 새로운 가능성을 제시했다.
우리 대학 생명과학과 허원도 석좌교수 연구팀이 물리학과 박용근 석좌교수 연구팀과 협력하여, 단백질 및 mRNA를 세포 내에서 빛으로 원하는 시점에 저장(Store)하고 방출(Release)할 수 있는 ‘릴리저 기술(RELISR, REversible Light-Induced Store and Release)’을 개발했다고 23일 밝혔다.
이번 연구는 세포 내 다양한 생체 분자가 막이 없는 응축체(Biomolecular Condensate)에 저장돼 기능을 조절한다는 최신 세포기능 조절 원리를 빛으로 구현한 기술이다.
연구팀은 특정 분자와 선택적으로 결합하는 표적 부위가 부착된 광유전학 단백질 복합체를 증폭해, 빛 반응 분자 저장·방출 시스템인 릴리저 기술을 설계했다. 이를 통해 세포 및 생체 내에서 특정 단백질 혹은 mRNA를 릴리저에 안정적으로 저장해 빛을 비추면 원하는 시점에 방출할 수 있음을 증명했다.
연구팀은 다양한 세포주와 신경세포, 그리고 생쥐 간 조직 등에서 해당 시스템의 효과를 입증했다.
연구팀은 단백질을 저장⸱방출하는 단백질 방출시스템인 ‘단백질 릴리저 (Protein-RELISR)’를 통해 세포 모양 변화, 신경세포 내 국소 단백질 활성 등 미세 환경에서의 생화학 반응을 실시간으로 제어하는 데 성공했다.
아울러, mRNA를 표적으로 하는 mRNA 방출시스템인‘mRNA 릴리저 (mRNA-RELISR)’를 활용해, mRNA가 세포질 내에서 번역될 시점을 빛으로 조절하는 데 성공했으며, 실제 생쥐 모델에서도 mRNA 번역 조절이 가능함을 확인했다.
빛으로 표적 분자를 순간적으로 ‘가두는’ 기존 연구 LARIAT(단백질 올가미, 2014), mRNA-LARIAT(mRNA 올가미, 2019)에서 나아가, 이번 연구에서는 동일한 광자극으로 세포 내 무막 응축체에 저장된 단백질과 mRNA를 즉시 ‘방출해’단백질의 기능을 복원하고 mRNA 번역을 활성화할 수 있는 새로운 플랫폼을 제시했다.
연구를 주도한 허원도 석좌교수는 “릴리저(RELISR) 플랫폼은 광유전학 원리를 기반으로 단백질과 mRNA를 원하는 시간, 장소에서 저장하고 방출할 수 있는 범용 도구로, 뇌 신경세포 연구나 세포치료제, 차세대 신약 개발 등에 폭넓게 응용될 수 있다”며 “향후 유전자 가위(CRISPR-Cas) 시스템 등과의 결합이나, 조직 특이적 전달 기술(AAV 등)과 접목할 경우, 더욱 정밀한 치료 도구로 확장될 수 있을 것”이라고 설명했다.
이번 연구는 생명과학과 허원도 석좌교수(교신저자)의 지도로, 이채연 박사(연구 당시 학생, 제1 저자)가 중심이 되어 연구를 수행했다. 공동 교신저자인 물리학과 유다슬이 박사와 박용근 석좌교수도 연구에 참여했으며, 특히 박용근 교수 연구팀은 이미징 기반 분석을 통해 세포 내에서 ‘릴리저(RELISR)’ 시스템이 유도하는 생물리학적 변화를 정량적으로 평가하고, 실험 결과의 신뢰성과 객관성을 높이는 데 중요한 역할을 담당했다.
생명과학연구소 이채연 박사가 제1 저자로 주도한 이 연구는 국제 학술지 ‘네이처 커뮤니케이션스(Nature Communications)’에 2025년 7월 7일자로 게재됐다.
논문명: Optogenetic storage and release of protein and mRNA in live cells and animals
DOI: 10.1038/s41467-025-61322-y
한편, 이번 연구는 삼성미래기술육성재단과 한국연구재단 유전자편집·제어·복원기반기술개발사업의 지원을 받아 수행됐다.
바이러스 면역반응‘켰다 껐다’단백질 스위치 발견
팬데믹 이후에도 다양한 신종 감염병이 출현하며 우리는 여전히 강력하고 지속적인 면역 방어를 요구하는 바이러스 위협에 직면해 있다. 동시에 과잉으로 면역 체계가 반응하면 오히려 몸의 조직을 해치는 부작용이 생기기도 한다. KAIST·국제 연구진이 이런 바이러스에 면역 반응을 조절하는 스위치 역할의 단백질을 찾아내는데 성공했다. 향후 감염병 대응과 자가면역질환 치료의 새로운 기반을 마련할 것으로 기대된다.
