본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EA%B8%B0%EC%B4%88%EA%B3%BC%ED%95%99
최신순
조회순
인류세연구센터, 국제 동아시아환경사학회 주최
우리 대학 인류세연구센터와 과학기술정책대학원이 동아시아의 환경 위기와 인류세에 대한 역사적 이해를 바탕으로 지속가능한 인류 사회의 미래상을 조망하는 제7회 국제 동아시아환경사학회(The 7th Biennial Conference of East Asian Environmental History, 이하 EAEH)를 개최한다. 기초과학연구원(IBS)에서 6월 27일부터 7월 2일까지 열리는 EAEH는 2011년 대만에서 처음 개최된 대규모 학술회의다. 이후 격년으로 개최되고 있으며, 우리 대학이 주최하는 7회 대회에는 17개 국가 150여 명의 발표자를 비롯해 200여 명이 참석할 예정이다. 이번 대회에서는 기후변화와 코로나19 팬데믹, 우크라이나 전쟁 등으로 인류와 다른 생명체들의 삶이 위협받는 복합적 위기 상황에서의 인류세 문제를 성찰한다. 이를 위해 동아시아 지역의 자연, 과학, 사회가 상호작용 해 온 과정 및 미래상에 대한 이해를 논의할 예정이다. '인류세(Anthropocene)'는 인류의 활동이 지구 환경 변화의 결정적 요인이 되었다는 것을 가리키기 위해 제안된 새로운 지질학 시대의 명칭으로, 지구과학을 넘어 학계에 다양한 쟁점들을 제시하고 있다. 이번 학회는 동아시아의 역사와 전통에 기초한 비교사적 관점으로 인류세를 재조명한다. 북미와 유럽을 중심으로 전개되고 있는 인류세에 대한 주류적 서사와는 차별되는 새로운 관점을 제안하기 위해서다. 또한, 자연과학, 공학, 사회과학, 인문학, 예술이라는 학문적 경계와 국가적 경계를 넘어 과학자와 공학자, 과학기술사와 환경사 연구자, 과학기술학자, 그리고 예술가들이 동아시아의 환경 위기와 인류세에 대해 간학제(Interdisciplinary)적으로 토론할 지적(知的) 공간을 제공한다. 개막 행사는 28일 오후 우리 대학 정근모콘퍼런스홀에서 개최되며, 29일부터 7일 1일까지의 개별 발표는 기초과학연구원 과학문화센터에서 열린다. 28일에는 줄리아 애드니 토머스(Julia Adeney Thomas), 노터데임 대학(University of Notre Dame) 교수가 기조연사로 나서 아시아의 환경과 기후변화 등 인류세의 관점으로 미래를 새롭게 볼 필요가 있음을 강조한다. 이어, 사이몬 터너(Simon Turner) 유니버시티 칼리지 런던(UCL) 교수가 기조 강연을 통해 인류세 지층의 기준점을 설정하는 ‘황금못’(golden spike)을 소개한다. 29일부터 전체를 대상으로 진행되는 특별강연에는 스캇 가브리엘 놀즈(Scott Gabriel Knowles) KAIST 교수, 위르겐(Jürgen Renn) 막스플랑크 연구소(Max-Planck Institute for Geoanthropology) 교수, 악셀 팀머만(Axel Timmermann) 기초과학연구원/부산대 교수가 연사로 나선다. 7월 1일 오후에 진행되는 마지막 기조 강연에서는 사토시 무라야마(Satoshi Murayama) 가가와 대학(Kagawa University) 교수이자 학회 전 회장은 '동아시아 환경사학회'가 이제 동아시아라는 지역적 틀을 벗어나 '아시아 환경사학회'로 나가야 한다는 의견을 공식적으로 제안할 예정이다. 실제 이번 학회에는 동남아시아, 남아시아 지역의 여러 참가자가 자국이 처한 환경 문제에 대해 발표할 예정으로 학회의 외연을 넓히는 출발점이 되고 있다.부대 행사로는 독일 세계문화의집(Haus der Kulturen der Welt, 약칭 HKW)의 ‘인류세 커먼즈’(Anthropocene Commons) 그룹 소속 시각예술가들이 작업한 영상들이 존해너홀에서 상영된다. 특히, 조지아 주립대(Georgia State University)의 제레미 볼렌(Jeremy Bolen)은 과학적 산업화가 지구에 흔적을 남긴 역사적 과정을 보여주며 인류세 개념을 상기시키는 "Born Secret"이라는 작품을 상영한다. 한편, 기초과학연구원 시네마루프와 강당에서는 한국, 중국, 일본, 대만의 작가 12명이 예술가의 시선으로 바라본 인류세의 모습을 "인류세 시대의 자연, 인간, 그리고 환경"이라는 제목의 작품으로 보여준다. 이런 예술 작품들은 학자들의 성찰과 예술가들의 상상이 만나는 흥미로운 접점을 제공할 것으로 기대를 모으고 있다. 행사에 대한 자세한 정보는 인류세연구센터 홈페이지(anthropocenestudies.com)와 학회 홈페이지( http://www.aeaeh.org/eaeh2023.htm )에서 찾아볼 수 있다.
