본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%82%98%EB%85%B8%ED%8A%9C%EB%B8%8C
최신순
조회순
단백질로 엮어낸 이중나선 개발
우리 대학 바이오및뇌공학과 최명철 교수 연구팀이 나노소재의 기초물질로 활용할 수 있는 단백질을 새롭게 발굴했다고 30일 밝혔다. 연구팀이 몸속에서 미세소관을 구성하는 `튜불린(Tubulin) 단백질'을 나노공학의 측면에서 재조명해 거둔 성과다. 바이오및뇌공학과 이준철 박사과정과 송채연 박사(現 아모레퍼시픽 R&D 센터)가 공동 제1 저자로 그리고 최명철 교수가 교신저자로 참여한 이번 연구결과는 국제학술지 `스몰(Small)'에 지난 9월 17일 字 표지논문(Back Cover)으로 게재됐다. (논문명: Tubulin Double Helix: Lateral and Longitudinal Curvature Changes of Tubulin Protofilament) 자연계와 산업계의 나노소재들은 놀라울 정도로 크고 복잡한 구조를 가진다. 이 구조들의 기본 형성원리는 작고 단순한 단위체들의 고유 형태가 전체구조를 결정한다는 원리다. 일반적으로 다양한 곡면 구조를 만들려면 서로 다른 모양을 가지는 최소 두 종류의 분자들을 이어 붙여야 한다. 예를 들어, 세포막의 경우 발아와 융합 과정에서 막의 곡률이 역동적으로 변하는데, 이는 형태가 다른 여러 종류의 인지질 분자들이 혼합돼 있어 가능한 특성이다. 최 교수 연구팀은 생명 현상의 중요한 역할을 담당하는 *미세소관의 특이한 성질에 주목했다. 바로 미세소관이 성장과 붕괴 과정에 필요한 다양한 곡면을 오직 한 종류의 단위체인 튜불린 단백질만으로 구현하기 때문이다. ☞ 미세소관 (Microtubule): 튜불린 단백질로 이루어진 긴 튜브 형태의 나노 구조물이다. 물질 수송의 고속도로, 세포 분열 과정의 분자기계 역할을 수행한다. 연구팀은 튜불린이 수직한 두 방향으로 접히는 독특한 성질에 핵심이 있다고 판단, 튜불린의 형태 변형을 인공적으로 제어하겠다는 점에 아이디어를 얻은 후 곧장 연구를 시작했다. 튜불린 단백질의 접힘을 제어하는 분자스위치를 찾고자 한 것이다. 튜불린이 강한 음전하를 띤 단백질이라는 점을 감안해 양전하 중합체인 폴리라이신(poly-L-lysine)이 미세소관의 구조를 변형하는 과정을 관찰했다. 가속기 X선 산란장치를 이용해 옹스트롱(Å, 100억 분의 1미터)의 정확도로 측정하자 DNA 이중나선 구조의 결정적 증거가 된 로절린드 프랭클린의 *`포토 51'과 유사한 결과를 확인했다. ☞ 포토 51 (photo 51): 로절린드 프랭클린이 촬영한 DNA의 엑스선 회절 이미지로, 프랜시스 크릭과 제임스 왓슨이 DNA 이중나선 구조를 밝히는데 결정적인 증거가 되었다. 이 결과는 튜불린들이 꼭 두 줄씩 길게 늘어선 `튜불린 이중나선' 구조의 형성을 의미하는 것으로 연구팀은 튜불린을 두 방향으로 접을 수 있는 분자스위치를 찾아낸 것이다. 분자스위치의 크기와 개수를 조절함에 따라, 최 교수 연구팀은 단일 벽 나노튜브에서 이중벽 나노튜브로 변환하거나 이중나선의 간격을 자유자재로 조절이 가능한 성과를 거둘 수 있었다. 연구팀 관계자는 "우리 몸속 세포물질을 그대로 이용하되, 자연의 설계를 뛰어넘어 혁신적인 나노건축물을 구현해낸 것ˮ이라고 의미를 부여했다. 최 교수 연구팀의 이번 연구 결과는 튜불린 단백질을 나노소재의 기초물질로 활용하게 해줄 핵심 전략을 제시했다는 점에서 의미가 있다. 최명철 교수는 "이 논문을 계기로 튜불린을 나노소재로 활용하는 연구들이 본격적으로 시작될 것ˮ 이라면서 "새로운 바이오-나노기술의 특이점이 될 선도적 연구ˮ라고 이번 연구에 대한 의미를 부여했다. 최 교수는 이어 "나노미터 크기의 광학/전기/의료 소재를 개발하는 플랫폼으로는 물론 모터 단백질 키네신과 결합해 분자기계를 개발하는 등 활용 가능성이 무궁무진하다ˮ고 강조하면서 "향후 다양한 형태와 특성을 가진 나노소재를 만들어낼 `튜불린 나노공학'의 발전 기반 조성과 함께 이번 연구를 통해 발견한 분자스위치는 알츠하이머병 등 뇌질환의 새로운 치료 전략으로 활용될 것ˮ이라고 기대감을 내비쳤다. 앞서 연구팀은 이 분자스위치를 이용한 튜불린 나노소재의 의료적 가치를 입증한 바 있다. 튜불린 나노튜브를 항암 약물의 일종인 미세소관 표적 치료제의 만능 전달체로 활용할 수 있다는 결과를 지난 8월 20일 字 `어드밴스드 머티리얼스(Advanced Materials)'誌에 표지논문으로 발표했다. 미국 산타바바라 캘리포니아대와 공동으로 진행된 이번 연구는 한국연구재단 (중견연구, 방사선기술)과 한국원자력연구원·KAIST의 지원을 받았으며 포항 방사광 가속기의 소각 X선 산란 장치를 이용해 실험을 수행했다.
