본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%87%8C%EC%8B%A0%EA%B2%BD%EA%B3%BC%ED%95%99
최신순
조회순
신경 네트워크의 연결을 실시간으로 조절 가능한 신경 칩 플랫폼 개발
우리 대학 바이오및뇌공학과 남윤기 교수 연구팀이 나노입자 기술을 기반으로 시험관 조건에서 배양한 신경 네트워크의 연결을 실시간으로 조절할 수 있는 신경칩 플랫폼을 개발했다고 7일 밝혔다. 이번 연구는 신경 네트워크의 구조를 조절하기 위한 기존의 많은 세포 형태화 기술이 세포 배양 이전 단계에만 적용 가능한 데 반해, 네트워크의 발달 및 성숙 단계에서도 도입할 수 있다는 점에서 큰 의미가 있다. 바이오및뇌공학과 홍나리 박사과정(지도교수:남윤기)이 주도한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 12월 9일 字에 게재됐다. (논문명: Thermoplasmonic neural chip platform for in situ manipulation of neuronal connections in vitro) 우리 뇌의 복잡한 구조를 모방하는 신경 네트워크 모델을 체외 조건에서 구현하기 위해서는 신경세포의 위치와 연결을 원하는 구조에 맞춰 정렬하는 기술이 필요하며, 이를 위해 다양한 방식의 미세공정 기법을 통한 신경세포 형태화 기술이 개발돼왔다. 그러나 이러한 기술들은 세포를 배양하기 전에 배양기판의 표면을 개질하는 방법을 기반으로 하고 있어 배양 초기 단계에서 원하는 네트워크의 구조를 통제하는 것은 가능하나, 이후 수일 또는 수 주에 걸친 세포 간 네트워크 형성 과정 중에 네트워크 연결을 조절하는 것이 매우 어렵다는 단점이 있었다. 연구진은 세포 배양 중에도 신경 네트워크의 구조와 기능을 실시간으로 조절할 수 있는 기술을 개발하기 위해, `아가로즈 하이드로겔 (agarose hydrogel), 금 나노막대, 미세 전극 칩' 기반의 신경 칩 플랫폼을 제작했다. 해초로부터 추출한 물질로 조직공학 분야에서 활용되고 있는 아가로즈 하이드로겔은 신경세포의 흡착을 방해하는 세포 반발성을 가지고 있어, 배양기판 상에 다양한 형태의 패턴을 제작해 이 물질이 없는 영역에만 한정적으로 신경 네트워크를 형성시킬 수 있다. 또한 아가로즈 하이드로겔은 열에 의해 녹는 특성이 있어, 국소적인 열을 통해 특정한 위치의 하이드로겔을 제거할 수 있다. 연구진은 원하는 영역에만 국소적 열을 발생시키기 위한 매개체로 금 나노막대를 사용했다. 금 나노막대는 근적외선을 선택적으로 흡수해 열을 발생시킬 수 있는 광열 특성이 있다. 마지막으로 미세 전극 칩은 신경세포의 전기적 신호를 비침습적으로 장기간 측정한다. 연구진은 배양기판인 미세 전극 칩 위에 금 나노막대 층을 형성하고, 그 위에 미세 패턴을 지닌 아가로즈 하이드로겔 층을 제작함으로써, 각 미세 패턴 안에 독립된 신경 네트워크들을 구축했다. 다음으로 개발된 플랫폼을 통해 세 가지의 다른 조작 방식으로 신경 네트워크의 구조와 기능을 조절할 수 있음을 실험적으로 확인했다. 첫 번째로는, 금 나노막대 층에서 발생하는 열을 통해 네트워크 사이에 하이드로겔을 국소적으로 제거했으며, 제거된 영역을 따라 신경돌기(축삭)가 생장해 새로운 신경 연결이 생성됨을 확인했다. 두 번째로는, 네트워크를 연결하고 있는 신경돌기에 직접 열을 가함으로써 원하는 신경 연결을 선택적으로 제거할 수 있음을 관찰했다. 이러한 신경 연결의 생성과 제거 기술을 미세 전극 칩 상에서 실행함으로써, 연구팀은 네트워크의 구조적 변화에 의한 기능적 연결성을 분석할 수 있었다. 세 번째로는, 광열 자극을 이용한 신경 활성 억제 현상을 이용해 개별 네트워크의 활성 변화를 조절하면서 서로 연결된 네트워크 간의 기능적 연결성을 대응시킬 수 있음을 확인했다. 이번 연구의 교신저자인 남윤기 교수는 "이번 연구에서 개발된 신경 세포 칩 플랫폼은 신경회로의 구조와 기능을 세포 발달과정 중에 조절할 수 있다ˮ며, "앞으로 뇌신경과학 연구를 위한 다양하고 복잡한 형태의 체외 신경 모델을 구현하는 데 활용될 것으로 기대된다ˮ고 말했다. 한편 이번 연구는 과학기술정보통신부 중견연구자지원사업(도약연구)와 글로벌박사양성사업 지원을 받아 수행됐다.