우리 대학 생명화학공학과 김유식 교수와 미국 플로리다주립대 차승희 교수 공동 연구팀이 세포 내 미토콘드리아에서 유래한 이중나선 RNA가 면역반응을 증폭시키는 메커니즘을 규명하고, 이를 조절하는 단백질 슬러프(SLIRP)가 바이러스 감염과 자가면역질환 양쪽에서 ‘면역 스위치’ 역할을 수행하는 것을 밝혀냈다.
자가면역질환은 면역 체계가 외부 침입자와 자기 조직을 구분하지 못하고 스스로를 공격하는 질환으로, 쉐그렌 증후군, 전신홍반루푸스 등으로 아직 명확한 발병 원인도 밝혀지지 않고, 효과적인 치료제도 드물다.
따라서 면역 과활성화를 유도하는 분자적 기전을 규명하고, 이를 조절할 수 있는 인자를 찾아내고자 생명화학공학과 김유식 교수 연구팀은 세포 내 기관에서 만들어지는 유전물질인 미토콘드리아 이중나선 RNA (mitochondrial double-stranded RNA, 이하 mt-dsRNA)에 주목했다.
엠티 디에스알엔에이(mt-dsRNA)는 바이러스 RNA와 유사하여 감염 바이러스가 없어도 우리 몸에서는 바이러스로 착각하고 면역반응을 유도할 수 있다는 점에 착안했다.
연구진은 면역 반응을 증폭시키는 단백질 슬러프를 발견하였고 실제로 다양한 자가면역질환 환자의 조직과 바이러스 자극을 모사한 실험 모델에서 슬러프 발현이 증가하는 것으로 확인했고, 반대로 슬러프를 억제했을 때는 면역반응이 현저히 감소되는것을 확인했다.
실험 결과, 슬러프가 면역 증폭의 핵심 인자임을 입증했고, 슬러프 단백질이 mt-dsRNA를 안정화시키고 축적시키는 역할을 하여, 이로 인해 면역반응이 증폭된다는 사실을 알아냈다.
이번 연구는 슬러프 단백질의 기능을 바이러스 감염 및 자가면역질환이라는 상반된 환경에서도 검증했다. 인간 베타 코로나바이러스 OC43과 뇌심근염 바이러스 EMCV에 감염된 세포에서 슬러프를 억제했을 때 항바이러스 반응이 감소하고, 바이러스 복제가 증가함을 확인했다.
반면, 대표적인 자가면역질환인 쉐그렌 증후군 환자의 혈액과 침샘 세포에서는 슬러프와 엠티 디에스알엔에이의 발현이 높게 나타났고, 슬러프를 억제했을 때 비정상적인 면역반응이 완화되는 경향도 관찰되었다.
이는 슬러프가 감염과 자가면역질환 모두에서 면역반응을 조절하는 중요한 분자 스위치라는 사실음 뒷받침한다.
생명화학공학과 김유식 교수는 "이번 연구를 통해 슬러프 단백질이 엠티 디에스알엔에이(mt-dsRNA)를 기반으로 면역반응의 증폭을 유도하는 핵심 인자임을 규명했다ˮ면서 "특히, 슬러프가 자가면역질환과 바이러스 감염에서 공통적으로 작동하는 면역 조절자라는 점에서, 슬러프를 타깃으로 한 면역 균형 조절 전략이 다양한 질환에 적용될 수 있을 것으로 기대된다ˮ라고 말했다.
생명화학공학과 박사과정 구도영(제1저자), 석사과정 양예원 학생(제2저자)이 참여한 이번 연구는 국제학술지 `셀 리포츠 (Cell Reports)'에 지난 4월 19일 온라인 게재됐다.
※ 논문명 : SLIRP amplifies antiviral signaling via positive feedback regulation and contributes to autoimmune diseases https://doi.org/10.1016/j.celrep.2025.115588
※ 주저자: 구도영(KAIST, 제1저자), 양예원(KAIST, 제2저자), 차승희(플로리다 주립대, 교신저자), 김유식(KAIST, 교신저자)
이번 연구는 보건복지부의 공익적 의료기술연구사업과 미국 국립보건연구원 (NIH)의 연구과제(R01) 지원을 받아 수행됐다.
6밀리초에 단백질 반응 순간 포착 성공
생명현상을 이해하고 나아가 신약 개발을 위해 단백질 상호 작용 및 효소-기질 반응 등 마이크로초(micro-second)~밀리초(milli-second) 수준의 짧은 시간 동안 일어난 현상을 이해하는 것이 핵심이다. KAIST 연구진이 생명 현상을 이해하는데 필수적인 생화학 반응의 변화를 수 밀리초 수준에서 정지시키고 분석하는 방법을 개발했다.