2020.10.30
조회수 20364
항암제 표적 단백질을 약물 전달체로 쓴다?
우리 대학 바이오및뇌공학과와 생명과학과 공동연구팀이 항암제의 표적 단백질을 전달체로 이용하는 역발상 연구결과를 내놨다. 항암제를 이용한 암 치료에 새로운 가능성이 열릴 전망이다. 우리 대학 생명과학과 김진주 박사·바이오및뇌공학과 이준철 박사과정 학생이 공동 제1 저자로 그리고 생명과학과 전상용·바이오및뇌공학과 최명철 교수가 공동 교신저자로 참여한 이번 연구결과는 국제학술지 ‘어드밴스드 머티리얼스(Advanced Materials, IF=27.4)’ 8월 20일 字 표지논문으로 게재됐다. (논문명: Tubulin-based Nanotubes as Delivery Platform for Microtubule-Targeting Agents) 우리 몸속 세포가 분열할 때 염색체*들은 세포 한가운데에 정렬해 두 개의 딸세포로 나눠지는데 이 염색체들을 끌어당기는 끈이 바로 `미세소관(microtubule)'이다. 미세소관은 `튜불린(tubulin)' 단백질로 이루어진 긴 튜브 형태의 나노 구조물이다. ☞ 염색체(Chromosome): DNA와 단백질이 응축하여 만드는 막대 형태의 구조체로 생명체의 모든 유전 정보를 지니고 있다. 미세소관을 표적으로 하는 항암 약물인 ‘미세소관 표적 치료제(microtubule-targeting agents)’는 임상에서 다양한 암의 치료에 활용되고 있다. 이들은 암세포 미세소관에 결합해 앞서 언급한 끈 역할을 방해함으로써, 암세포의 분열을 억제, 결국 사멸을 유도한다. 튜불린 단백질에는 이 약물이 강하게 결합하는 고유의 결합 자리(binding site)가 여럿 존재한다. 연구진은 이 점에 착안해 표적 물질인 튜불린 단백질을 약물 전달체로 사용한다는 획기적인 아이디어를 세계 최초로 구현했다. 공동연구팀은 튜불린 나노 튜브(Tubulin-based NanoTube), 약자로 TNT로 명명한 전달체를 개발하고 항암 효능을 실험으로 확인한 것이다. TNT라는 이름에는 암 치료를 위한 폭발물이라는 의미도 담고 있다. 미세소관 표적 치료제는 TNT에 자발적으로 탑재된다. 약물 입장에서는 세포 내 미세소관에 결합하는 것과 다를 바가 없기 때문이다. 이는 항암제마다 적합한 전달체를 찾아야 했던 기존의 어려움을 해소해준다. 즉 TNT는 미세소관을 표적으로 하는 모든 약물을 탑재할 수 있는 잠재력을 가진‘만능 전달체’인 셈이다. 연구진은 먼저 튜불린 단백질에 블록 혼성 중합체*인 PEG-PLL(pegylated poly-L-lysine)을 섞어 기본적인 TNT 구조를 만들었다. 여기서 튜불린은 빌딩 블록, PEG-PLL은 이들을 붙여주는 접착제이다. 그 다음, 도세탁셀(docetaxel), 라우리말라이드(laulimalide), 그리고 모노메틸아우리스타틴 E(monomethyl auristatin E) 3종의 약물이 TNT에 탑재됨을 보였다. 이 약물들은 실제 유방암, 두경부암, 위암, 방광암 등의 화학요법에 활용되고 있는 항암제들이다. ☞ 블록 혼성 중합체(Block copolymer): 두 종류 이상의 단위체로 이루어진 고분자 화합물로, 각 단위체들이 길게 반복되는 특징이 있다. 연구팀은 또 탑재되는 약물의 종류와 개수에 따라 TNT의 구조가 변할 뿐 아니라 약물 전달체로서의 물리·화학적 특성도 달라진다는 사실을 밝혀냈다. 이는 TNT가 탑재하려는 약물에 맞춰 자발적으로 형태를 변형하는‘적응형 전달체’임을 보여주고 있다. 연구팀은 특히 항암제가 탑재된 TNT가 엔도좀-리소좀 경로(endo-lysosomal pathway)로 암세포에 들어가 뛰어난 항암 및 혈관 형성 억제 효과를 보인다는 점을 세포 및 동물을 대상으로 한 실험을 통해 확인했다. 적응형 만능 약물 전달체가 성공적으로 구현이 가능했던 배경에는 연구진이 보유한 튜불린 분자 제어 기술력 때문이다. 연구진은 튜불린 단백질을 일종의 레고 블록으로 보았다. 블록의 형태를 변형하고 쌓아 올리는 방식을 제어하여, 튜브 형태의 구조체를 조립하는 노하우를 축적해왔다. 연구팀은 이번 연구에서 포항 방사광 가속기의 소각 X-선 산란 장치를 이용해 TNT 구조를 나노미터(nm, 10억 분의 1미터) 이하의 정확도로 분석했다. 공동연구팀은 "이번 연구결과는 지금까지 학계에 보고되지 않은 완전히 새로운 방식의 약물 전달체를 구현했다는 점에서 의미가 크다ˮ고 밝혔다. 연구팀은 이어 "TNT는 현재까지 개발된, 또 향후 개발예정인 미세소관 표적 치료제까지 운송할 수 있는 범용적인 전달체이며, 다양한 항암제들의 시너지 효과(synergy effect)를 기대할 수 있는 `플랫폼 전달체'가 될 것ˮ이라고 강조했다. 이번 연구는 한국연구재단 (중견연구, 리더연구, 방사선기술, 바이오의료기술개발사업) 한국원자력연구원, KUSTAR-KAIST의 지원으로 수행됐다.