2021.01.06
조회수 55067
효율적 정보 처리를 위한 뇌신경망의 최적화 구조 형성 원리 규명
우리 대학 바이오및뇌공학과 백세범 교수 연구팀이 대뇌 시각 피질 회로가 정보처리에 가장 최적화된 구조를 자발적으로 형성하는 원리를 밝혔다. 이번 연구 결과는 수 십년간의 뇌신경과학 연구에서 그 원리를 명확히 밝혀내지 못했던 시각 피질 기능성 지도들의 복합 구조 형성의 기작을 규명한 것으로, 수학적 모델의 도입을 통해 복잡한 생물학적 신경망 구조의 기원을 찾아낸 성공적인 연구로 평가된다. 연구팀은 망막 신경세포들이 초기 발생 단계에서 일정한 물리적 공간 분포 패턴을 형성하는 과정에서 다양한 종류의 정보 처리 회로가 자발적으로 생성될 뿐만 아니라, 이 패턴으로부터 시각 피질의 기능성 뇌지도들의 규칙적이고 효율적인 복합적 구조가 형성됨을 밝혀냈다. 바이오및뇌공학과 송민 박사과정과 장재선 박사가 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘셀(cell)’의 온라인 자매지 ‘셀 리포츠(Cell Reports)’ 1월 5일 자에 게재됐다. (논문명: Projection of orthogonal tiling from the retina to the visual cortex). 포유류의 일차시각피질 신경세포들은 눈으로부터 입력된 시각 정보의 색, 물체의 형태를 이루는 선분의 각도, 폭 등의 기본적인 시각 정보를 구별하여 전기적 신호로 부호화 한다. 예를 들어 시각 자극의 방향에 따라 반응의 정도가 달라지는 성질인 방향 선택성(orientation selectivity)을 가지는 세포들은 물체의 형태를 구별하기위해 필요한 윤곽선에 대한 정보를 선택적으로 처리한다. 이러한 시각 피질 세포들의 방향 선택성, 공간 주기성등의 성질은 시각 피질 상에서 연속적, 주기적인 형태로 변하는 기능성 지도 (functional map) 구조를 형성하는데, 이 지도들의 구조는 서로 독립적으로 형성되는 것이 아니라 서로 수평, 또는 수직 관계를 이루며 매우 효율적인 짜임새 구조(efficient tiling)를 이룬다. 이를 통해 시각 피질의 모든 국소 영역에서 정보 요소들을 손실없이 효율적으로 부호화할 수 있도록 만드는 대주(hypercolumn) 구조를 형성하는데, 시각 정보처리의 핵심이 되는 이러한 기능성 구조가 어떻게 발생하는지에 대해서는 밝혀진 바가 없었다. 연구팀은 수학적 모델에 기반한 컴퓨터 시뮬레이션을 통하여 포유류의 망막에서 발견되는 신경절 세포들이 단순한 물리적 상호작용을 통해 시각 정보의 입력이 없는 상태에서도 놀라울 정도로 효율적인 공간적 배치를 자발적으로 형성할 수 있음을 확인하였다. 연구팀은 이러한 구조가 시각 피질로 투영되어 시각 피질의 다양한 기능성 뇌지도들을 형성됨과 동시에, 그 지도들 간의 상호 짜임새를 정보처리에 가장 최적화된 형태로 구성할 수 있음을 보였다. 뇌의 주요 정보 처리 회로에 대한 설계도가 이미 망막 단계의 신경망이 형성되는 과정에서 자발적으로 발생함을 증명한 것이다. 백세범 교수는 “시각 정보처리의 핵심 구조인 시각 피질의 기능성 지도가 어떻게 자발적으로 발생하는지 규명하였을 뿐 아니라, 다양한 정보를 처리하는 각각의 뇌신경망 회로 구조가 단순한 물리적 상호작용에 의해 가장 효율적인 형태의 복합 구조를 형성할 수 있음을 처음으로 증명한 연구다" 라고 언급했다. 이번 연구는 한국연구재단의 이공분야기초연구사업 및 원천기술개발사업의 지원을 받아 수행됐다.