우리 대학 화학과 강진영 교수와 물리학과 이원희 교수의 공동 연구팀이 초고속 생화학 반응 연구를 위한 ‘패릴렌(parylene)’* 기반 박막 미세유체 혼합-분사 장치’를 개발했다고 24일 밝혔다.
*패릴렌: 단백질 반응을 초고속으로 관찰하기 위한 미세유체(microfluidics) 장치를 만드는 핵심 재료로 수 마이크로미터의 얇은 박막형태로 스프레이 제작이 가능하게 만든 소재임
이번 연구는 기존에 제시됐던 시간 분해 초저온 전자현미경(이하 TRCEM, Time-resolved cryo-electron microscopy) 기법의 한계를 극복해 기존 대비 시료 소모량을 1/3 수준으로 줄이면서 분석가능한 최소 반응시간을 기존 기술 대비 수십 배 향상하여 6밀리초(1,000분의 6초)까지 단축했다.
시간 분해 초저온 전자현미경은 단백질 복합체의 반응 중간 상태를 초저온에서 빠르게 냉동해 구조를 분석하는 기술로 최근 특별히 많은 주목을 받고 있다.
통상적인 초저온 전자현미경 분석에서는 짧은시간 존재하고 사라지는 반응 중간체를 포착하기 어려웠다. 이를 해결하기 위해 다양한 TRCEM 기법이 개발됐으나, 기존 기술은 많은 시료 소비와 제한된 시간 해상도 등의 한계로 어려움이 있었다. 연구침은 이를 극복하기 위해 초박막 패릴렌 소재를 적용한 새로운 혼합-분사장치를 개발했다.
본 장치는 시료의 양을 기존 대비 1/3 수준으로 줄여 실질적인 연구의 어려움을 개선했으며, 미세유체역학 소자 내에서 반응 개시에 드는 시료 혼합 시간을 0.5밀리초로 줄여 전체 반응시간을 6밀리초까지 줄였다. 연구팀은 또한 소자의 일체형 설계를 통해 실험의 정밀도와 재현성을 향상했다.
강진영 교수는 “이번 연구는 TRCEM 기법을 더욱 실용적으로 만들었으며, 구조 생물학 및 신약 개발, 효소 반응연구, 바이오 센서 개발 등 다양한 생명과학 및 의약 분야에서 패럴린 박막 소자의 폭넓은 활용 가능성을 제시했다”고 연구의 의의를 설명했다.
이원희 교수는 “연구팀은 앞으로 이를 활용한 생화학 반응 연구와 더 빠른 반응 분석을 위한 성능 향상을 목표로 연구를 이어갈 계획이다”라고 밝혔다.
이번 연구 결과는 화학과 석·박통합과정 황혜랑 연구원이 제 1저자로 국제학술지 어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials) 2025년 1월 28일 자에 온라인 게재됐다. (논문명: Integrated Parylene-Based Thin-Film Microfluidic Device for Time-Resolved Cryo-Electron Microscopy, doi.org/10.1002/adfm.202418224).
한편 이번 연구는 한국연구재단과 삼성미래기술육성재단, CELINE 컨소시엄의 지원을 받아 수행됐다.
코로나바이러스 전염 메커니즘 규명
중증급성호흡기증후군(이하 SARS) 코로나바이러스와 같은 코로나 19(COVID-19)는 전 세계적 팬데믹으로 짧은 시간 안에 확산되었지만 왜 급격히 복제돼 빠르게 전염되는지 기전이 아직까지 규명되지 않았다. 우리 연구진이 코로나바이러스 핵심 효소 단백질(헬리케이스)의 복제과정이 급격히 촉진되어 전염되는 메커니즘을 밝혀내며 바이러스 백신 및 치료제 개발에 새로운 가능성을 제시했다.
우리 대학 생명과학과 이광록 교수 연구팀이 nsp13 단백질*은 두 가지 활성을 가지고 있어 시너지 효과를 내며, 이를 통해 SARS 코로나바이러스의 유전물질인 RNA 복제를 촉진한다는 기전을 규명했다고 17일 밝혔다.
*nsp13 단백질: SARS 코로나바이러스의 헬리케이스로, 바이러스가 증식하는 데 필수적인 유전자 복제와 전사 과정에 중요한 효소이다. 헬리케이스는 마치 지퍼를 열고 닫는 것처럼 DNA나 RNA의 꼬인 구조를 풀어주는데, 유전정보를 읽거나 복제할 때 유전물질을 먼저 풀려야 하므로 필수적이다. 쉽게 말해, 헬리케이스는 엉킨 실타래를 푸는 효소단백질이다.