2020.08.25
조회수 21286
박찬범, 스티브 박 교수, 혈액 기반 알츠하이머병 멀티플렉스 진단센서 개발
KAIST(총장 신성철) 신소재공학과 박찬범 교수와 스티브 박 교수 공동 연구팀이 혈액으로 알츠하이머병을 진단할 수 있는 센서를 개발하는 데 성공했다. 연구팀이 개발한 진단 센서를 활용해 혈액 내에 존재하는 베타-아밀로이드 및 타우 단백질 등 알츠하이머병과 관련한 4종의 바이오마커 농도를 측정·비교하면 민감도는 90%, 정확도 88.6%로 중증 알츠하이머 환자를 구별해 낼 수 있다. 김가영 박사과정·김민지 석사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지‘네이처 커뮤니케이션스(Nature communications)’1월 8일 자 온라인판에 게재됐다. (논문명: Clinically accurate diagnosis of Alzheimer’s disease via multiplexed sensing of core biomarkers in human plasma) 알츠하이머병은 치매의 약 70%를 차지하는 대표적인 치매 질환이다. 현재 전 세계 65세 이상 인구 중 10% 이상이 이 질병으로 인해 고통을 받고 있다. 하지만 현재의 진단 방법은 고가의 양전자 단층촬영(PET) 또는 자기공명영상진단(MRI) 장비를 사용해야만 하기에 많은 환자를 진단하기 위해서는 저렴하면서도 정확한 진단 기술개발의 필요성이 제기돼 왔다. 연구팀은 랑뮤어 블라젯(Langmuir-blodgett)이라는 기술을 이용해 고밀도로 정렬한 탄소 나노튜브(Carbon nanotube)를 기반으로 한 고민감성의 저항 센서를 개발했다. 탄소 나노튜브를 고밀도로 정렬하게 되면 무작위의 방향성을 가질 때 생성되는 접합 저항(Tube-to-tube junction resistance)을 최소화할 수 있어 분석물을 더 민감하게 검출할 수 있다. 실제로 고밀도로 정렬된 탄소 나노튜브를 이용한 저항 센서는 기존에 개발된 탄소 나노튜브 기반의 바이오센서들 대비 100배 이상의 높은 민감도를 보였다. 연구팀은 고밀도로 정렬된 탄소 나노튜브를 이용해 혈액에 존재하는 알츠하이머병의 바이오마커 4종류를 동시에 측정할 수 있는 저항 센서 칩을 제작했다. 알츠하이머병의 대표적인 바이오마커인 베타-아밀로이드 42 (β-amyloid42,), 베타-아밀로이드 40 (β-amyloid40), 총-타우 단백질 (Total tau proteins) 및 과인산화된 타우 단백질 (Phosphorylated tau proteins)은 그 양이 알츠하이머병의 병리와 직접적인 상관관계를 가지기 때문에 알츠하이머병 환자를 구별해 내는 데 매우 유용하다. 고밀도로 정렬된 탄소 나노튜브 기반 센서 칩을 이용해 실제 알츠하이머 환자와 정상인의 혈액 샘플 내에 존재하는 4종의 바이오마커 농도를 측정 하고 비교한 결과, 민감도와 선택성은 각각 90%, 그리고 88.6%의 정확도를 지녀 중증 알츠하이머 환자를 상당히 정확하게 진단할 수 있음을 확인했다. 연구팀이 개발한 고밀도로 정렬된 탄소 나노튜브 센서는 측정방식이 간편하고, 제작비용도 저렴하다. 박찬범 교수는“본 연구는 알츠하이머병으로 이미 확정된 중증환자들을 대상으로 진행하였다. 향후 실제 진료 환경에 활용하기 위해서는 경도인지장애 (Mild cognitive impairment) 환자의 진단 가능성을 테스트하는 것이 필요하다”며“이를 위하여 경도인지장애 코호트, 치매 코호트 등의 범국가적인 인프라 구축이 필수적이며, 국가 공공기관의 적극적인 연구 네트워크 구축 및 지원의 장기성 보장이 요구된다”고 강조했다. 한편 이번 연구는 과학기술정보통신부 리더연구자 지원사업과 충남대병원 및 충북대병원 인체자원은행의 지원을 받아 수행됐다. □ 그림 설명 그림 1. 혈액 내에 존재하는 총 4종의 바이오마커 농도를 측정해 알츠하이머병 환자를 구별하는 고밀도로 정렬된 카본 나노튜브 기반 저항 센서의 모식도 그림 2. 진단 센서 성능
2020.01.15
조회수 12180
김용훈 교수, 차세대 탄소섬유 개발 위한 이론 규명