2023.06.26
조회수 810
70대 노부인 KAIST에 전 재산 유증
70대 노부인이 전 재산이나 다름없는 5억 원 상당의 부동산을 기초 과학 인재 양성을 위해 우리 대학에 유증했다. 부산에 사는 70대 박 모 씨는 지난달 30일 총 5억 원 상당의 부동산 2곳을 기부했다. 박 씨는 2011년에도 현금 5천만 원을 기부한 데 이어 이번까지 두 번에 걸쳐 총 5억 5천만 원 상당을 우리 대학에 전달했다. 우리 대학과 특별한 연고가 없는 박 씨는 뉴스에서 상속 재산을 우리 대학에 기부한 사연을 접한 뒤 2011년 첫 기부를 단행했다. 기부로 과학기술 발전에 일조한다는 취지에 공감했기 때문이다. 첫 기부 이후 계속해서 우리 대학의 발전상을 지켜봐 온 박 씨는 더 늦기 전에 재산을 정리하기로 결심한 뒤 본인 명의의 부동산을 모두 기부하고 싶다며 발전재단으로 연락해 왔다. 삼 남매를 키우며 평생을 검소하게 살아온 박 씨는 "KAIST는 고정된 시각이 아닌, 남다른 생각으로 많은 사람에게 도움을 주는 훌륭한 과학 기술 인재를 길러낸다는 믿음에서 숙원이었던 기부를 실행했다"라고 소감을 전했다. 박 씨는 이어 "다른 사람의 기부 이야기를 들을 때마다 언젠가는 나도 해야겠다고 생각만 해오던 것을 직접 실천에 옮기니 기대 이상으로 뿌듯하다"라며, "기부에 대해 고민하는 분이 있다면 나의 이야기가 마음을 정하는 데 도움이 되길 바란다"라고 덧붙였다. 발전재단 관계자는 "기부자가 이름과 사연이 알려지는 것을 원하지 않았기 때문에 특별한 약정식 행사 없이 기부자의 자택에 방문해 유증을 위한 서류 절차를 진행하고 왔다"라고 전했다. 또한, 박 씨의 기부 결정을 세 자녀와 가족 모두가 찬성한 것으로 알려졌다. 유증 자리에 함께 참석한 둘째 딸 김 모 씨는 "어머니가 평생 아끼며 모은 재산이 어머니의 뜻대로 사용되길 바랐기 때문에 훌륭한 선택과 결정을 가족 모두 축하하는 마음으로 지지하고 있다"라고 말했다. 이광형 KAIST 총장은 "기부자의 평생이 담겨있는 기부금뿐만 아니라 12년이 넘는 긴 세월 동안 KAIST를 애정 어린 시선으로 바라봐 주신 그 믿음에도 깊은 감사를 전한다"라며, "세상에 없던 새로운 시도로 인류의 행복과 번영을 실현하는 과학기술 글로벌 인재들을 키워내 기부자의 기대에 부응하겠다"라고 말했다.우리 대학은 이번 기부금을 기초 과학 인재 양성 사업에 활용하여 박 씨의 뜻을 이어 나갈 계획이다.
2023.06.14
조회수 1695
김소영 교수, 한국 과학정책 연구자 최초로 네이처에 기초과학 정책 기고문 게재
우리 대학 과학기술정책대학원 김소영 교수가 지난 2일 우리나라 과학정책 연구자 최초로 `네이처'의 월드 뷰 섹션에 한국의 기초과학 정책에 관한 기고문을 게재했다고 10일 밝혔다. 2022년은 UN이 선포한 세계기초과학의 해로서 동 기고문에서 김 교수는 그간의 기초과학 육성 정책을 되짚으며 예산 확대만이 아니라 기초과학의 내재적 가치와 과학자들의 내적 동기를 충분히 살리는 정책이 필요함을 역설했다. 우리나라는 기술추격 기반 경제성장에 성공한 이후 90년대부터 지식기반 혁신 선도를 위해 본격적인 기초과학 진흥에 나섰다. 우리나라는 1989년 기초연구진흥 및 기술개발 지원에 관한 법률(現 기초과학연구진흥법)을 필두로, 1990년 당시로서는 9년간 연 10억 원이라는 파격적인 규모의 선도연구센터 사업을 시작했고, 2011년 연구단별 연 100억 원 규모로 기초과학연구원을 설립했다. 또한 지난 정부는 과학기술 분야 주요 공약으로 기초연구 예산 2배 증액을 내세워 기초연구 예산이 `17년 1.27조 원에서 `22년 2.6조 원으로 확대됐다. 김 교수는 지난 30년의 기초과학 진흥 노력에도 불구하고 노벨상이 부재한 것은 기초과학 정책이 단순히 예산 투자의 문제가 아니라 정책의 방향성 문제임을 지적한다. 김 교수는 기고문에서 무엇보다 예산 규모(size)만이 아니라 안정성(stability)을 확보하기 위해 장기적인 연구비 지원 구조를 마련해야 함을 역설했다. 또한 연구자들이 연구비(funding) 확보만이 아니라 실제 발견의 기쁨이라는 연구의 즐거움(fun)으로 동기 부여가 될 때 성과의 질적 수준이 높아진다는 사실에 주목한다. 자세한 내용은 다음 `네이처' 링크에서 확인할 수 있다. https://www.nature.com/articles/d41586-022-01529-x 김소영 교수는 그간 <기초연구 전략연구분야 선정 기획연구>, <공공 R&D 평가시스템 개선 연구>, <우수과학자포상사업 추진체계 및 포상제도 개선연구>, <대학원생 권리강화 방안연구> 등 다양한 과학정책 프로젝트를 수행하였다. 또한 기재부 재정정책자문위원, 산자부 사용후핵연료정책 재검토위원장, 과기정통부 국가연구개발사업심의위원, 교육부 대학양성평등위원, 외교부 과학기술외교자문위원으로 활동해왔다. 학내에서는 과학기술대학원장, KAIST 50년사 편찬위원장, 여성교수협의회장으로 봉사하였고 현재 한국4차산업혁명정책센터장, 케냐과학기술원 건립사업 부단장, 융합교육연구센터장을 맡고 있다. 개교 기념 공적상, 국제협력상 외에 국회 과학기술정보통신위원장 공로장을 수상했다.
