본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%82%98%EB%85%B8%EB%A0%88%EC%9D%B4%EC%A0%80
최신순
조회순
생명화학공학과 양승만교수 광자유체 신기술개발
생명화학공학과 양승만(梁承萬, 58세, 교육과학기술부 지정 광자유체집적소자 창의연구단 단장) 교수 연구팀이 다양한 기능을 갖는 나노입자를 제조하고 이들 입자들이 스스로 조립되는 ‘자기조립원리’를 규명하는 연구를 수행하여, 방대한 량의 정보를 처리할 수 있는 프로토타입(prototype)의 광․바이오 기능성 광자결정(photonic crystal)구조체를 개발했다. 자연계에 존재하는 대표적인 광자결정은 오팔보석, 나비의 날개, 공작새의 깃털 등이 있다. 이들 광자결정 물질들이 발산하는 아름다운 색깔은 색소에 의한 것이 아니라 이 물질들을 이루는 구조 자체가 규칙적인 나노구조로 되어 있기 때문이다. 즉, 광자결정은 굴절률이 다른 물질들이 규칙적으로 쌓여 조립된 3차원 구조체로 특정한 영역의 파장에 해당하는 빛만 완전히 반사시킨다. 이 성질을 이용하면 반도체가 전자의 흐름을 제어하듯 빛의 흐름을 제어할 수 있다. 이러한 광자결정의 특수한 기능 때문에 나노레이저, 다중파장의 광 정보를 처리할 수 있는 슈퍼프리즘(superprism), 빛을 원하는 위치로 가이드 할 수 있는 광도파로(waveguide) 등 차세대 광통신 소자와 현재의 컴퓨터 속도를 획기적으로 높일 수 있는 수십 테라급 초고속 정보처리능력을 갖춘 광자컴퓨터의 개발 등에 필요한 소재로 주목 받아왔다. 광자결정은 광자(빛)가 정보를 처리하는 미래에 오늘날의 반도체와 같은 역할을 할 것이므로 ‘빛의 반도체’라 불린다. 지난 20여 년 동안 자연 상태에 존재하는 광자결정의 나노구조를 인공적으로 제조하기 위한 연구가 많은 과학자들에 의하여 시도되어 왔지만 실용적인 구조를 얻는 데에는 한계가 있었다. 梁 교수팀은 2006년부터 교육과학기술부와 한국과학재단의 ‘창의적연구진흥사업’으로부터 지원을 받아 광자결정소재의 실용성을 확보하기 위한 연구를 수행하여 최근 해외 저명학술지로부터 크게 주목 받는 일련의 연구 성과를 거뒀다. 첫 번째 연구 성과로 굴절률 조절이 가능한 미세입자 대량 생산기술을 개발했다. 지금까지 구현된 3차원 광자결정은 결정을 이루는 물질의 굴절률이 1.5-2.0 정도로 낮고, 굴절률을 다양하게 조절할 수 있는 입자를 제조할 수 없어서 광자결정의 실용성에 한계가 있었다. 최근 梁 교수 연구팀은 굴절률을 1.4-2.8까지 마음대로 조절할 수 있는 입자를 대량으로 제조할 수 있는 실용적 방법을 개발했다. 제조된 고 굴절률 입자는 나노레이저, 광 공명기, 마이크로렌즈, 디스플레이 등 각종 광학소자와 광촉매 등으로 활용될 수 있다. 이 연구결과는 최근 어드밴스드 머티리얼스 인터넷판(6. 19)과 제 17호(2008. 9)의 표지논문으로 게재 예정이다. 특히, 이 논문은 저명 학술지인 네이처 포토닉스(Nature Photonics)誌 8월호(8. 1)에 리서치 하이라이트(Research Highlights)로 선정되어 연구의 중요성과 응용성에 대하여 특별기사로 조명했다. 그림 1. 초고굴절률 타이타니아 입자의 전자 현미경 사진 두 번째 연구 성과로 광자유체 기술을 이용한 광결정구 연속생산 기술을 개발했다. 