우리 대학 EEWS대학원 김용훈 교수 연구팀이 고품질 탄소섬유 개발에 필요한 고분자 전구체와 저차원 탄소 나노소재 간 계면의 원자구조 및 전자구조적 특성을 규명했다. 이번 연구로 차세대 탄소섬유 개발의 이론적 청사진을 제시할 것으로 기대된다. 이주호 박사과정이 1저자로 참여한 이번 연구 성과는 국제 과학 학술지인 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 4월 11일자에 속표지(Inside Back Cover) 논문으로 게재됐다. 탄소섬유는 매우 가벼우면서도 뛰어난 기계적, 열적 특성을 갖고 있기 때문에 초경량 자전거, 골프 클럽 등 스포츠 용품부터 자동차, 항공우주, 원자력 등 다양한 첨단 기술 분야에 활발히 활용되고 있는 신소재이다. 탄소섬유는 전구체(precursor) 고분자를 방사, 안정화 및 탄화 등의 작업을 통해 얻어지며 현재 폴리아크릴로나이트릴(polyacrylonitrile, PAN)이 탄소섬유의 주 전구체로 사용되고 있다. 고품질 차세대 탄소섬유를 얻는 방법으로 탄소나노튜브(carbon nanotube, CNT)를 탄소섬유 전구체 고분자 매트릭스에 분산시켜 고분자의 결정성을 높이는 연구가 대표적이다. 탄소나노튜브와 전구체 고분자의 조합이 탄소섬유의 물성을 향상시킬 수 있다는 것도 실험을 통해 확인된 바 있다. 그러나 20년 이상의 연구에도 탄소나노튜브와 전구체 고분자 간 상호작용에 대한 이해는 실험적 접근법의 어려움으로 인해 부족한 상황이다. 따라서 탄소나노튜브를 활용한 고품질 탄소섬유 제작 기술은 한계가 있었다. 김 교수 연구팀은 슈퍼컴퓨터를 활용해 양자역학적 제1원리 기반 멀티스케일 시뮬레이션을 수행해 대표적인 탄소섬유 전구체인 폴리아크릴로나이트릴 고분자가 탄소나노튜브 계면에서 배열되는 과정을 원자 수준에서 체계적으로 재현했다. 또한 탄소나노튜브-폴리아크릴로나이트릴 고분자 계면이 특히 좋은 특성을 보일 수 있는 이유를 연구했다. 폴리아크릴로나이트릴 고분자의 단위체가 누워있는 형태의 특정 원자구조를 선호하고, 이 때 양전하와 음전하가 균형 있게 이동하는 계면 특유의 특성이 발현되므로 이 계면 구조를 최대화 시키는 것이 최적의 대규모 폴리아크릴로나이트릴 고분자 정렬을 유도할 수 있음을 밝혔다. 또한 폴리아크릴로나이트릴 고분자의 정렬도가 그래핀 나노리본과의 계면에서 극대화되는 것을 확인해 최근 각광을 받고 있는 그래핀을 이용해 탄소 섬유의 품질을 더욱 향상시킬 수 있다는 가능성도 제시했다. “김 교수는 양자역학에 기반한 전산모사가 첨단 소재·소자의 개발을 위한 기본원리를 제공해 줄 수 있음을 보여준 연구의 예다”며 “이러한 전산모사 연구의 중요성은 컴퓨터 성능 및 전산모사 이론체계의 비약적인 발전과 더불어 더욱 커질 것이다”라고 말했다. 이번 연구는 미래창조과학부 중견연구자지원사업, 나노소재원천기술개발사업, 기초연구실지원사업, 글로벌프론티어사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 어드밴스드 펑셔널 머티리얼즈 표지 그림2. 연구 개요 모식도
2018.04.26
조회수 13501
최양규 교수, 실리콘 반도체보다 5배 빠르고 저렴한 탄소나노튜브 반도체 개발
우리 대학 전기및전자공학부 최양규 교수 연구팀이 국민대학교 최성진 교수와의 공동 연구를 통해 탄소나노튜브를 위로 쌓는 3차원 핀(Fin) 게이트 구조를 이용해 대면적의 탄소나노튜브 반도체를 개발했다. 이동일 연구원이 제 1저자로 참여한 이번 연구는 나노 분야 학술지 ‘에이씨에스 나노(ACS Nano)’ 12월 27일자에 게재됐다. (논문명: Three-Dimensional Fin-Structured Semiconducting Carbon Nanotube Network Transistor) 탄소나노튜브로 제작된 반도체는 실리콘 반도체보다 빠르게 동작하고 저전력이기 때문에 성능이 훨씬 뛰어나다. 그러나 대부분의 전자기기는 실리콘 재질로 만들어진 반도체를 이용한다. 높은 순도와 높은 밀도를 갖는 탄소나노튜브 반도체의 정제가 어렵기 때문이다. 탄소나노튜브의 밀도가 높지 않아 성능에 한계가 있었고 순도가 낮아 넓은 면적의 웨이퍼(판)에 일정한 수율을 갖는 제품을 제작할 수 없었다. 이러한 특성들은 대량 생산을 어렵게 해 상용화를 막는 걸림돌이었다. 연구팀은 문제 해결을 위해 3차원 핀 게이트를 이용해 탄소나노튜브를 위로 증착하는 방식을 사용했다. 이를 통해 50나노미터 이하의 폭에서도 높은 전류 밀도를 갖는 반도체를 개발했다. 3차원 핀 구조는 1마이크로미터 당 600개의 탄소나노튜브 증착이 가능해 약 30개 정도만을 증착할 수 있는 2차원 구조에 비해 20배 이상의 탄소나노튜브를 쌓을 수 있다. 그리고 연구팀은 이전 연구를 통해 개발된 99.9% 이상의 높은 순도를 갖는 반도체성 탄소나노튜브를 이용해 고수율의 반도체를 확보했다. 연구팀의 반도체는 50나노미터 이하의 폭에서도 높은 전류밀도를 갖는다. 실리콘 기반의 반도체보다 5배 이상 빠르면서 5배 낮은 소비 전력으로 동작 가능할 것으로 예상된다. 또한 기존의 실리콘 기반 반도체에 쓰이는 공정 장비로도 제작 및 호환이 가능해 별도의 비용이 발생하지 않는다. 제 1저자인 이동일 연구원은 “차세대 반도체로서 탄소나노튜브 반도체의 성능 개선과 더불어 실효성 또한 높아질 것이다”며 “실리콘 기반 반도체를 10년 내로 대체하길 기대한다”고 말했다. 이번 연구는 미래창조과학부 글로벌프론티어사업 스마트IT융합시스템 연구단과 미래유망융합파이오니아 사업의 씨모스 THz 기술 융합 연구단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 3차원 구조의 탄소나노튜브 전자소자의 모식도 및 실제 SEM 이미지 그림2. 개발된 8인치 기반의 대면적 3차원 탄소나노튜브 트랜지스터 전자 소자의 사진 및 단면을 관찰한 투과 전자 현미경 사진