2022.06.09
조회수 3205
기계공학과 공경철, 화학과 임미희 교수-과기부 기초과학 리더연구자 선정
우리 대학 기계공학과 공경철 교수, 화학과 임미희 교수가 과학기술정보통신부가 주관한 ‘2022년도 기초연구사업의 리더연구자(12인)’부문에 선정됐다. 리더연구는 국내 최고 수준의 기초과학 연구자의 연구주제를 지원하는 프로그램으로, 선정된 연구자는 연간 8억원 규모로 최대 9년간 72억원까지 지원받는다. 기계공학과 공경철 교수는 로봇과 사람이 결합된 형태인 웨어러블 로봇의 제어 성능 향상, 동기화를 연구한다. 인간의 운동 제어이론, 인간-로봇 통합 시뮬레이션 인공지능 학습 등 연구 범위를 확장할 예정이다. 본 연구를 통해 더 다양한 종류의 보행장애를 극복하는 웨어러블 로봇 기술을 실현하는 것이 목표다. 공교수는 “충분한 기간 기초연구에 집중할 기회가 생긴 만큼 보행장애 완전 극복을 위한 발판을 다지겠다. 사람의 관점에서 웨어러블 로봇을 탐구하고 고민할 것”이라고 밝혔다. 화학과 임미희 교수는 기존에 밝혀지지 않은 금속과 뇌신경단백질 간의 다양한 상호작용을 밝히고, 이를 바탕으로 새로운 신경 퇴화를 유발하는 금속-뇌신경단백질 복합체를 발굴한다. 본 연구를 통해 치매 발병 원인을 규명하고 새로운 개념의 치료제·진단제를 개발하는 것이 목표다. 임교수는 “리더 연구과제에 선정되어 영광이다. 앞으로 연구에 더욱 정진하여 기초과학 중심의 치매 극복에 힘쓰겠다”라고 소감을 전했다. 과기부는 6월 중 선정된 신규 리더연구자에 지정서를 수여하고 연구에 착수하도록 본격 지원할 예정이다.
2022.06.07
조회수 3331
수리과학과 김재경 교수, 기초과학연구원 수리생물학 분야 신규 연구그룹 이끈다
우리 대학 수리과학과 김재경 교수가 3월 1일 자로 기초과학연구원(IBS)의 수리 및 계산과학 연구단의 3번째 CI(Chief Investigator)로 임명됐다. 기초과학연구원(IBS)은 생물학 분야 다양한 난제들을 수학적 관점에서 풀어낼 새로운 연구그룹을 출범시킨다. 김재경 교수 국내에서는 아직 생소한 수리생물학 분야의 유망주로 주목받는 연구자다. 생물학 시스템을 수학적으로 이해하고, 질환의 발병 원인 규명, 치료제 개발 등에 기여할 수학 모델링을 개발하고 있다. 특히, 세포 간 상호작용을 규명한 수리생물학 연구로 국제 수학계와 생물학계 모두에서 주목을 받기 시작했다. 김 교수는 생물학자들과의 공동연구를 통해 여러 생물학적 난제를 해결해, 수학자로서는 드물게 생물학 분야 국제학술지에 많은 논문을 게재했다. 수학 모델링을 기반으로 ▲안정적인 생체 리듬을 유지할 수 있는 생물학적 회로 설계(Science, 2015), ▲생체시계의 속도가 유지되는 원리를 60여 년 만에 밝힌 연구(Molecular Cell, 2015) 등이 대표적이다. 최근에는 다국적 제약회사인 화이자와 함께 신약 개발 과정에서 동물실험과 임상시험 간 차이가 발생하는 원인 및 사람마다 약효의 차이가 발생하는 원인을 규명한 성과를 올렸다(Molecular Systems Biology, 2019). 김 교수가 이끄는 의생명 수학 그룹은 불안정한 일주기 리듬과 수면 원인을 규명하는 연구를 수행할 계획이다. 수면 질환 치료의 새로운 패러다임을 제시하는 것이 목표다. 수학과 생물학의 접점에 놓인 연구를 진행하는 만큼, 기존 생명과학 분야 연구단과의 공동연구를 통한 시너지 효과도 기대된다. 김 교수는 “수면은 우리에게 너무 익숙하지만, 수면이 발생하는 메커니즘은 아직까지 명확히 규명되지 않았다”며 “의생명과학자와 협력을 통해 복잡한 수면의 근본 원리를 규명하고, 수면 질환의 원인과 치료법을 밝히는 획기적 연구를 수행할 수 있도록 최선을 다하겠다”고 말했다. 기초과학연구원(IBS)은 매년 연구단장에 준하는 선정 절차를 통해 유망한 젊은 연구자들을 CI로 선정하고 있다. CI로 선정된 연구책임자는 IBS의 PRC(Pioneer Research Center) 연구단 내 독립적인 연구그룹을 구성한다. PRC는 IBS 연구단의 한 종류로 최대 5명의 CI가 각 연구그룹을 이룰 수 있고, 5년간 그룹별로 10~15억 원의 연구비가 지원된다. 김 교수의 선임으로 IBS는 2개의 PRC 연구단(바이오분자 및 세포구조 연구단, 수리 및 계산과학 연구단) 내 4개 CI 연구그룹을 구성하게 됐다. IBS는 젊은 연구자에 대한 투자를 확대함으로서 차세대 연구리더 육성이라는 목표에 한 발 더 다가서게 됐다. 노도영 IBS 원장은 “1000년의 역사를 가진 수리생물학은 수학과 생물학이 합작해 생명현상을 분석하는 학문이지만, 국내에서 활동을 시작한 건 10년 정도 밖에 되지 않는다”며 “새로 IBS에 합류한 김재경 CI를 중심으로 수학과 생물학의 교류가 활발해지고, 수리생물학 분야가 발전하여 많은 생물학적 난제들을 해결해나가길 기대한다”고 말했다.