여기 두 가지 활성에 해당되는 첫번째 헬리케이스 활성은 DNA 또는 RNA와 같은 이중 가닥 핵산을 단일 가닥으로 풀어주는 효소 기능이며, 복제나 전사 과정을 촉진시킨다. 두번째 RNA 샤페론 활성은 핵산 구조의 올바른 접힘(folding)과 풀림 기능을 돕는 단백질로, 잘못된 RNA를 교정하거나 안정성을 향상시켜 세포 내 RNA 대사과정을 돕는 역할을 한다.
코로나바이러스가 빠르게 전파하기 위해서는 바이러스의 유전물질을 빠르게 복제하고 구성성분인 단백질을 생산해서 이들을 조합하는 것이 필수적이다.
연구팀은 첫 번째 단계인 유전물질의 RNA 복제가 다른 바이러스에 비해 왜 빠르게 일어나는지 알려지지 않았으나, nsp13 단백질이 기존의 헬리케이스 활성과 이제까지 알려지지 않은 새로운 샤페론 활성으로 유전자 복제 과정을 빠르게 촉진한다는 것을 규명했다.
nsp13 단백질은 유전적으로 잘 보존되어 다양한 변이 코로나바이러스에 대응하는 백신이나 감염 치료의 중요 표적이지만, 정확한 작용 메커니즘에 대해서는 완전한 이해가 부족했다.
연구팀은 nsp13 헬리케이스가 ATP(아데노신 삼인산)*를 분해하여 나온 화학에너지를 이용하여 유전물질인 RNA의 꼬인 구조를 단일 가닥으로 풀어주고 부산물로 ADP(아데노신 이인산)*가 생성하게 된다. 이때 생성된 ADP가 nsp13와 재결합하게 되면 샤페론 기능을 활성화시켜 RNA 이차구조를 추가로 불안정화한다는 사실을 알아냈다.
*ATP(아데노신 삼인산)는 충전된 배터리처럼 에너지를 담고 있고 효소가 일을 할 때는 에너지를 공급해준다. ATP는 인산 3개를 가지고 있어 인산이 분해 될 때 에너지를 방출하고 인산 2개를 가진 ADP(아데노신 이인산)를 부산물로 생성한다.
결론적으로 헬리케이스 활성과 샤페론 활성이 시공간적으로 동시에 협력해 RNA 복제를 촉진하게 된다는 새로운 방식의 작용기전을 규명했다.
이광록 교수는 “이번 연구는 대표적 핵산-효소 단백질인 헬리케이스가 ADP를 통해 샤페론적 활성을 나타내는 새로운 발견이며, 이를 통해 헬리케이스의 기능 다양성에 대한 이해의 폭을 넓혀주고, SARS 코로나바이러스의 다양한 변이에 대응할 효과적 치료제 및 백신 개발의 실마리를 제공할 것으로 기대한다”라고 연구 결과의 의의를 밝혔다.
이 연구는 유정민 박사가 제 1저자로 세계적 국제학술지 ‘핵산 연구 (Nucleic Acids Research)’ (IF: 16.7, 생화학 및 분자생물학 분야 상위 1.8%) 온라인판에 1월 29일 게재됐다. (논문명 : A novel ADP-directed chaperone function facilitates the ATP-driven motor activity of SARS-CoV helicase) (doi: 10.1093/nar/gkaf034)
한편 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구지원, 선도연구센터 지원사업, 글로벌 기초연구 지원사업과 합성생물학핵심기술개발사업의 지원을 받아 수행됐다.
선천성면역을 조절하는 인공단백질 디자인, 차세대 백신·면역 치료제 개발 가능성 제시
우리 대학 생명과학과 김호민 교수 연구팀과 국제 공동연구팀인 미국 워싱턴대학교 단백질디자인 연구소 (Institute for Protein Design, IPD) 닐 킹 교수 (Prof. Neil King) 연구팀은 컴퓨터기반 단백질디자인 기술을 활용하여 선천성면역을 활성화시키는 새로운 인공단백질을 디자인하고, 그들의 3차원 분자구조를 규명하는데 성공했다고 10일 밝혔다.
김호민 교수 연구팀과 Neil King 교수 연구팀은 컴퓨터 기반 단백질디자인 기술을 활용하여 선천성면역 수용체인 TLR3와 높은 친화도를 갖는 인공단백질을 개발했다. 또한, 초저온 투과전자현미경 (Cryo-EM) 분석을 통해 설계된 인공단백질이 TLR3와 결합하는 분자결합모드를 규명하였다. 특히, 자연계의 TLR3 작용제(dsRNA)와는 전혀 다른 구조를 가진 디자인된 인공단백질에 의해 선천성면역 수용체 TLR3을 효과적으로 활성화시킬 수 있음을 보인 첫 사례이다.