균일한 크기와 모양을 갖는 광자결정구를 빛을 매개로 반응시킴으로써 종래에 수십 시간이 소요되는 공정을 불과 수십 초 만에 연속적으로 제조할 수 있는 기술을 확보했다. 이들 광자결정구는 차세대 반사형디스플레이 색소나, 나노바코드, 생물감지소자 등으로 활용될 수 있다. 특히 주목할 것은 몇 개의 다른 색을 반사하는 야누스 광자결정구슬을 제조하였는데 이들은 전자종이와 같은 접거나 말 수 있는 차세대 디스플레이 소자에 활용될 수 도 있다. 이러한 광자결정 표시소재는 세계굴지의 화학회사인 독일 머크(Merck)社 등에서도 개발 중이며 이번 연구 결과는 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소이다. 주요 연구결과는 국제적저명학술지인 미국화학회지(JACS)와 어드밴스드 머티리얼스(Advanced Materials)誌에 6편의 논문을 최근 4개월(5~8월) 동안 연속 게재하여 광자결정의 실용성을 구현하는데 크게 기여했다고 인정받았다. 특히, 이들 논문들은 해당 학술지 편집인(Editor)과 심사위원들에 의하여 가장 앞선 연구결과로서 주목해야 할 논문(Advances in Advance)으로 선정됐으며, 9호(5. 5) 표지논문에 게재됐다. 그림 2. 3원광 광자결정구와 다색상 야누스 광자결정구의 현미경사진과 휘어지는 기판 위에 픽셀화된 3원광 광자결정. 세 번째 연구 성과로 광자유체 기술을 이용한 광결정 나노레이저를 개발했다. 현재까지 개발된 나노레이저는 발생하는 고열로 인하여 발진하는 레이저의 파장을 변화시키기 어려운 단점이 있었다. 梁 교수 연구팀은 KAIST 물리학과의 이용희 교수 연구팀과 공동으로 연속가변파장 나노레이저를 최초로 개발했다. 레이저를 발진하는 광자결정과 매우 미세한 유량을 도입할 수 있는 미세유체소자를 결합한 후 물과 같은 액체를 흘려줌으로써 온도를 낮추어 연속파 레이저 발진을 가능케 하였다. 또한 굴절률이 다른 액체를 흘려주어 광밴드갭을 조절함으로써 레이저의 파장을 조절 할 수 있었다. 가변파장 나노레이저는 신약개발 등 생명공학에서 요구되는 극미량의 시료로부터 방대한 량의 바이오정보를 광학적으로 신속하게 처리하는데 필요한 광원으로 사용될 수 있다. 이 연구 결과는 광물리 분야의 저명학술지인 옵틱스 익스프레스(Optics Express)에 게재(4. 9) 됐으며 이 논문의 독창성과 실용성은 영국왕립화학회(Royal Society of Chemistry)에서 발간하는 저명학술지 랩온어칩(Lab on a Chip) 8월호(8. 1)에 해설과 함께 “리서치 하이라이트”로 소개됐다. 그림 3. 나노레이저 발진모드
2008.08.19
조회수 23493
이달의 과기인상 2월 수상자에 이용희교수
이달의 과학기술자상 2월 수상자, KAIST 물리학과 이용희 교수 선정 = 전류구동 단세포 광결정 레이저 개발 = 과학기술부(부총리 吳明)와 한국과학재단(KOSEF, 이사장 權五甲)은 최첨단 극미세 반도체 레이저 분야에서 ‘광결정 단세포 레이저 공진기’의 세계적 권위자로 인정받고 있는 KAIST 자연과학부 물리학과의 이용희 교수를 ‘이달의 과학기술자상’ 2005년 2월 수상자로 선정했다. KAIST 물리학과 이용희 교수가 이끄는 과기부지원 나노레이저 국가지정연구실은 세상에서 가장 작은 100만분의 1m 크기의 광결정 레이저를 개발하였다. 