2021.02.26
조회수 88405
스마트 캠퍼스형 기초과학 연구시설 거점 확산
과학기술정보통신부(장관 최기영)는 기초과학연구원(IBS)의 KAIST 캠퍼스와 포스텍 캠퍼스 연구시설 기공식 행사를 순차적으로 개최한다고 밝혔다. 12일 열린 KAIST 캠퍼스 연구시설 기공식은 과기정통부 최도영 국제 과학비즈니스벨트조성추진단장과 공사관계자 등을 비롯하여 지역 국회의원 등이 참석하여 성공적인 공사 추진을 기원했다. 기초과학연구원(IBS) KAIST 캠퍼스는 연구단의 안정적이고 연구자 친화적인 연구환경 구축을 위해 17,000㎡ 부지에 연면적 25,529.06㎡(지하1층 지상6층) 규모로 20.10.20.~22.4월까지 1년 6개월간 총사업비 75,675백만원이 투입된다. 기존 캠퍼스와 조화를 통해 자유로운 교류가 일어날 수 있는 창의적인 연구공간과 서로 다른 연구 분야를 융합하는 커뮤니티 공간으로 조성하였으며 개방된 중정*과 투명한 내부공간을 바탕으로 개방성과 소통을 주제로 자연과 사람, 공간이 함께 어우러진 디자인으로 구성하였다. * 중정 : 높은 건축물을 설계할 때 내부에 자연광이 고루 닿을 수 있게 중앙부에 설치하는 뜰 최도영 국제과학비즈니스벨트조성추진단장은 "KAIST와 포스텍 캠퍼스 연구시설은 우수한 연구인력 유치와 창의적 연구환경 조성을 위해 연구, 교류, 휴식공간이 통합된 스마트 캠퍼스형 공간으로 조성될 것이며, 이를 통해 지역의 기초과학역량이 강화되고 인근대학, 연구기관 등과 연계하여 우수 인재 육성의 선순환 체계가 구축될 것으로 기대한다"고 말했다.
2020.11.13
조회수 24814
사람 3D 폐포 배양 기술로 코로나19 감염 기전을 규명하는 데 성공
우리 대학 연구진 포함 국내 연구진이 실험실에서 3차원으로 키운 사람의 폐포(허파꽈리)에 코로나19 바이러스를 배양해 감염 기전과 치료제 개발에 적용이 가능한 기술 개발에 성공했다. 국제 통계 사이트 월드오미터에 따르면 전 세계 누적 코로나바이러스감염증-19(이하 코로나19) 확진자 수는 25일 기준 4,331만 8,941명으로 지난 18일(4,030만 1,609명) 4,000만 명을 넘어선 후 일주일 만에 4,331만을 돌파하는 2차 대유행이 점차 현실화돼 가고 있다. 우리 대학 의과학대학원 주영석 교수 연구팀은 인간의 폐포 세포를 실험실에서 구현하는 3D 미니 장기기술을 개발하고 이를 활용해 코로나19 바이러스가 인간의 폐 세포를 파괴하는 과정을 정밀하게 규명하는 데 성공했다고 26일 밝혔다. 이번 연구는 영국 케임브리지대학 이주현 박사를 비롯해 국립보건연구원 국립감염병연구소 최병선 과장·기초과학연구원(IBS) 고규영 혈관연구단장(우리 대학 의과학대학원 교수)·서울대병원 김영태 교수와 우리 대학 교원창업기업인 ㈜지놈인사이트와 공동으로 진행됐다. 공동연구팀의 이번 연구 결과는 줄기세포 분야 세계적인 학술지 `Cell Stem Cell' 10월 22일 字 온라인판에 실렸다. (논문명: Three-dimensional human alveolar stem cell culture models reveal infection response to SARS-CoV-2) 정확한 질병 기전의 이해를 기반으로 치료제를 효과적으로 개발하기 위해서는 실험실에서 사용 가능한 인체를 모사한 모델 사용이 필수적이다. 코로나19 바이러스는 생쥐 모델에 감염시키기가 어렵고, 특히 실험실에서 사용할 수 있는 폐 세포 모델은 존재하지 않기 때문에 직접적인 감염 연구의 한계가 존재해왔다. 공동연구팀은 이런 문제를 해소하기 위해 지속적으로 배양이 가능한 3차원 인간 폐포 모델을 새롭게 정립했다. 이를 이용하면 실험실에서 사람의 폐 세포를 이용해 코로나19 바이러스 등 각종 호흡기 바이러스의 질병 기전을 연구할 수 있기 때문이다. 더 나가서 3차원 인간 폐포 모델은 약물 스크리닝 등 치료법 개발에도 직접적으로 응용할 수 있다는 장점이 있다. 공동연구팀은 폐암 등 사람의 수술 검사재료에서 확보되는 사람 폐 조직을 장기간 안정적으로 3차원 배양할 수 있는 조건을 알아내는 데 성공했다. 