2017.01.04
조회수 9488
유민규 박사과정, 국제 군사과학기술 경진대회 은상 수상
유민규 박사과정(맨 좌측)이 수상 후 기념촬영을 하고 있다. 우리 학교 신소재공학과 유민규 박사과정 학생(지도교수 권혁상)이 지난 5월 29일부터 6월 1일까지 경기도 고양시 킨텍스(KINTEX)에서 열린 ‘2014 국제군사과학기술 경진대회’에서 융합신기술분야 은상을 수상했다. 이번 경진대회에서 유 씨가 수상한 분야는 국방 융합기술, 방산 정책, 경영, 관리, 부품국산화, 미래 무기체계, 군사기술 등에 관한 연구 논문이 발표됐다. 유 씨는 ‘장갑판재 및 연료전지 기반 보조전원장치의 수소 에너지원으로 사용 가능한 탄소나노튜브 강화 알루미늄 복합재료’에 대한 연구로 은상을 수상했다. 탄소나노튜브 강화 알루미늄 복합재료는 우수한 기계적 특성으로 인해 일부국가에서 장갑판재로 사용되고 있는 재료다. 유 씨는 알칼리 수용액내에서 수소를 발생시키는 알루미늄의 특성과 탄소나노튜브-알루미늄간 갈바닉 부식현상을 이용해 탄소나노튜브-알루미늄 복합재료를 에너지원으로 하는 탑재형 수소발생시스템을 제작했다. 고분자 전해질 연료전지와 연계한 보조전원장치시스템을 통해 10kg의 탄소나노튜브 강화 알루미늄 복합재료를 활용 5kw의 전력을 22일 동안 생산할 수 있었다. 이번 연구를 통해 전장상황에서 연료 수송의 어려움을 해결할 수 있을 것으로 예상된다. 또 차후 항공기 및 장갑차량의 보조전원장치 연구개발에 적용이 가능해 많은 주목을 받았다.
2014.06.23
조회수 11829
단백질 나노튜브의 자기조립 분자스위치 발견
- 한국, 미국, 이스라엘 국제 공동 연구 성과 - - 암 치료와 뇌 질환 메커니즘 단서 - 우리 학교 바이오및뇌공학과 최명철 교수와 송채연 연구교수는 미국 산타바바라 캘리포니아대학교, 이스라엘 히브리대학교와 공동으로 세포분열과 세포간 물질수송에 열쇠가 되는 단백질 나노튜브의 자기조립 구조를 제어하는 분자스위치를 발견했다. 연구 결과는 세계적 학술지 ‘네이처 머티리얼즈(Nature Materials, IF=35.7)’ 19일자에 게재됐다. 마이크로튜불(microtubule, 미세소관)은 사람의 몸속에서 세포분열·세포골격·세포간 물질수송 도구로 사용되는 튜브 형태의 단백질로 굵기가 25나노미터(1나노미터는 머리카락 굵기의 10만분의 1)에 불과하다. 대부분의 암 치료 약물은 마이크로튜불의 형성을 교란해 암세포 분열을 억제하는 것으로 작용 메커니즘이 알려져 있다. 알츠하이머병은 세포간 물질수송을 담당하는 마이크로튜불의 구조적 안정성이 떨어지면서 신경세포에서의 신호전달이 제대로 이루어지지 않아 생기는 대표적 뇌질환이다. 연구팀은 싱크로트론 X선 산란장치(synchrotron x-ray scattering: 전자를 빛의 속도에 가깝게 가속시켜 강력한 X선을 발생시키는 장치)와 투과전자현미경을 이용해 단백질 나노튜브의 자기조립 구조를 서브나노미터(1나노미터 미만)의 정확도로 측정했다. 연구팀은 이번 연구를 분자 레벨에서 레고 블록을 쌓아 올리는 것에 비유해 가로×세로×폭이 각각 4×5×8 나노미터인 단백질 블록을 쌓아 올려 25나노미터 굵기의 튜브를 형성하는 메커니즘을 추적했다. 이 과정에서 연구팀은 레고 블록의 형태를 제어하는 분자스위치를 발견했다. 또 지금까지 보고된 바 없는 전혀 새로운 크기와 형태의 단백질 튜브 구조를 만들어 내는데 성공했다. 최명철 교수는 “인간의 생명 시스템은 고도의 자기조립 구조체를 형성해 복잡한 생물학적 기능을 하고 있지만 한편으로는 극히 단순한 물리학적 원리에 의해 제어가 가능하다는 새로운 패러다임을 제시했다”고 이 연구의 의의를 밝혔다. 또 “이번 연구는 암 치료와 뇌질환 메커니즘을 규명하고자하는 작은 발걸음이며 앞으로 바이오 나노튜브를 이용한 공학적 응용이 무궁무진할 것으로 기대한다”고 말했다. 이번 연구는 한국연구재단의 국제협력사업, 신진연구자지원사업, 학문후속세대양성사업, KAIST 고위험 고수익 프로젝트(High Risk High Return Project)의 지원으로 수행됐다.