생명과학과 김호민 교수가 교신저자로 참여한 이번 연구는 국제 학술지 `네이쳐 커뮤니케이션 (Nature Communications)'에 1월 31일 출판됐다. (논문명 : De novo design of protein minibinder agonists of TLR3)
TLR3 (Toll-like Receptor 3)는 이중가닥 RNA (double-stranded RNA, dsRNA)를 인식하여 선천성 면역반응을 활성화하는 패턴 인식 수용체 (pattern recognition receptor)이다. 기존의 TLR3 작용제는 백신면역 증강제 (adjuvant) 및 항암면역치료제로 활용될 가능성이 있었으나, 화학적 불안정성, 면역 과활성화 위험, 균질한 대량제조의 어려움 등으로 인해 임상적 적용이 제한적이었다.
이에 연구팀은 컴퓨터 기반 단백질디자인 (computational protein design) 기술을 활용하여 TLR3과 결합하는 초소형 인공단백질 (minibinder)을 디자인하였다. 해당 인공단백질은 크기가 작고, 높은 안정성을 가지며, 지정한 TLR3의 특정 부위에만 특이적으로 결합할 수 있도록 디자인하였다. 이후 초저온 투과전자현미경 (Cryo-EM) 분석을 통해 설계된 인공단백질이 초기디자인 의도와 잘 부합되게 TLR3의 오목한 표면 (concave surface)에 결합하고 있음을 확인하였고, 이들의 분자상호작용을 규명하였다.
기존 dsRNA기반 작용제보다 더 정밀하게 TLR3 신호를 활성화할 수 있도록 Cryo-EM 구조를 통해 규명된 분자구조를 바탕으로 인공단백질을 이어 붙인 다중 결합(multivalent) 형태의 단백질을 추가적으로 개발하였고, TLR3 하위 신호인 NF-κB 신호를 활성화시킴을 확인하였다. 이를 통해 자연계에 존재하지 않은 디자인된 인공단백질에 의하여 선천성 면역반응을 효과적으로 조절할 수 있음을 확인하였다.
이번 연구는 KAIST 연구진과 미국 워싱턴대학교 단백질디자인 연구소 연구진 간의 긴밀한 국제공동연구를 통해 이루어졌으며, 향후 면역 조절 인공단백질에 기반한 다양한 백신면역 증강제, 항암면역치료제 등의 개발에 활용될 수 있을 것으로 기대한다.
교신저자인 김호민 교수는 “인공지능기반 단백질디자인 연구는 2024년 노벨화학상 (데이비드 베이커교수, 단백질디자인 연구소)을 수상하며 큰 주목을 받고 있으며, 인공지능 기술의 발전에 힘입어 빠르게 성장하고 있는 첨단바이오 연구분야이다. 향후 백신, 신약, 진단키트, 산업용효소 등 다양한 바이오신소재 개발에 크게 기여할 수 있을 것이다. 이번 연구는 긴밀한 국제 공동연구를 통해 우수한 성과를 거둔 성공적 사례”라고 말했다.
한편 이번 연구는 IBS 바이오분자 및 세포구조연구단의 지원을 받아 수행되었다.
신개념 생체형틀법 캠바이오(CamBio) 개발
생물학적 구조는 인공적으로 복제하기 어려운 정도의 복잡한 특징을 가지고 있지만 이러한 생체 구조체를 직접적으로 활용여 제작하는 생체형틀법*은 다양한 분야의 응용으로 사용됐다. KAIST 연구진이 이전에 활용할 수 없었던 생체 구조체를 활용하고, 생체형틀법을 통해 적용될 수 있는 영역을 넓히는데 성공했다.
*생체형틀법: 바이러스부터 우리의 몸을 구성하는 조직과 장기에 이르기까지 이러한 생체 구조의 기능을 활용하고자, 생체 구조를 형틀로 사용하여 기능성 구조재료를 만들어내는 방식
우리 대학 신소재공학과 장재범, 정연식 교수 공동연구팀이 생체 시료 안의 특정 내부 단백질을 활용하고 높은 조정성을 지닌 생체형틀법을 개발했다고 10일 밝혔다.
기존의 생체형틀법 방법은 주로 생체시료의 외부 표면만을 활용하거나, 한정된 치수와 샘플 크기로 인해 다양한 생체 구조체들의 구조-기능 상관성을 활용하여 기능성 나노구조체를 제작하기 어렵다는 한계를 가지고 있다.
이런 문제를 해결하고자 연구팀은 다양한 생체 내부 구조체를 활용하고, 높은 조정성을 가지는 생체형틀법을 연구했다.
연구 결과, 다양한 단백질들로 구성된 생체 시료 안에서 특정한 단백질 구조체로부터 선택적으로 다양한 특정 및 크기를 가진 나노구조체를 합성할 수 있는 ‘캠바이오(CamBio, Conversion to advanced materials via labeled Biostructure’라는 생체형틀법을 개발했다. 캠바이오(CamBio) 방식에서는 여러 제조·생물 분야 기술들을 병합하여 생체 시료에서 제작할 수 있는 기능성 나노구조체의 높은 조정성을 확보했다.