실험 결과, 3D 폐포는 코로나19 바이러스에 노출되면 6시간 내 급속한 바이러스 증식이 일어나 세포 감염이 완료됐으나, 이를 막기 위한 폐 세포의 선천 면역 반응 활성화에는 약 3일가량의 시간이 걸렸다. 이와 함께 하나의 코로나19 바이러스 입자는 하나의 세포를 감염시키는 데 충분하다는 사실을 알아냈다. 감염 3일째 공동연구팀은 세포 가운데 일부분이 고유의 기능을 급격히 상실한다는 사실도 확인했다. 공동 교신저자인 주영석 교수는 "이번에 개발한 3차원 인체 폐 배양 모델 규모를 확대한다면 코로나19 바이러스를 포함한 다양한 호흡기 바이러스의 감염 연구에 유용하게 사용될 것ˮ이라고 말했다. 주 교수는 이어 "동물이나 다른 장기 유래의 세포가 아닌 호흡기 바이러스의 표적 세포인 사람의 폐 세포를 직접적으로 질병 연구에 응용함으로써 효율적이고 정확한 기전 규명은 물론 치료제 개발에도 이용할 수 있다ˮ고 강조했다. 코로나19 바이러스 대응 기술개발을 위해서는 다양한 기관의 지원과 관련 연구자들의 협력 연구가 필수적이다. 공동연구팀의 이번 연구는 한국연구재단·질병관리청·기초과학연구원(IBS)·서울대학교 의과대학·유럽연구이사회(ERC)·서경배과학재단·휴먼프론티어과학재단의 지원을 받아 수행됐다.
2020.10.26
조회수 23983
초음파를 내비게이션으로 사용하는 광학현미경 개발
생체 내부를 꿰뚫어볼 수 있는 새로운 현미경이 나왔다. 바이오 및 뇌공학과 장무석 교수 연구팀이 기초과학연구원 분자 분광학 및 동력학 연구단 최원식 부연구단장 연구팀과의 공동 연구를 통해 초음파를 이용해 기존 현미경으로 볼 수 없었던 생체 내부의 미세구조를 관찰하는 기법을 개발했다. 연구결과는 국제학술지 네이처 커뮤니케이션즈(Nature Communications)2월 5일자 온라인 판에 게재됐다. 사람의 눈은 250㎜ 떨어진 거리에 70㎜의 간격을 두고 놓인 물체를 구분할 수 있다. 이보다 작은 미세구조를 관찰하기 위해서는 광학현미경이 필요하다. 광학현미경은 눈으로 볼 수 없는 작은 미세구조를 확대해서 보여준다. 하지만 생체조직을 관찰할 때는 이야기가 달라진다. 빛이 생체 조직을 투과할 때 직진광과 산란광이라는 두 종류의 빛이 생겨난다. 직진광은 말 그대로 생체 조직의 영향 없이 직진하는 빛이며, 산란광은 생체 조직 내 세포나 세포 내 구조의 영향에 의해 진행 방향이 무작위로 굴절된 빛이다. 광학 현미경으로 생체 조직 깊은 곳을 관찰하려면 직진광에 비해 산란광이 강해져 이미지 정보가 흐려진다는 치명적인 단점이 있다. 안개 속을 볼 수 없듯, 생체 조직의 수많은 세포와 구조들이 빛을 산란시켜 이미지를 흐리게 만들기 때문이다. 반면, 초음파 영상은 태아를 감별할 수 있을 정도로 생체 내부 깊은 곳까지 이미징할 수 있지만, 해상도가 낮아 미세한 구조를 볼 수 없다는 단점이 있다. 연구진은 광학 현미경과 초음파 영상의 장점을 결합하여, 생체 내부 깊은 곳을 높은 해상도로 관찰할 수 있는 초음파 결합 광학 현미경을 개발했다. 초음파 결합 현미경은 생체 조직 내부를 잘 침투하는 초음파를 집속시킨 후, 초음파의 초점을 지나는 빛만 측정하는 방식으로 산란광의 세기를 크게 감쇄시킬 수 있다. 초음파가 광학현미경에게 관찰 경로를 알려주는 일종의 내비게이션 역할을 하는 셈이다. 초음파는 생체 조직을 응축, 팽창시켜 굴절률을 변조하는 방식으로 빛의 진행에 영향을 준다. 연구진은 이런 초음파의 특성을 응용해 초음파의 초점을 통과하는 빛만을 선택적으로 측정하는 기술을 개발하고, 이 기술을 공간 게이팅(space-gating)이라 명명했다. 초음파는 생체 내부의 ‘빛 거름망’ 역할을 하며 무작위로 산란되던 빛을 차폐한다. 공간 게이팅 기술을 통해 연구진은 산란광을 100배 이상 감쇄시키며 생체 조직 내에서 광학 이미지가 흐려지는 문제를 극복할 수 있었다. 장무석 교수는 “촘촘한 거름망을 사용하면 더 고운 가루만 남는 것처럼 초음파의 초점을 작게 할수록 산란광을 더 많이 감쇄시킬 수 있다”며 “향후 산란광을 1000~1만 배 수준까지 감쇄시켜 더 선명한 이미지를 얻게 될 것으로 기대한다”고 말했다. 