2014.01.21
조회수 15714
화학적 도핑을 통한 탄소신소재 개발
- 재료분야 저명 학술지 ‘어드밴스드 머티리얼스’ 25주년 특집호 발표 - 우리 학교 신소재공학과 김상욱 교수가 ‘화학적 도핑을 통한 탄소 신소재 개발’을 주제로 재료분야 저명학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’ 25주년 기념 초청 리뷰논문(10월 14일자)을 게재했다. 이번 논문에서 김 교수는 그래핀과 탄소나노튜브에 다양한 이종원소 도핑을 통해 새로운 탄소 소재를 개발하고, 적용 가능한 수준까지 재료의 특성을 끌어올려 배터리, 광촉매 등은 물론 미래 기술로 각광받고 있는 태양전지, 휘어지는 디스플레이 등에도 응용될 것이라고 전망했다. ‘도핑’은 운동경기에서 좋은 성과를 내기 위해 선수들이 약물이나 주사 등을 사용하는 것으로 널리 알려져 있다. 그러나 과학계에서는 순수한 물질에 필요한 불순물을 첨가시키는 것을 ‘도핑’이라고 부른다. 두 가지 도핑 모두 성능을 향상시키는 데 도움이 된다는 공통점을 가지고 있지만 과학계의 도핑은 부작용이 없으며 요구되는 성능을 획득하는데 반드시 필요한 존재라는 특징을 갖고 있다. 실리콘 반도체의 경우에도 다양한 원소가 도핑된 반도체를 사용해 요구 성능을 확보하고 있다. 최근 주목받는 그래핀이나 탄소나노튜브와 같은 신소재는 재료 특성이 매우 우수한 것으로 알려져 있지만 산업적으로 활용하기 위해서는 다양한 원소를 도핑이란 첨가 방법을 통해 재료 특성을 우수하게 끌어올리는 방법이 필요했다. 도핑을 할 경우 탄소원자로만 구성된 그래핀과 탄소나노튜브에 다른 원소의 주입이 가능하게 되고 이들 원소의 특징에 따라서 전자를 주거나 받게 되어 전기를 보다 잘 통하게 할 수 있다. 또 반응성을 향상시켜 산업적 응용을 방해하던 낮은 용매 분산성을 향상시킬 수 있게 된다. 이와 함께 향상된 용매 분산성과 전기 전도도는 그동안 탄소 계열 신소재에서는 불가능하게 여겨졌던 용액 공정을 가능하게 할 수 있다. 이를 통해 휘어지는 반도체, 오래가는 배터리, 효율 높은 광촉매 등의 개발을 가능하게 한다. 김상욱 교수는 “이번 기술 개발로 현재 사용되는 배터리보다 더 오래가는 배터리, 더 빛을 잘 차단해주는 자외선 차단제, 태양열로 가는 자동차 및 휘어지는 휴대폰 등에 활용할 수 있는 신소재의 개발이 한층 더 앞당겨진 것으로 기대된다”고 말했다. 어드밴스드 머티리얼스는 재료분야 최고 수준의 학술지로 이번 25주년 기념 특집에서는 세계적으로 저명한 재료 과학자들로 구성된 학술지 편집진이 엄격한 심사과정을 거쳐 선정한 가장 선도적인 업구업적을 내고 있는 연구자들을 초청해 연구 성과를 소개했다. 그림1. 도핑을 통해 만들어진 탄소 신소재와 이들의 다양한 적용사례 - 1. 태양전지, 2. 휘어지는 기판, 3. 액정, 4. 선택적 흡착제, 5. 에너지 저장 및 변환소자, 6. 복합재료(왼쪽 위부터 시계방향)
2013.11.05
조회수 11678
신개념 나노발전기 원천기술 개발
- 나노복합체 이용해 복잡한 공정과 고비용 문제 해결 -- 어드밴스드 머터리얼스 6월호 표지논문 게재 - 우리 학교 연구진이 나노복합체를 이용해 나노발전기를 적은 비용으로도 대면적으로 만들 수 있는 원천기술 개발에 성공했다. 우리 대학 신소재공학과 이건재 교수 연구팀이 나노복합체를 이용한 신개념 나노발전기 원천기술을 개발해 재료분야 세계적 학술지인 ‘어드밴스드 머터리얼스(Advanced Materials)’ 6월호 표지논문에 게재됐다. 이번에 개발된 기술은 간단한 코팅 공정을 통해 만들어 비용을 획기적으로 줄일 수 있을 뿐만 아니라, 넓은 면적도 쉽게 제작 가능해 공정이 복잡했던 기존의 한계를 극복해냈다는 평가를 받고 있다. 나노발전기는 나노 크기(10억분의 1m)의 물질을 사용해 전기를 생산하는 발전기로, 압전 물질에 압력이나 구부러짐 등과 같은 물리적 힘이 가해질 때 전기가 발생하는 특성인 ‘압전 효과’를 이용한다. 압전 효과를 이용하는 발전기술은 2009년 MIT가 선정한 10대 유망기술에 선정됐으며, 2010년 미국의 유명한 과학월간지 파퓰러사이언스(Popular Science)가 선정한 세계를 뒤흔들 45가지 혁신기술에 포함되기도 했다. 나노발전기 개발을 위한 압전 물질은 2005년 미국 조지아공대 왕중린 교수팀이 세계 처음으로 나노발전기 개념을 제시하면서 적용한 ‘산화아연(ZnO)’이 유일했다. 2010년 KAIST 신소재공학과 이건재 교수 연구팀은 산화아연보다 15~20배 높은 압전 특성을 갖고 있는 세라믹 박막물질인 ‘티탄산화바륨(BaTiO3)’을 이용해 나노발전기 효율을 한층 업그레이드 시킨데 이어, 이번에는 나노복합체를 이용해 간단한 공정으로 제작하는 데 성공해 적은 비용으로도 넓은 면적의 나노발전기를 구현해낼 수 있게 됐다. 