반복적으로 항체를 붙이는 기술, 세포를 일정한 모양으로 배열하는 기술, 그리고 조직을 얇게 자르는 기술을 통해, 캠바이오(CamBio)로 만든 기능성 나노구조체가 물질 감지에 사용되는 표면증강 라만산란(SERS)* 기판에서 향상된 성능을 보였다.
*표면증강 라만산란(SERS): 빛을 이용해 아주 적은 양의 물질도 감지할 수 있는 기술로, 금이나 은 같은 금속 표면에서 특정 물질이 빛과 반응하며 신호가 크게 증폭되는 원리
연구팀은 세포 속 골격 단백질을 이용해 만든 나노입자 체인은 반복적으로 항체를 붙이는 과정을 통해 구조를 더 자유롭게 조정할 수 있었고, 최대 230% 향상된 SERS 성능을 보였다.
또한, 연구팀은 세포 내부의 구조체를 활용하는 것에서 확장해 고기 내부에 있는 근육 조직을 동결 절편기를 활용해 시료를 얻고, 이에 캠바이오 과정을 수행해 금속 입자들로 이루어진 주기적인 밴드를 가지고 있는 기판 제작에도 성공했다. 이와 같은 방식으로 기판을 제작하는 것은 생체 시료를 활용해 대면적으로 제작할 수 있을 뿐만 아니라 가격 경쟁력을 가지는 방식임을 보인다.
연구팀이 개발한 캠바이오는 활용될 수 있는 생체시료의 범위를 넓힘으로써 다양한 연구 분야가 직면한 문제를 해결할 방식으로 생체형틀법이 사용될 것으로 기대된다.
제1 저자인 송대현 박사과정은 “캠바이오를 통해서 더욱 다양한 단백질 구조체를 활용할 수 있는 생체형틀법을 포괄적으로 적립했다”라며 “유전자 편집이나 3D 바이오프린팅과 같은 최신 생물 기술 및 새로운 물질 합성 기술과 결합이 계속된다면, 다양한 응용 분야에 생체 구조가 활용될 수 있을 것이다”라고 말했다.
신소재공학과 송대현 박사과정, 송창우, 조승희 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 사이언스(Advanced Science )'에 지난해 11월 13일 자 온라인 공개됐다. (논문명 : Highly Tunable, Nanomaterial-Functionalized Structural Templating of Intracellular Protein Structures Within Biological Species) https://doi.org/10.1002/advs.202406492
한편 이번 연구는 과학기술정보통신부 과학난제도전융합연구개발사업 (한국연구재단 2024), 과학기술정보통신부 선도연구센터 (웨어러블 플랫폼소재 기술센터, 한국연구재단 2023), 과학기술정보통신부 선도연구센터 (글로벌 생체융합 인터페이싱 소재 센터, 한국연구재단 2024), 과학기술정보통신부 국가생명연구자원 선진화사업 (바이오 데이터 품질선도센터, 한국연구재단 2024) 등의 지원을 받아 수행됐다.
지질 뗏목의 원리 밝혀 질병 치료에 희소식
지질 뗏목은 세포막 간 융합, 신호 전달, 바이러스 침투 등 세포 기능과 질병 발병의 핵심 과정에 중요한 역할을 한다. 한국 연구진이 지금까지 알려지지 않았던 지질 뗏목의 정렬 원인과 그 조절 메커니즘을 밝혀내어 세포막 간 상호작용을 조절하여 질병 치료에 새로운 접근법을 제공할 수 있을 것으로 기대된다.
우리 대학 바이오및뇌공학과 최명철 교수팀이 고등과학원(원장 최재경) 현창봉 교수팀, 포항가속기연구소(소장 강흥식) 이현휘 박사와 공동으로 세포막 간의 상호작용을 매개하는 지질 뗏목(Lipid Raft)의 정렬 현상의 원리를 최초로 규명했다고 5일 밝혔다. 세포 융합, 바이러스 침투, 세포 간 신호 전달 등 다양한 세포막 간의 상호작용을 조절할 수 있는 핵심 기전을 밝힌 것이다.
세포막(Cell membrane)은 세포의 내부와 외부를 구분하는 얇고 유연한 막으로, 지질 이중층(lipid bilayer)으로 구성돼 있다. 세포막에는 수많은 막단백질(membrane proteins)이 존재하는데, 이들은 세포가 외부 환경과 소통할 수 있는 창구 기능을 한다.