연구진은 개발한 현미경을 이용해 별도의 형광 표지 없이 부화한지 30일 된 성체 제브라피시의 척추 안쪽 근육 조직 이미지를 얻는데 성공했다. 기존 기술은 제브라피시의 장기, 척추 등 내부 구조에서 산란 현상이 일어나 절단을 통해서만 내부 근육 결을 관찰할 수 있었다. 이와 달리 개발된 현미경은 자연 상태 그대로 살아있는 제브라피쉬 내부 조직을 꿰뚫어볼 수 있다. 연구진은 인체 조직에도 사용할 수 있는 공간 게이팅 기술을 구현해나갈 계획이다. 향후 현미경을 소형화하고 이미징 속도를 증가시키면, 실시간 질병 진단에도 응용할 수 있을 것으로 기대된다. 이번 연구를 이끈 최원식 부연구단장은 “초음파 결합 광학 현미경은 기존 광학 현미경의 얕은 이미징 깊이 문제를 해결하는 획기적인 기술”이라며 “공간 게이팅 기술을 더욱 발전시켜 빛의 산란 현상을 이해하고, 의생명 광학 기술 분야 활용 범위를 넓혀나갈 것”이라고 말했다.
2020.02.21
조회수 8142
허원도 교수, 항체를 빛으로 활성화 시키는 항체광유전학 기술 개발
〈 (좌측부터) 허원도 KAIST 생명과학과 교수, 유다슬이 KAIST 생명과학과 석박통학과정〉 빛으로 면역 반응을 조절할 수 있는 길이 열렸다. 우리대학 생명과학과 허원도 교수 연구팀은 항체를 빛으로 활성화시켜 특정 단백질을 억제하도록 만드는 광유전학 광유전학(Optogenetics) 기술을 개발하였다. 감염이나 질병으로부터 우리 몸을 보호하는 방어 체계를 면역이라고 한다. 항체는 Y자 형태의 단백질로, 면역에서 가장 중요한 역할을 하는 물질 중 하나다. 각설탕보다 가루설탕이 물에 더 잘 녹는 것처럼, 긴 항체보다 짧은 항체 조각이 세포 내에서 더 잘 녹는다. 이런 특징 때문에 항체 조각들은 오래전부터 생물학적 도구나 의약품 재료로 사용되어왔다. 연구진은 빛을 이용해 항체의 활성화를 조절하는 옵토바디(Optobody, Optogenetically activated intracellular antibody) 기술을 개발하였다. 녹색형광단백질(GFP)을 인지하는 가장 작은 항체 조각인 ‘GFP 나노바디’에 청색광을 쬐어주면 재결합되어 활성화됨을 관찰하고, 활성화된 항체 조각이 세포 이동에 관여하는 단백질을 억제함을 확인하였다. 또한 옵토바디 기술을 GFP 나노바디 이외에도 기존에 널리 사용 중인 항체 조각들에 다양하게 적용하였다. 〈 항체 조각과 Optobody 모식도〉 또한 연구진은 화학물질을 이용해 항체의 활성화를 조절하는 케모바디(Chemobody, Chemically activated intracellular antibody) 기술을 추가로 개발하였다. 둘로 쪼개져 있던 항체 조각을 라파마이신(Rapamysin) 으로 재결합시켜 활성화됨을 확인하고, 활성화된 항체 조각이 세포 이동에 관여하는 단백질을 억제하는 것을 관찰하였다. 이번 연구는 항체광유전학 기술을 개발하여, 항체 조각이 쪼개지면 비활성화되고 재결합하면 활성화된다는 것을 밝혔다는 데 의의가 있다. 각각의 단백질은 자신만의 기능을 갖는다. 활성화된 항체가 특정 단백질을 억제했을 때 감소되는 기능을 추적하면, 해당 단백질의 기능을 알 수 있다. 또한 활성화된 항체를 단백질의 실시간 활성 및 이동을 관찰하는 바이오센서로도 이용할 수 있다. 기존의 항체 활성을 조절하는 방법은 화학물질을 이용해 항체의 발현을 유도하는 방법에 국한되어 있었으며, 항체 활성을 정밀하게 조절하기 어려웠다. 이번 연구로 빛을 이용하여 항체 활성을 빠른 시간 내에 시공간적으로 세밀하게 조절하는 것이 가능해졌다. 향후 이 기술은 항체광유전학 분야 및 항체의약품에 크게 응용될 것으로 보인다. 허원도 교수는 “이번 연구로 개발한 항체광유전학기술은 빛으로 세포 내 단백질의 기능을 제어하는 연구에 적용할 수 있고, 더 나아가 앞으로 다양한 질병을 치료하는 항체개발과 차세대 면역항암제 개발에 많이 활용되리라 기대한다”고 말했다. 이번 연구는 기초과학연구원(IBS, 원장 대행 김영덕) 인지 및 사회성 연구단(단장 신희섭, 이창준) 산하에서 시행되었으며 연구결과는 세계적 학술지 네이처 메소드(Nature Methods, IF 28.467)에 10월 15일 0시(한국시간)에 게재되었다.