2021.01.06
조회수 52458
백세범 교수팀, 고등 인지 기능의 자발적 발생 원리 규명
우리 대학 바이오및뇌공학과 백세범 교수 연구팀이 학습 과정을 전혀 거치지 않은 신경망에서 고등 시각 인지 기능이 자발적으로 발생할 수 있음을 보였다고 4일 밝혔다. 이번 연구 결과는 신경망에서 상위 인지 기능을 발생시키기 위해서는 반드시 충분한 데이터 학습이 필요하다는 기존의 상식과 완전히 상반되는 것으로, 현재 통용되고 있는 인공지능의 구현 방식에 대한 근본적인 의문을 던진다. 또한 연구팀의 결과는 다양한 생물 종의 뇌에서 관측되는 선천적인 인지 기능의 발생에 대한 설명 가능한 이론을 제시할 뿐만 아니라, 뇌신경과학 연구의 가장 근본적인 질문 중 하나인 `인지 지능의 발생 및 진화'의 원리에 대한 기존과는 전혀 다른 새로운 시각을 제시한다. 연구팀은 뇌의 시각 신경망을 모사한 인공신경망 시뮬레이션을 통해, 모든 연결 가중치가 무작위로 정해지도록 초기화된 신경망이 전혀 학습을 거치지 않은 상태에서도 특정 숫자에 선택적으로 반응하는 `수량 선택성'을 자발적으로 생성함을 발견했다. 또한 이렇게 자발적으로 발생한 수량 선택적 유닛은 실제 동물의 뇌에서 발견되는 수량 선택적 뉴런들이 보이는 *`베버-페히너 법칙' 등의 주요 특성을 동일하게 따름을 확인했다. ☞ 베버-페히너 법칙(Webber-Fechner law): 자극과 감각 사이의 상대적 관계를 나타내는 심리물리학적 법칙. 인지 가능한 자극 강도 변화량은 현재 강도에 지수적으로 비례한다는 것으로 이는 인지생물학에서 기본적인 원리로 알려져 있다. 우리 대학 물리학과 김광수 석박사통합과정, 바이오및뇌공학과 장재선 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스(Science)'의 온라인 자매지 `사이언스 어드밴시스(Science Advances)' 1월 1일 字에 게재됐다. (논문명 : Visual number sense in untrained deep neural networks) 신경망에서 인지 지능의 발생에 관한 연구는 뇌인지과학과 인공지능 분야 모두에서 핵심적인 연구 주제 중 하나다. 흥미롭게도 인지 기능을 발생시키기 위해서 일반적으로 많은 양의 데이터 입력을 통한 학습 과정을 거쳐야 하는 인공신경망과 달리 동물의 뇌는 태어난 직후부터 다양한 인지 기능을 수행하는 `선천적' 인지 지능을 가지고 있는 것이 관찰돼왔다. 이러한 차이점은 생물학적 지능의 발생과 진화의 원리를 이해하는 데 결정적인 역할을 하고, 현재 개발된 인공지능과의 차이점을 보여주는 핵심적인 단서를 제공할 것으로 기대되고 있으나 이러한 인지 기능이 어떻게 자발적으로 발생하는지는 아직 명확하게 알려진 바가 없었다. 이에 연구팀은 학습을 거치지 않은 신경망의 초기 상태에서 나타나는 단순한 물리적 구조 특성이 다양한 인지 기능을 발생시킬 수 있을 것이라 예상했다. 이를 확인하기 위해 수행한 심층신경망 시뮬레이션 연구를 통해 모든 연결 가중치가 무작위로 초기화된 신경망에서도 `계층 구조'와 무작위적 피드 포워드 연결만 형성된다면 특정 수량에 선택적으로 강한 반응을 보이는 신경망 유닛들이 자발적으로 생성됨을 확인했다. 이러한 신경망 유닛들은 실제 뇌에서 발견되는 수량 선택적 신경세포의 주요한 성질들과 유사한 특성을 보였다. 이 결과는 생물학적 뇌에서 생애 초기에 발견되는 선천적인 숫자 선택성 역시 동일한 원리에 의해 발생할 가능성을 시사한다. 이러한 결과는 기초적인 인지 기능이 신경망의 초기 구조가 갖춰진 시점에 이미 존재하고 이후 다양한 학습을 통해 조절될 수 있음을 보여주며, 뇌신경과학의 중요한 화두 중 하나인 `지능의 선천적 혹은 후천적(nature vs. nurture) 형성'에 관해 매우 중요한 단서를 제공하는 발견으로 평가된다. 연구팀의 결과는 학습과 훈련에 의존해 대부분의 뇌 기능이 발생한다는 기존의 시각을 탈피해, 선천적이고 자발적으로 발생하는 뇌 기능에 대한 보다 심도 있는 연구가 필요하다는 사실을 시사한다. 한편으로 현재의 인공지능 구현 기법들과 완전히 다른 인공지능 구현 원리를 제시할 수 있는 생물학적 뇌 기반 이론을 제시한다. 백세범 교수는 "뇌 신경망 연구를 통해 얻은 아이디어를 인공신경망 연구에 적용하고, 그 결과를 다시 뇌과학적 원리를 발견하는 데 사용해 중요한 통찰을 가능하게 한 의미있는 연구ˮ라며 "뇌신경과학과 뇌공학 분야 모두에서 가장 중요한 질문 중 하나라고 할 수 있는 인지 지능의 기원에 대한 이해의 전환점을 가져올 것으로 기대된다ˮ라고 언급했다. 한편 이번 연구는 한국연구재단의 이공분야기초연구사업 및 원천기술개발사업의 지원을 받아 수행됐다.
2021.01.04
조회수 59277
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1