지질 뗏목은 세포막의 특정 영역으로서, 높은 유동성을 가지는 세포막의 다른 부분들과는 달리 매우 낮은 유동성을 가지며, 기능적으로 연관된 막단백질들을 안정된 뗏목 안으로 모아 효율적인 상호작용을 가능하게 한다. 세포막을 바다로, 막단백질을 사람으로 비유하자면, 망망대해에서 멀리 떨어져 헤엄치는 사람들끼리는 서로 의사소통하기 어렵지만, 이들을 한 뗏목 위에 모두 태워 놓으면 서로 쉽게 대화할 수 있는 것과 비슷하다.
연구팀은 지질 뗏목 위에 존재하는 막단백질 중 많은 수가 세포막 간의 상호작용, 즉 두 세포막이 서로 생체신호를 주고받거나, 단백질을 통해 결합하거나, 두 막이 하나로 합쳐지는 등의 작용에 관여한다는 점에 주목했다.
연구팀은 두 세포막 간의 거리가 지질 뗏목의 정렬을 조절하는 핵심 요인일 것이라는 가설을 세우고, 세포막을 여러 겹 쌓아 놓은 구조의 지질 다중막(lipid multilayer)을 재구성해 이 가설을 검증했다. 이때 지질 뗏목들은 단순히 정렬만 되는 것이 아니라, 각각의 지질 뗏목의 크기가 커지면서 보다 안정된 구조를 형성했다. 두 세포막 사이의 거리가 지질 뗏목의 정렬과 크기를 조절하는 핵심 스위치인 것을 밝혀낸 것이다.
연구팀은 분자동역학(molecular dynamics) 시뮬레이션*을 통해 물 분자층을 분석한 결과, 지질 뗏목들이 정렬된 상태가 정렬되지 않은 상태보다 불안정한 수소결합 층의 부피가 작기 때문에 전체 시스템의 에너지를 최소화하기 위해 지질 뗏목이 자연적으로 정렬되는 것을 밝혀냈다.
*분자동역학 시뮬레이션: 분자 간 상호작용이 주어졌을 때 운동 방정식을 수치적으로 풀어 구조와 동적 과정을 해석하는 방법
최명철 교수는 “지질 뗏목이 세포막 간의 상호작용에 관여한다는 사실은 잘 알려져 있지만, 어떤 원리로 상호작용을 매개하는지는 아직 베일에 싸여 있었다”며, “이번 논문은 세포막 간의 거리가 지질 뗏목의 정렬, 나아가 세포막 사이의 상호작용을 조절하는 핵심 스위치임을 밝혀내어 생명 현상의 바탕이 되는 물리적 환경의 중요성을 재조명하는 이정표적 연구”라고 연구의 의의를 설명했다.
최 교수는 또한 “특히 물 분자의 수소결합이 지질 뗏목의 정렬을 매개하는 중요한 요소임을 보여주었는데, 이는 우리 몸의 약 70%를 차지하는 물이 생명 현상이 일어나는 무대에서 단순한 조연이 아닌 주연으로 활약할 수 있음을 보여준다”고 강조했다. 이어 최 교수는 “지질 뗏목을 모사하는 구조는 현재 생체 센서 등에 활발하게 활용되고 있으며, 이번에 발견한 세포막 사이의 거리라는 스위치를 통해 보다 다양한 기능을 가진 생체 센서들이 개발될 수 있는 공학적 토대도 제공할 것이다”라고 기대감을 내비쳤다.
우리 대학 이수호 박사와 고등과학원 박지현 박사가 공동 제1 저자로, 고등과학원 현창봉 교수와 KAIST 최명철 교수가 공동 교신저자로 참여한 이번 연구 결과는 국제학술지 ‘미국화학회지(Journal of American Chemical Society)’에 5월 22일 字 표지논문(supplementary journal cover)으로 게재됐다. (논문명: Water Hydrogen-Bond Mediated Layer by Layer Alignment of Lipid Rafts as a Precursor of Intermembrane Processes)
한편 이번 연구는 한국연구재단, 보건복지부, KAIST의 지원을 받아 수행됐다.
생성형 AI로 혁신적 신약 개발 가능성 열어
최근 자연어나 이미지, 동영상, 음악 등 다양한 분야에서 주목받는 생성형 AI가 신약 설계 분야에서도 기존 신규성 문제를 극복하고 새로운 혁신을 일으키고 있다고 하는데 어떤 기술일까?
우리 대학 화학과 김우연 교수 연구팀이 단백질-분자 사이의 상호작용을 고려해 활성 데이터 없이도 타겟 단백질에 적합한 약물 설계 생성형 AI를 개발했다고 18일 밝혔다.
신규 약물을 발굴하기 위해서는 질병의 원인이 되는 타겟 단백질에 특이적으로 결합하는 분자를 찾는 것이 중요하다. 기존의 약물 설계 생성형 AI는 특정 단백질의 이미 알려진 활성 데이터를 학습에 활용하기 때문에 기존 약물과 유사한 약물을 설계하려는 경향이 있다. 이는 신규성이 중요한 신약 개발 분야에서 치명적인 약점으로 지적되어 왔다. 또한 사업성이 높은 계열 내 최초(First-in-class) 타겟 단백질에 대해서는 실험 데이터가 매우 적거나 전무한데, 이 경우 기존 방식의 생성형 AI를 활용하는 것이 불가능하다.