이 레이저는 특수한 구조로 된 반도체 기판에 아주 작은 양의 전류를 흘려주면 빛이 증폭돼 발생하는 것으로, ‘전기만 연결하면’ 레이저를 구동할 수 있게 돼 관련 학계로부터 ‘실용화의 첫걸음’이라는 평가를 받고 있다. ‘자연의 기발한 발명품"으로만 여겨졌던 광구조, 특히 광결정은 통제하기 어려운 빛을 길들이는 데 적격이어서 최근 과학자들의 주목을 받아 왔다. 광결정은 두 가지 물질이 주기적으로 배열돼 특정 파장의 빛을 100% 반사되게 할 수 있는 특이한 성질을 가지고 있다. 이런 특성을 잘 이용하면 작은 공간에 빛을 교묘하게 구속시켜서 신개념의 레이저를 만들 수 있다. 이런 아이디어를 갖고 2004년 9월, KAIST 물리학과 이용희 교수와 박홍규 박사팀은 광결정을 기반으로 하는 물리적으로 구현 가능한 가장 작은 레이저인 극미세 단세포 레이저를 세계최초로 구현시켰으며 미국 과학저널지인 사이언스(SCIENCE)에 "전기로 구동되는 단세포 광결정 레이저의 실험적 구현" 이란 제목의 논문을 발표하였다. 광결정 레이저는 빛이 생성되는 공간을 매우 작게 만들 수 있기 때문에 매우 적은 에너지만으로도 작동할 수 있는 장점이 있다. 광결정 레이저는 크기가 대략 100만분의 1m (머리카락 굵기의 1/100 정도)에 지나지 않아서 빛의 파장보다도 작을 뿐 아니라, 전기로 직접 구동되기 때문에 그 동안 적용이 어려웠던 초고속, 고효율의 광통신과 광컴퓨터 등 광전자 기반 기술에 활용이 가능한 차세대 레이저로 각광 받고 있다. 현재까지 알려진 바로는 광결정 안에 있는 발광물질이 빛을 내도록 하기 위해서는 다른 레이저로 발광물질에 빛을 쏘는 광펌핑 과정이 필요했다. 그러나 광펌핑 과정을 거치게 되면 복잡한 이중 장치가 들어가게 되어서 실제적으로 상업적 응용이 불가능하다. 전기로 구동되는 광결정 레이저 구현의 핵심기술은 작은 전류가 통하는 길이다. 이 길은 광결정의 특징을 훼손시키지 않고 단지 전류만 흐를 수 있도록 구조의 대칭점에 매우 작게 제작돼 있다. 전기로 구동되는 광결정 레이저는 하나의 광자만을 만들 수 있는 ‘단일 광자원’의 가능성을 열어주고 있다. 단일 광자원은 빛 입자, 즉 빛 알갱이를 하나씩 만들어 통신에 활용할 경우 절대 도청이 불가능하다. 이용희 교수는 “이 극미세 레이저를 바탕으로 전류를 아주 약하게 흘려 빛 알갱이인 광자가 하나씩 나오는 레이저 총이 등장하면 비밀 광통신이 가능해질 것”이라며 “광자를 하나씩 보내면 도청을 시도할 때 광자의 상태가 바뀌기 때문에 도청이 불가능하다”고 말한다. 비유적으로 설명하면 처음에 구슬 상태의 광자를 하나씩 보냈을 때 누군가가 도청을 시도하면 구슬 상태가 깨지면서 전혀 다르게 바뀐다. 도청하는 사람은 잘못된 정보를 얻을 뿐 아니라 도청 여부도 금방 들통이 난다. 현재의 통신은 전파든 빛이든 다발 형태로 신호가 전달된다. 예를 들어 신호의 크기로 정보를 보낸다고 할 때 신호의 일부만 빼내면 도청이 가능하다. 또 도청된 신호는 진폭이 다소 줄어들지만 도청 여부를 판단하기가 쉽지 않다. 따라서 광결정 레이저는 앞으로 도청이 불가능한 초고속 광통신 구현에 핵심 소자로 대두될 것으로 예상된다.
2005.02.07
조회수 25174
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1