연구팀은 수백 나노 크기의 고효율 압전 나노입자인 ‘티탄산화바륨’과 비표면적이 크고 전기 전도성이 높은 ‘탄소나노튜브’ 또는 ‘산화 그래핀(RGO)’을 폴리머(polydimethylsiloxane, PDMS)와 섞은 후 간단한 코팅공정을 통해 넓은 면적의 나노발전기 제작에 성공했다. 이건재 교수는 “압전효과를 바탕으로 한 ‘나노자가발전 기술’은 적은 기계적 힘만으로도 전기를 생산할 수 있어 차세대 에너지 기술로 각광을 받고 있지만, 기존 기술은 제작공정이 복잡하고 고가의 비용문제 및 소자크기의 한계성을 극복하지 못했다”고 말했다. 아울러 “이번에 개발된 기술에 패키징 및 충·방전 기술을 융합하면, 반영구적으로 자가발전 및 저장이 가능한 새로운 형태의 에너지 시스템 개발에 응용될 수 있다“고 덧붙였다. 한편, 이번 기술은 해외 1건, 국내 2건의 특허가 출원 및 등록됐다. <동영상>http://www.youtube.com/watch?v=90rk7G3t30k&feature=player_embedded 압전 나노복합체 제작공정과 소자를 다양한 방법으로 구부릴 때마다 전기가 발생하는 것을 보여주는 동영상 ※응용사례 - 에너지블럭(부산 서면역 적용) 지하철 선로에 압전소자를 적용해 전동차 운행으로 얻어지는 진동을 통해 발전하는 장치로 국내 최초의 압전에너지 상용화 제품http://blog.naver.com/ioyou64?Redirect=Log&logNo=130093513496 - 이스라엘은 고속도로에 압전발전기를 적용해 발생되는 전기로 가로등을 밝히고 있음 - 필립스는 사람이 리모컨 버튼을 누르는 힘만으로 전기를 생산해 배터리가 없어도 작동되는 리모컨 개발 - 수 많은 나노 발전기를 겹쳐 옷감 형태로 만든 재킷을 입으면 단순히 걷는 것과 같은 일상생활만으로도 휴대전화나 MP3 등을 충전할 수 있을 것으로 예상됨 - 아주 작은 전원만으로도 몸속에서 독자적인 임무를 수행하는 나노센서 개발가능 ※그림설명 그림1. 압전 나노입자를 포함하는 복합물질에서 구부림에 의해 전기가 생성되는 것을 보여주는 그림. 그림2. 구부러질 때마다 전기를 만드는 나노복합체 기반의 자가발전기(논문표지)
2012.06.12
조회수 13110
탄소나노튜브로 물이 스스로 빨려 들어가는 현상 원인 규명
- PNAS 발표, “효율성을 극대화한 차세대 해수 담수화막 활용 가능 기대”- 지금까지 현상만 알려졌을 뿐 그 원인이 정확히 설명되지 못했던, 물을 싫어하는 탄소나노튜브* 안으로 물이 스스로 빨려 들어가는 ‘반직관적 실험 현상’이 국내 연구진에 의해 규명되었다. *) 탄소나노튜브 : 각 탄소가 3개의 다른 탄소와 결합되어 있는 흑연의 탄소 원자 배열과 같은 모양(6각형의 벌집모양)을 가지면서, 원통형으로 말아서 튜브 형태로 만든 나노(10억분의 1미터) 구조체 우리 학교 EEWS 대학원 정유성 교수가 주도하고, 캘리포니아공대 윌리엄 고다드 교수가 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 WCU(세계수준의 연구중심대학)육성사업의 지원(지속가능한 에너지 공학기술사업단)을 받아 수행되었다. 이번 연구결과는 자연과학분야의 권위 있는 학술지인 ‘미국립과학원회보(PNAS)’ 7월 19일자에 게재되었고, 한 주간에 흥미로운 연구결과들을 별도로 소개하는 "This Week in PNAS", ’C&EN News" 및 "Nature Materials"의 "Research Highlights"에 선정되는 영예를 얻었다. (논문명 : Entropy and the driving force for the filling of carbon nanotubes with water) 정유성 교수팀은 물을 싫어하는 탄소나노튜브 안으로 물이 스스로 빨려 들어가는 반직관적인 실험현상의 원인이 물 분자 간의 수소결합 때문으로, 나노채널과 같은 제한된 나노공간에서는 물의 무질서도가 증가하기 때문에 발생한다는 사실을 분자동력학 계산을 통해 밝혀냈다. 일반적으로 분자가 자유로운 액체 상태에서 제한된 나노 크기에 갇힐 경우, 무질서도와 화학결합이 감소되면서 불안정한 상태가 될 것으로 예상했지만, 연구팀은 탄소나노튜브에 갇힌 물의 경우 제한된 공간에서 물 분자 간의 수소결합이 약해지면서 밀도가 낮아지고, 오히려 무질서도가 증가하여 더욱 안정되는 특이한 현상을 나타낸다는 사실을 확인하였다. 특히 연구팀은 1.1과 1.2 나노미터의 지름을 갖는 나노튜브에서는 실온(섭씨 25도)임에도 불구하고 물이 얼음과 같은 구조를 띄는 현상도 관찰하였다. 정유성 교수는 “이번 연구는 계산과학이 실험측정만으로 설명하기 어려운 나노크기의 제한된 공간에서 나타나는 다양한 현상을 규명한 좋은 예”라고 정의하고, ‘’기존의 역삼투압 막에 비해 탄소나노튜브 내에서는 물의 수송속도가 현저히 빨라 에너지 효율적인 차세대 해수 담수화막을 효율적으로 설계하는데 기여할 것”이라고 연구의의를 밝혔다.