연구팀은 이런 데이터 의존성 문제를 극복하기 위해 단백질 구조 정보만으로 분자를 설계하는 기술 개발에 주목했다. 타겟 단백질의 약물 결합 부위에 대한 3차원 구조 정보를 주형처럼 활용해 해당 결합 부위에 꼭 맞는 분자를 주조하듯 설계하는 것이다. 마치 자물쇠에 딱 맞는 열쇠를 설계하는 것과 같은 이치다.
또한 기존 단백질 구조 기반 3차원 생성형 AI 모델들은 신규 단백질에 대해 설계한 분자들의 안정성과 결합력이 떨어지는 등 낮은 일반화 성능을 개선하기 위해서 연구팀은 신규 단백질에 대해서도 안정적으로 결합할 수 있는 분자를 설계할 수 있는 기술을 개발하는 데 초점을 뒀다.
연구팀은 설계한 분자가 단백질과 안정적으로 결합하기 위해서는 단백질-분자 간 상호작용 패턴이 핵심 역할을 하는 것에 착안했다. 연구팀은 생성형 AI가 이러한 상호작용 패턴을 학습하고, 분자 설계에 직접 활용할 수 있도록 모델을 설계하고 재현할 수 있도록 학습시켰다.
기존 단백질 구조 기반 생성형 AI 모델들은 부족한 학습 데이터를 보완하기 위해 10만~1,000만 개의 가상 데이터를 활용하는 반면, 이번 연구에서 개발한 모델의 장점은 수천 개의 실제 실험 구조만을 학습해도 월등히 높은 성능을 발휘한다는 것이다. 이는 자연에서 관찰되는 단백질-분자 상호작용 패턴을 사전 지식의 형태로 학습에 활용함으로써 적은 데이터만으로도 일반화 성능을 획기적으로 높인 것에 기인한다.
일례로 아시아인에 주로 발견되는 돌연변이 상피 성장인자 수용체(EGFR-mutant)*는 비소세포폐암의 주요 원인으로 알려져 있는데, 이를 타겟으로 하는 약물을 설계하기 위해서는 야생형(wild-type) 수용체**에 대한 높은 선택성을 고려하는 것이 필수적이다.
*상피 성장인자 수용체: 상피 성장인자 수용체:상피 성장인자 수용체는 상피 세포의 성장을 촉진하는 인자에 결합함으로써 활성화되는 막 단백질로, 이 수용체의 돌연변이로 인한 지나친 활성은 다양한 종양의 발생과 관련이 있다고 알려져 있음
**야생형 수형체: 야생형은 자연 상태에서 가장 흔하게 발견되는 유전자형 또는 표현형으로, 유전자나 생체 분자 등의 변이가 없는 정상적인 상태를 말함
연구진은 생성형 AI를 통해 돌연변이가 일어난 아미노산에 특이적인 상호작용을 유도해 분자를 설계했고, 그 결과 생성된 분자의 23%가 이론상으로 100배 이상의 선택성을 가지는 것으로 예측됐다. 이와 같은 상호작용 패턴에 기반한 생성형 AI는 인산화효소 저해제(kinase inhibitor)* 등과 같이 약물 설계에 있어 선택성이 중요한 상황에서 더욱 효과적으로 활용될 수 있다.
*인산화효소 저해제: 단백질의 인산화를 촉진하는 효소로, 일반적으로 아데노신 삼인산(ATP)으로부터 인산기를 단백질의 특정 잔기에 전달함. 인산화효소는 세포 내 신호전달 네트워크의 핵심 조절자로서, 다양한 질병의 기전에 관여하여 약물 개발의 표적으로 여겨지고 있음. 이를 위해 인산화효소에 결합하여 활성을 억제하는 목적을 가지는 분자를 인산화효소 저해제라 함
제1 저자로 참여한 화학과 정원호 박사과정 학생은 “사전 지식을 인공지능 모델에 사용하는 전략은 상대적으로 데이터가 적은 과학 분야에서 적극적으로 사용되어 왔다”며 “이번 연구에서 사용한 분자 간 상호작용 정보는 약물 분자뿐 아니라 다양한 생체 분자를 다루는 바이오 분야의 문제에도 유용하게 적용될 수 있을 것”이라고 말했다.
한국연구재단의 지원을 받아 수행된 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications) (IF=16.6)’ 2024년 3월 15호에 게재됐다. (논문명: 3D molecular generative framework for interaction-guided drug design, 논문 링크: https://www.nature.com/articles/s41467-024-47011-2)