2019.10.15
조회수 9781
박정영, 정유성 교수, 합금 촉매의 화학반응 실시간 관찰 성공
〈 박 정 영, 정 유 성 교수〉 우리 대학 EEWS 대학원 박정영, 정유성 교수 연구팀이 합금 촉매 표면에서 벌어지는 화학 반응 과정을 실시간으로 관찰해 합금 촉매의 반응성 향상과 직결된 반응 원리를 규명했다. 연구팀의 관찰 결과는 차세대 고성능 촉매 설계에 활용할 수 있는 반응성 향상 원리의 기반이 될 것으로 기대된다. GIST 물리․광과학과 문봉진 교수 연구팀과 공동으로 수행한 이번 연구 결과는 종합 과학 분야 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’ 7월 13일자 온라인 판에 게재됐다. (논문명 : Adsorbate-driven reactive interfacial Pt-NiO1-x nanostructure formation on the Pt3Ni(111) alloy surface, 백금-니켈 합금 표면위의 촉매 활성도가 높은 금속-산화물 경계 나노구조물 형성의 실시간 관찰) 합금 촉매는 단일 금속 또는 금속 산화물 촉매에 비해 뛰어난 성능을 보여 연료전지반응이나 탄소계열 공업화학반응 등에 이용되고 있다. 하지만 합금 촉매 반응의 결과에 대한 근본적인 원리는 자세히 밝혀지지 않아 촉매 연구 과정에서 발생하는 예상치 못한 결과를 설명하기 어려웠다. 연구팀은 문제 해결을 위해 기존의 표면 직접 관찰 기기의 한계점을 크게 개선한 ‘상압 주사 터널링 전자 현미경’과 ‘상압 X-선 광전자분광기’를 활용해 백금-니켈 합금 촉매 표면의 역동적인 변화 과정을 관찰했다. 이를 통해 실제 반응 환경에서 백금-니켈 합금 촉매의 반응성 향상 이유가 금속-산화물 계면 나노구조의 표면 형성으로부터 시작됨을 밝혀냈다. 또한 일산화탄소 산화반응 과정에서 백금 혹은 니켈 산화물 단일 촉매에 비해 금속-산화물 계면 나노구조가 갖는 비교적 낮은 활성화 에너지는 촉매 반응 원리 상 반응성 향상에 보다 유리한 화학 반응 경로를 제시할 수 있음을 확인했다. 이 결과는 밀도범함수 이론을 바탕으로 한 양자역학 모델링 계산 결과를 통해 입증됐다. 박정영 교수는 “초고진공 환경을 기반으로 한 기존의 표면 과학이 풀지 못한 실제 반응 환경에서의 합금 촉매 반응 과정을 직접 관찰한 첫 연구사례이다”며 “합금 촉매의 계면이 촉매 향상도를 높일 수 있고, 현재 진행 중인 촉매전자학 연구와도 밀접한 관계를 가지고 있다. 다양한 종류의 실제 반응 환경에 근접한 촉매 표면 반응을 연구할 계획이다.”고 말했다. 이론적 원리 규명 연구를 주도한 정유성 교수는 “직접 관찰과 양자 계산을 통해 합금 촉매의 주된 활성 자리가 계면임을 규명한 연구로, 다양한 합금 촉매의 설계 및 최적화에 중요한 단서가 될 것이다”고 말했다. 상압 표면 분석을 주도한 GIST 문봉진 교수는“이 연구는 외부의 분자들과 쉴 새 없이 반응하면서 움직이는 마치 살아서 숨쉬고 있는 원자의 움직임과 반응성을 동시에 측정한 완벽한 표면물리연구이다”고 말했다. 이번 연구는 기초과학연구원 및 한국연구재단, GIST 등의 지원을 받아 수행됐다. □ 그림 설명 그림1. 주사 터널링 전자 현미경을 이용한 실시간 표면 관찰 이미지 그림2. 시간에 따른 표면 직접 관찰 이미지
2018.07.16
조회수 9202
고규영 특훈교수, 호암상금 1억원 기부
우리 대학 의과학대학원 고규영 특훈교수가 호암상 상금 1억원을 KAIST 발전기금으로 쾌척했다. 혈관생물학 분야의 세계적인 권위자인 고규영 교수는 지난 1일 호암아트홀에서 열린 ‘제28회 호암상’ 시상식에서 의학상을 수상했다. 고 교수는 암 혈관을 제거하는 대신 정상화시키는 역발상 접근으로 항암제 전달 효율성을 높여 암의 성장과 전이를 줄일 수 있는 새 패러다임을 제시한 공을 인정받았다. 고 교수는 “기초의학자로서 연구 성과를 인정받아 호암상을 수상하게 되어 큰 영광이다”며 “지속적 발전을 위해 더욱 연구에 박차를 다해 갈 것이다”이라며 수상금의 일부를 연구의 원동력이 된 의과학대학원에 기부했다. 특히 고 교수는 지난 2012년에는 제5회 아산의학상을, 2011년에는 제7회 경암상을, 2007년에는 제17회 분쉬의학상 수상한 바 있으며, 수상시마다 매번 상금을 의과학대학원 발전기금으로 기부해 오고 있다. 신성철 총장은 “의미 있는 수상금을 의과학대학원 발전기금으로 흔쾌히 쾌척해주셔서 감사드린다”며 “고 교수의 기부금은 세계적인 의과학자를 키우고 있는 의과학대학원 발전에 큰 도움이 될 것”이라고 밝혔다. 고 교수는 전북대 의대에서 박사 학위를 받고 미국 코넬대학과 인디애나 주립대에서 박사후 과정을 거친 뒤 전북대 의대 교수, 포스텍 교수를 역임하고 현재 KAIST 의과학대학원 특훈 교수와 기초과학연구원 혈관 연구단장으로 재직 중이다.