2011.07.27
조회수 11284
생체모방 탄소나노튜브 섬유 합성기술 개발
- 재료분야 저명 국제학술지 ‘어드밴스드 머티리얼스’ 표지 논문 게재- 강도가 3배 이상 향상된 차세대 초경량 초고강도 전도성 신소재 개발 홍합을 지지하고 있는 섬유형태의 족사는 강한 파도가 치는 해안가와 같은 다른 생물이 살기 어려운 환경에서도 바위에 단단히 붙어서 생존한다. 이러한 특성은 홍합 족사의 독특한 구조와 고강도 접착성 때문이다. 우리학교 신소재공학과 홍순형 교수와 화학과 이해신 교수, 생명과학과 故 박태관 교수로 구성된 공동연구팀이 자연계의 홍합 족사 구조를 모방해 탄소나노튜브를 기반으로 한 초고강도 전도성 섬유 제조 원천기술개발에 성공했다. 탄소나노튜브는 1991년 일본의 이지마 교수(현 성균나노과학기술원장)에 의해 발견된 이후 우수한 전기적, 열적, 그리고 기계적 특성으로 차세대 신소재로 각광 받았으나 길이가 수 나노미터 수준으로 미세해 산업용 제품으로 응용하는 데 한계가 있었다. KAIST 연구팀은 이러한 난제를 자연계의 홍합 족사 구조에 착안해 해결했다. 홍합 족사에는 콜라겐 섬유와 Mefp-1 단백질이 가교 구조(cross-linking structure)로 결합되어 있다. 이 Mefp-1 단백질속에는 카테콜아민이라는 성분이 있어 콜라겐 섬유끼리 강하게 결합한다. 연구팀은 고강도 탄소나노튜브 섬유가 콜라겐 섬유 역할을, 고분자 구조 접착제가 카테콜아민과 같은 역할을 하도록 했다. 그 결과 길이가 길고 가벼우면서도 끊어지지 않는 초경량 초고강도 탄소나노튜브 섬유를 개발했다. KAIST 홍순형 교수는 “개발된 탄소나노튜브 섬유는 기존의 구조용 탄소강에 비해 강도가 3배 이상 향상된 차세대 초경량 초고강도 고전도성 신소재”라며 “향후 방탄소재, 인공근육소재, 방열소재, 전자파 차폐소재, 스텔스소재 및 스페이스 엘리베이터 케이블 등 다양한 산업계에 응용이 가능하다”고 말했다. 아울러 “새로운 나노융합 소재 산업의 기술혁신을 이룰 수 있을 것”이라고 홍 교수는 덧붙였다. 이번 연구결과는 독일에서 발간되는 재료분야 국제저명학술지인 어드밴스드 머티리얼스(Advanced Materials) 5월 3일자 표지 논문으로 선정됐으며, 최근 국내 및 국외에 4건의 특허 출원 및 등록이 결정됐다. 한편, 이번 연구는 교육과학기술부 21세기 프론티어 연구개발 사업단, 세계수준의 연구중심대학(WCU) 육성사업, KAIST 나노융합연구소 등으로부터 지원받아 수행됐다.
2011.05.11
조회수 16741
연필심에서 배터리까지 탄소의 무한 변신
- “차세대 이차전지나 태양전지, 디스플레이 개발을 위한 기술적 진보 이뤄” - 그래핀과 탄소나노튜브를 새로운 3차원 형태로 조립에 성공 -‘어드밴스드 펑셔널 머티리얼즈’ 특집기획 초청논문 게재 연필심의 원료인 흑연이나 다이아몬드등과 같이 순수하게 탄소로만 이루어진 물질들이 우리주변에서 다양한 소재나 부품으로 널리 쓰이고 있다. 특히 최근에는 탄소나노튜브나 그래핀과 같이 나노미터 크기를 갖는 탄소나노소재들이 새롭게 발견돼 학계와 산업계로부터 많은 관심을 끌고 있다. 꿈의 신소재로 불리는 그래핀과 탄소나노튜브는 탄소원자가 2차원적 평면상에 벌집 모양으로 결합된 화학구조로 되어있다. 이로 인해 다이아몬드보다 강도가 높으면서 잘 굽혀질 수 있고, 투명하면서도 전기가 잘 통하는 등 기존의 다른 소재들이 갖지 못한 우수한 특성들을 가지고 있다. 그러나 자연 상태에서는 이들이 뭉쳐있거나 층층이 쌓여 흑연을 이루고 있어 개별적으로 분리해내기에 어려운 문제점이 있었다. 분자조립 나노기술의 세계적 연구그룹인 KAIST(총장 서남표) 신소재공학과 김상욱 교수 연구팀은 꿈의 소재라 불리는 그래핀과 탄소나노튜브를 3차원 형태로 조립하는 새로운 원천기술을 개발했다. 연구팀은 그동안 오랜 연구역량을 축적해 온 분자조립 나노기술을 이용해 그래핀과 탄소나노튜브를 입자 단위로 분리한 후 새로운 3차원 형태로 조립하는 데 성공했다. 또한, 이 과정에서 값싼 천연 흑연으로부터 단일층의 그래핀 유도체를 매우 높은 순도로 얻어내는 데 성공했다. 김상욱 교수는 “이번 연구로 그래핀계 탄소소재가 가진 넓은 표면적, 우수한 전기전도성, 기계적 유연성 등의 우수한 물성을 차세대 이차전지나 태양전지, 디스플레이 등에 이용하기 위해 필요한 중요한 기술적 진보를 이뤘다”며 “이번 논문 게재로 연구팀이 탄소소재 연구에서 세계적 선도그룹으로 인정받고 있음을 다시 한 번 확인했다”고 말했다. 김 교수는 이번 연구내용으로 4월말 미국 샌프란시스코에서 개최되는 국제재료학회(Materials Research Society)에서 초청 강연을 할 예정이다. 한편, 이번 연구결과는 신소재분야 세계적 학술지인 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 4월 22일자에 특집기획 초청논문(Invited Feature Article)으로 발표됐다. 논문이 소개된 ‘어드밴스드 펑셔널 머티리얼즈’의 특집초청논문은 세계적인 연구그룹의 최신 연구동향을 엄격한 심사를 통해 선별, 초청하는 기획논문이다.(끝) ※용어설명그래핀: 육각의 벌집구조로 결합한 탄소가 연속적으로 연결되어 탄소 원자 한 층의 두께를 가진 2차원의 평판 모양을 이룬 탄소소재 탄소나노튜브: 육각의 벌집구조로 결합한 탄소가 수 nm(나노미터) 크기의 직경을 갖는 튜브를 형성한 탄소소재
2011.04.25
조회수 10652
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2