2018.06.19
조회수 8754
육종민, 이정용 교수, 나트륨 기반의 이차전지 음극 소재 개발
우리 대학 신소재공학과 육종민 교수와 이정용 명예교수(前 기초과학연구원 나노물질 및 화학반응연구단) 공동 연구팀이 리튬 기반 이차전지 음극재료에 비해 저렴하고 수명이 긴 나트륨 기반 이온 전지용 음극 소재를 개발했다. 기존의 이차전지 음극재료 대비 1.5배 수명이 길고 약 40% 저렴한 나트륨 이온 전지용 음극 소재 개발을 통해 나트륨 이온 전지의 상용화에 기여할 것으로 기대된다. 박재열 박사과정과 기초과학연구원 김성주 박사가 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 3월 2일자 온라인 판에 게재됐다. 현재 리튬 이온 전지는 휴대폰, 전기차 등 일상생활과 밀접한 다양한 곳에 사용되고 있다. 그런데 리튬은 매장지역이 한정돼 있고 수요가 급등해 공급량이 부족한 상황이다. 2015년과 대비해 현재 리튬의 가격은 3배 이상 상승했다. 이런 문제를 해결하기 위해 리튬 이온 전지의 대안으로 나트륨 이온 전지가 주목받고 있다. 리튬이 지구 지표면에 0.005%만 존재하는 반면 나트륨은 그 500배 이상인 2.6% 존재하기 때문에 공급 문제가 해결된다. 따라서 나트륨 이온 전지는 기존 리튬 이온 전지에 비해 40% 저렴한 가격으로 같은 용량의 에너지를 저장할 수 있을 것으로 전망된다. 그러나 리튬 이온 전지의 음극 재료인 흑연은 나트륨의 저장에 적합하지 않다. 흑연 간의 층 사이에 리튬 이온들이 삽입(intercalation)되며 저장이 이뤄지는데 나트륨 이온을 저장하기에는 흑연 층간 거리가 너무 좁기 때문이다. 이러한 이유로 나트륨 이온 전지 상용화를 위해서는 이에 적합한 음극 소재를 개발하는 것이 필수적이다. 연구팀은 흑연의 대안을 나노판상 구조를 가진 황화구리에서 찾았다. 황화구리는 높은 전기전도도와 이론용량을 갖는다. 또한 황화구리에 나트륨이 저장되는 과정을 원자단위에서 실시간 분석한 결과 황화구리의 결정 구조가 유동적으로 변화하며 안정적으로 나트륨 이온을 저장하는 것을 확인했다. 그 결과로 황화구리의 나트륨 저장 성능이 흑연 이론용량(~370mAh/g)의 1.5배(~560mAh/g)에 달하는 것을 확인했고 충, 방전을 250회 반복한 이후에도 이론용량의 90% 이상이 유지됨을 증명했다. 이번 연구로 나트륨 이온전지가 상용화되면 지구 표면의 약 70%를 차지하는 바다에 무궁무진하게 존재하는 나트륨을 활용할 수 있다. 이는 배터리 원가 절감으로 이어지고 휴대폰, 전기 자동차, 노트북 등의 단가를 약 30% 정도 낮출 수 있을 것으로 기대된다. 이정용 교수는“이번 연구결과가 차세대 고성능 나트륨 이온 전지 개발에 크게 기여할 것으로 기대된다”고 말했다. 육종민 교수는 “요즘 미세먼지 등의 환경오염 문제로 특히 신재생 에너지 상품에 관심이 많은데 이번 연구 결과를 통해 우리나라가 관련 제품에 대한 우위를 점할 수 있는 토대를 한 단계 다졌다고 생각한다”고 말했다. 이번 연구는 한국연구재단의 생애첫연구사업 및 나노, 소재기술개발사업과 기초과학연구원의 지원을 받아 수행됐다. □ 그림 설명 그림1. 판상구조 황화구리 촬영 사진 그림2. 황화구리 내 나트륨이 저장되면서 나타나는 결정구조 변화 양상 그림3. 황화구리 내 나트륨 충방전 횟수별 저장 용량
2018.03.08
조회수 11959
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2